CS540 Machine learning

Directed graphical models




« Directed graphical models
e Conditional independence
Effects of node ordering

« Markov equivalence

e Bayesian modeling



Conditional independence

Recall the naive Bayes assumption

X; L XilY

This lets us factorize the class conditional density
p(xly) = | [ p(z;|y)

Hence the joint distribution IS
p(x,y) =p(y) | | p(z;ly)
j=1

Graphical models are ways to represent ClI
statements pictorially. This provides a compact way
to define joint probability distributions.
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Kinds of graphical models

e Undirected graphical models — aka Markov
Random fields — see later In class.

e Directed graphical models — aka Bayesian (belief)
networks.

— BNs require that the graph is a DAG (directed acyclic
graphs).

— No directed cycles allowed.

/9\,/ /

D—> 0 /0



Directed graphical models

« A prob distribution factorizes according to a DAG if
It can be written as

d
p(x) = [ ool

where 11 are the parents of | , and the nodes are
ordered topologically (parents before children).

o Each row of the conditional
probability table (CPT) defines
the distribution over the child’s
values given its parents values.
The model is locally normalized.

= p(x1)p(z2|m1)p(z3|71)p(Ts|23)

P(CU5 |£I32, $3)P(CI36 \332, 33’5)




Example model

p(B,E, A, J, M) = p(B)p(E)p(A|B, E)p(J|A)p(M|A)

o |
o] B

J

Source: Russell & Norvig



Example model

P(C=F) P(C=T)

0.5 0.5

C ‘ P(S=F) P(S=T) C | P(R=F) P(R=T)
F 0.5 0.5 / F 0.8 0.2
T 0.9 0.1

% S ISR

S R|P(W=F) P(W=T)

F F 1.0 0.0
T F 0.1 0.9
F T 0.1 0.9

T T 0.01 0.99

p(C, 5, R, W) = p(C)p(S|C)p(R|C)p(W|S, R) 7



Joint distribution

p(C, S, R, W) = p(C)p(S|C)p(R|C)p(W]S, R)

C S r w prob

0000 0.200

000 10.000

B 0010 0.005

- 0011 0.045

0100 0.020

E 0101 0.180

¢ |psempsen (e Cran D 0110 0.001
o les % Folos o2 0111 0.050
BRI 100 0 0.090

< 2 lpcrers poves 100 1 0.000

Fr| 1o oo 1010 0.036

D 1011 0.324

B I 1100 0.001

1101 0.009

1110 0.000

1111 0.040



Inference

e Prior that sprinkler is on

1 1 1
p(Szl)zy:y:y:p(C:c,S:1,R:r,W:w):O.S

c=0 r=0 w=0
e Posterior that sprinkler is on given that grass is wet
p(S=1W =1) = PE=LW=1) 4

p(W =1)
e Posterior that sprinkler is on given that grass is wet

and it Is raining

p(S=1W=1,R=1) =

Explaining away!



e Undirected graphical models

e Directed graphical models
—e Conditional independence

« Effects of node ordering

« Markov equivalence

e Bayesian modeling
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Graph separation

« We say S separates A and B in G if, when we
remove edges connected to S, all paths from Ato B
are blocked

X, — X

Y\ / \\ Xé eg {2,5} separates 1 and 4
N\ 4a s

— XS

 Hammersley-Clifford Theorem: if p(x)>0 for all x,
and p factorizes over G, then graph separation iff
conditional independence

AJ_G B‘S@ALP B|S

11



Markov properties of UGMs
e Global A L B|S

bd = boundary,
cl = closure = boundary + node

A node is independent of the rest given its Markov blanket
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Conditional independence properties of DAGS

 For UGMSs, independence = separation.
 For DGMs, independence = d-separation.

« Alternatively, we can convert a DGM to a UGM and
use simple separation.

13



« DAGs admit a total ordering (parents before
children).

* Local Markov property: A node Is independent of Its
predecssors given its parents.

\\ Y,

|
>( XZ, Xl\ Lé- L/S l//l
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Local directed Markov property

* A node is independent of its non-descendants
given Its parents
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By the chain rule
p(vin,,) = p(v1)p(ve|vi)p(vs|v, v2) - . . p(vn, [v1n, -1

* By the local Markov property
/
p(v1:n) = p(v1)p(va|vr, )P(V3[Vry) - - - P(Vn %, )

v,
VAN \\
“@ Vi Vr\ y >( X )

’\)L
Ng

(Y, T1m,) = P(y) [ p(z5ly)

1
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Local Markov property is not enough
* NB property is X; L X, | Y for all k, including k > |

« But local Markov property only tells us
X, L X |Ytork<]

 Want to be able to answer the following for any sets
of variables a,b,c: Z, L Z, | Z.?

[ \]/ t/a‘/‘(/& /VC
L "’/ ]\’\L\//
>(\ XZ, an
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Global Markov property

e By chaining together local independencies, one can
Infer global independencies.

 The general definition/ algorithm is complex, so we
will break it into pieces.
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e Consider the chain
X >T7T>3

p(z,y, 2) = p(x)p(y|z)p(2|y)
 If we condition and y, x and z are independent

p(z)p(y|x)p(z|y)

_ plz,y)p(2ly)
| o p(y)
/N = p(z|y)p(z|y)
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e Consider the “tent”

-

N

X \’3;
p(z,y,z) = p(y)p(z|y)p(2|y)

e Conditioning on Y makes X and Z independent

_ p(z,y,2)
p(:z:,z\y) o p(y)
/:@r _ p(y)p(;j(‘zip(z‘y) _ p(m‘y)p(z‘y)
/TN

X X 20



Naive Bayes assumption

e Conditional on class, features are independent

@

(%

\
X\ X’\)L
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e Consider the v-structure

X T
\vb/

v
l

p(z,y,z) = p(z)p(z)p(yl|z, 2)
X and Z are unconditionally independent

Pz, 2) = / p(z, y, 2)dy = / p(2)p(2)p(yle, 2)dy = p(x)p(=)

but are conditionally dependent

@)W 2) ¢y

p(x,z|y) — p(y)
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Explaining away

e Consider the v-structure

¥ o |
XX Ox\ \///o XM/ Eox AT
N7 &/

e Let X, Z € {0,1} be iid coin tosses.

e LetY =X+ Z.
* |f we observe Y, X and Z are coupled.
X 1 %
@, 0 )
o | |
l , /
| L
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Explaining away

e LetY =1 iff burglar alarm goes off,
o X=1 iff burglar breaks in
e /=1 Iff earthquake occurred

X T
\vb/

v
l

« X and Z compete to explain Y, and hence become
dependent

o Intuitively, p(X=1|Y=1) > p(X=1]Y=1,Z=1)

24



Bayes Ball Algorithm

e Z, 1 Zg | Z- If every variable in A Is d-separated

from every variable in B when we shade the
variables in C

X >E) >y X (D> %

—> f— >
| :
\ d
\
NP
X P A
X X 2
=Y/ W\ Y

%, ® :



Boundary conditions

— D
e U Y/
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Naive Bayes assumption

e Conditional on class, features are independent

@

> ~ | _
7/ %X
X\ X’\JL
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Markov blankets for DAGs

 The Markov blanket of a node is the set that
renders it independent of the rest of the graph.

« This Is the parents, children and co-parents.

(X5, X3)
> (X, X 5)
(X, Urin, Yi:ms Z1:m, R)
Yo (@, Uty Yiimy Z1.m, R)
p(XilUrn) (L1, p(Y;| X3, Z5)|P(Utiny Z1:m, R)
> o P(Xi = 2|Un)[[1; p(Y;|Xs = =z, Z;)|P(Ur:n, Z1:m, R)
p(Xi|Urn)[I1; p(Y;]Xi, Z;)]
Do P(Xi = z|Unn)[]; p(Y;|Xs = =, Z;)]

p(Xi| X)) =

p(XilX_i) «x p(X;|Pa(X;)) || p(Y;|Pa(Y;)
Y, ech(X,)

Useful for Gibbs sampling 30



e Undirected graphical models

e Directed graphical models

e Conditional independence
—eo Effects of node ordering

« Markov equivalence

e Bayesian modeling
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Example model

e Suppose the true distribution is

p(B,E, A, J,M) = p(B)p(E)p(A|B, E)p(J|A)p(M|A)

5L
|
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Choosing the “wrong” ordering

* |f we choose the order MJABE, we get a more
densely connected network, otherwise this will
make independence statements that are not true.

 Eg In original model we have E L M|A, E L J|A, E [ B|A
so we must connect E to B,A but not M,J

<

Source: Russell & Norvig



A worse ordering

 |f we pick the order MJEBA, the graph becomes
fully connected, and thus makes no independence
statements (and therefore includes the true

distribution).
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e Undirected graphical models
e Directed graphical models
e Conditional independence
« Effects of node ordering
—e Markov equivalence
e Bayesian modeling
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Markov equivalence

 The following 3 graphs all assert the same set of
conditional independencies, namely X indep Y | Z;
hence they are equivalent

ff r}( X Y
” « x LUy
3} ]
l T

M — - X

This v-structure is not equivalent

x 12

X Ly

¥ - X
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Markov equivalence

« Thm: 2 DAGs are Markov equivalent iff they have
the same undirected skeleton and the same set of
v-structures

G (-, by
X\ % X
X
&Y / L/y\\ VAR VA
S \l XS v)ﬁ% X X
Y | )
‘4 Xy X,
G = 6y’

Gz by !
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PDAGS

 We can uniquely represent each equivalence class
using a partially directed acyclic graph (aka
essential graph).

* This uses undirected edges If they are reversible,
and directed edges Iif they are compelled.

(r/
U

A D= (— X

¢
' — —<<~y
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e Undirected graphical models
e Directed graphical models
e Conditional independence
« Effects of node ordering
« Markov equivalence
—e Bayesian modeling

39



Parameter nodes

e If we treat the parameters as random variables, we
can add them as nodes to the graph.

 Here we assume global parameter independence.
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Repetitive structure

 |f we have iid samples, the variables get replicated
but the parameters are tied / shared

&,
/ \
< c,
//W : N / \
@S — _S | ﬂ\ - g/\ V/Z/\ \Dg,e
\ / \ S
L, v
>
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Plate notation

e For shorthand, we use plates

&,
/ \,
< c,
/// S NG / \
@S — _S | ﬂ\ - g/\ V/Z/\ \Dgg
\ / \ S
L, 824




Factored prior, likelihood, posterior

e Since the parameters are independent in the prior,
and the likelihood is factorized, they are also
Independent in the posterior

p(0|D) o p(0)p(D|6)
= p(HC)Hp(Ci"QC)

x  p(bs) HP(Si\Cq;, 0s)
x  p(6r) HP(Ti\Ci, 0r)

X p(@w) Hp(wi‘siv Ty, 08)
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Local parameter independence

 Each row of CPT is a different multinomial
distribution. We typically assume these are

Independent.
1
p(0r) = |]pOrc=r)=]] Dir(Oric=klaric=r)
k=0 k
P(C=F) P(C=T) )
0.5 0.5 ‘é’ (9(, = [() S/ O.))
o O
e S T e, 060
T 0. 0.1 1=
9 @ T 0.2 0.8 %(9,(.6:" - (D'Z,D‘g)
s R P(W=F) P(W=T)
TF 0:1 (:‘:.9%-‘ les:—'l)k:o :(0‘1,0'7)
T T 0:01 0.;9 L~ (9(_,/, §7l‘ R=\ ;(0-01'0.61)
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Local parameter independence

 |n the case of CPTs, we assume each row of the
table is an independent multinomial

K R

C B¢ )

9&](,?0 / l’ —

< wk—m
| ¢ = L /L"]tt kese
\ / NP [
\PE ( -~
Wy
zw]‘s:o,g:o
—~—__
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Posterior over parameters factorizes

p(Or|D) = H p(Or|c=k) HI(Cz‘ = k)p(ri|0r)c=k)

= HDZT‘ 0R|C k|aR|C’ k)M’UJ(nR,C’:k‘HRW’:k?n)

$ ;

L/ P8e)  PlSucs) plog,_)
ClC S R W ] ] I
[ /O 0 D O ‘z[\lj )Z]Iﬁl IIE
L T 3] =2T2] LT
S BUEN N EARY B Y

p(0|D) H [I Dir(6jxlen +nj)

J=1kcPa(j) 16



Parameters are rv’'s, too!

p(x,y,m,0) = p(ﬂ)p(ylﬂ)li[l p(:vj!y,é’g)c]:[lp(ﬁgc)
= p(’ﬂ)H]Z[Jp(@gc) _
',Xp<y;>ﬂp<xjy, 0,
/, \
X)Xy
0 SN AN

\ e ot | Gl 47



 When we have multiple samples, we replicate the
variables, but the params are fixed

p(’ﬂ', 9)p(D|7T, 0)
p(D|m,0) = Hp(yilﬂ)Hp(xmlyi,Hj)

s\ = 1T 11 7ep(ei;l60)

p(D,m,0) =

J\
>(|I X‘d

Repetitive structure

Y
J\

XV\\ )/n/

N X/

9|)|2¢

8/,!: C

C 1:Y;=c
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 We introduce a shorthand for repetitive structure
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Nested plates

e Doubly indexed nodes

50



Hyper-parameters

 If the hyper-parameters are fixed, they will be root
nodes In the graph.
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Factored prior/ likelihood/ posterior

e Since the prior and likelihood are factorized over

parameters, so Is the posterior T(

©9 Hjc 1 (99'/6/|D L

Hence we can compute the posterior T,
(or MLE/MAP) of each parameter |
l'\_AA\

separately




Example: Binary features

p(D,m,0|a,a,b)

Njc1

jco

p(rlo) [ pws/m) T

&

H H p(wij|0;c)

J vyi=c

p(0jc)

Dir(rw|a) Mu(n|m) [ | [ Bin(nje116;e, njc)Beta(Hjclajc, bjc)

J

Dir(w|a + n) H H Beta(0jc|ajc + nje1, bje + njeo)

J
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