
CS540 Machine learning
Lecture 4



Last time

• Basic concepts
– Loss functions
– Estimation vs inference
– Decision boundaries
– Overfitting
– Regularization
– Model selection
– Structural error vs approximation error



This time

• Basis functions
• Normal equations

• QR
• SVD



Linear regression



Polynomial Regression

Error bars denote 95% credible interval

Line denotes posterior mode  arg maxy p(y|x)



Polynomial Regression

Interaction term



Polynomial basis

• Linear regression can fit nonlinear functions, 
provided the nonlinearity is fixed



Radial basis functions (RBF)

• Measure distance to examplars



RBF vs polynomials



Categorical features

• Not meaningfully ordered, so use 1-of-K encoding 
to embed into a vector space



Standardization

• Often need to ensure features are on same scale 
(numerics, ridge)



BLT



MLE for linear regression (least squares)

Negative log likelihood



Normal equations

MLE = OLS estimate

Uncertainty in estimate – see later

See book for derivation



Geometry of least squares

Minimize RSS by orthogonal projection
of y into column space of X



Orthogonal projection

• Projection of y onto X

• Let r = y - \hat{y}. Residual must be orthogonal to 
X. Hence

• Prediction on training set

• Residual is orthogonal

Hat matrix



Solving for offset

• Let us separate w0 from the other weights

• One can show (homework) that

• And

• For 1d data:



Solving for σ2

• One can show



Colinearity

• Consider if x1=x2

What solution should we return?



Null space

• Consider rank 2 matrix (2nd = avg of 1 + 3)

• Let z be in the null space of X, ie Xz = 0. Then

• What solution should we return?



Condition number

• Suppose X is full rank so solution is theoretically 
unique. May be hard to find numerically.

• We see methods for finding the MLE that do not 
invert XT X

• Each method will resolve the ambiguity issue in a 
different way



QR decomposition

• We find a set of orthonormal vectors qj that span 
successive columns of X (using Gram-Schmidt 
orthogonalization)



QR decomposition

• Can make Q and R be square m x m matrices 
so we can write 



Least squares with QR

• We have

• Let z = QT y. Solve w=R-1 z by back substitution,
w = R \ z.

Shorthand



Basic solution

• Let r  = rank(X). Basic solution has r non-zeros.

• w=X\y returns one of many possible basic 
solutions.



SVD



Truncated SVD

• Rank k approximation to a matrix

Equivalent to PCA



Truncated SVD



SVD for least squares

• We have

What if Dj = 0 (so rank of X is less than d)?



Pseudo inverse

• If D_j=0, use

• Of all solutions w that minimize ||Xw – y||, the pinv
solution also minimizes ||w||


