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1. General Description 
 
 
1.1 Purpose 
 
 This project will implement the optimal triangulation algorithm mentioned in 
the paper “Complexity of Finding Embeddings In A k-tree”, by Arnborg (1987)[1].  As 
shown in the paper that if we could find the k, then we can guarantee that the 
triangulated graph respect to the embedding k-tree will only include cliques with size 
no more than k+1. 
  
 It is shown in this paper that finding the embedding partial k-tree is an NP-
Complete problem for a fixed size of k.  The algorithm that is going to be 
implemented in this project, using dynamic program approach, has the complexity of 
O(nk+2).  
 
 We have discussed the triangulation problem for an undirected graph in class.  
We have also implemented the triangulation using an arbitrary order in our 
assignment and we got to know that different elimination order could result in 
significant difference in the triangulated graph.  The implementation of this algorithm 
will be handy when solving many graphic model related problems. 
 
1.2 Assumptions 
  
 It is assumed that the input will be a 0/1 matrix representation of an undirected 
connected graph, and an integer k (k>0). 
 
 Because the algorithm to be implemented in this project has O(nk+2) 
complexity, we assume that the n and k would be relatively small, otherwise, the 
running time is still very high.  For example, if the input is a 10-by-10 grid matrix, 
which means n=100, and k =10, then the complexity in this case would be 1022.  It is 
obvious that the algorithm will perform poorly.  The project will test the value of n 
and k that can be run in acceptable time. 

 
In the paper, it doesn’t mention how to generate the elimination order 

according to the partial k-tree embedding found by the algorithm.  It is assumed here 
that the project could only return the cliques that are generated from each component 
of k-tree embedding, which guarantees that the maximum clique size will not be more 
than k+1, or it could run an algorithm that triangulate the graph with respect of these 
small k-tree embeddings, from smallest ones to bigger ones, and finally triangulate the 
entire graph.  Because the purpose of finding the partial k-tree embedding is to limit 
the maximum clique size, it may not output a triangulation that has least fill-ins. 
 
 
1.3 Method 
 
 The algorithm to finding if the given graph is a partial embedding k-tree uses 
dynamic programming method.  Firstly, it finds all the k-vertex separators of the 
graph.  Each such separator separates the graph to several connected components.  
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The mission is to test if each component is a partial k-tree.  The base case is that a 
sub-graph with k+1 vertices is a partial k-tree.  In the dynamic programming process, 
the algorithm will fill out a table which is built to store the status of each connected 
component in the order of vertex size. If some component could be built by the union 
of the smaller components that have been proven to be partial k-trees, then this 
component could be partial k-tree and would be added to the partial k-tree list.  The 
termination condition is that if for some separator, all its separated components are 
partial k-trees, and then the entire graph is a partial k-tree. 
 
 It is obvious that each smallest component could be a potential clique if we 
triangulate the graph.  Therefore, in the process of dynamic programming, the clique 
composition is stored in another structure, so that when the graph is proven to be a 
partial k-tree, it can be traced back how it could be decomposed by the small cliques. 
 
 
2. Achievements 
 
 The implementation of the project strictly follows the algorithm description in 
the above mentioned paper.  In addition, as mentioned in the proposal, the project will 
also output a structure which includes some information about the k-tree, the 
separators, the cliques, and the triangulated version of the graph with respect of each 
clique (atomic partial k-trees). 
 
 The project also tested the performance of the algorithm with the increase of 
the graph size and k value.   
 
3. Project Documentation 
 
3.1 User Interface 
 
 The project is implemented using Metalab 6.5.  The process of finding k-tree 
embedding is built as a function.  It can be called by any other programs.  The input of 
the function is an undirected graph represented by a 0/1 matrix.  For example: 

 
Can be represented as  

                                     
 
 

 The input value k will be a positive integer to be tested if the given graph can 
be a partial k-tree.  The purpose is to find the minimum k such that the given graph 
could have a corresponding embedding k-tree. 
 
3.2 Implementation 
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There are several main sub models along with the process of dynamic 
programming.  Each main step is built as a sub-function, so that it could be easily 
tested and debugged.  The main function is called [Answer, RG] = pktree(G, k). The 
returned value includes: Answer, which is 0 or 1 indicating if the graph is a partial k-
tree and a structure RG, which includes: RG{1} is the base separator of the graph, 
which can also be treated as the root graph of the resulting cliques; RG{2} is the entire 
set of cliques; RG{3} is the triangulated version of the original graph with respect to 
the partial embedding k-trees.  It progressively calls the following main functions: 
 
3.2.1 Separators 
 
 Prototype: [S,C]= separators(GT, K) 
 
 This function does the basic pre-procession to the input graph.  It accepts the 
original graph and the k value.  Firstly, all the combinations of k-vertex are built, 
which are potential “separator” that we need to test.  Then, each potential separator is 
tested to see if deleting the separator the graph can be separated to several connected 
components.  If it is such a separator, this function will also store the component 
graphs induced by this separator.  Therefore, after running this function, proper 
separators and their corresponding components will be returned.  The separators will 
become the base graph to build k-trees and the components are to be tested to see if it 
is also a partial k-tree or combination of partial k-trees. 
 
 This function also called three other smaller functions: elimG(G, Elim), which 
will eliminate the vertices from original graph; connected_g(G), which test if the 
graph is still connected after removing some vertices; partition(G), which is used to 
generate the components after removing the base graph separator. Some other minors 
functions used include “reachable(G,s)”, which uses breadth-first-search to find all 
the nodes that connect to vertex s , so that it could be judged if the given sub-graph is 
connected by the length of all reachable vertices. 
 
3.2.2 gsort 
 
 Prototype: i_od= gsort(VCij) 
  
 This function sorts all the components by the order of their size.  The input is 
the structure that includes all the components, which are represented by only the 
vertices numbers, not the graph matrix.  It is because that we are only interested in the 
size here.  It is easy to sort all the size numbers and the index of the separators.  The 
numbers of each component are returned as a N x 2 matrix, where N is the total 
amount of such components.  Therefore, the returned matrix here is only the indexes 
of each Ci

j as defined in the algorithm. 
 
3.2.3 select_sept 
 
 Prototype: select_sept(prot_Cm, S) 
 
 This function is used to recursively separate each component to smaller part 
and find separators in further components, until it reaches the components that only 
have k+1 vertices.  It firstly finds all the k vertices combinations in each component 
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and then selects those ones that are separators.  Because we have the separators’ set 
collection, we pass all the sets as a parameter to this function.  In this way, the 
separators could be quickly found. 
 
3.2.4 ktree_triangulate 
 
 Prototype: ktree_triangulate(UG, TAG) 
 
 This function is used after the graph has been tested if it is a partial k-tree.  It 
will do the triangulate part according to the partial k-trees.  This function could only 
be called when the entire graph has been decomposed to small parts, and each part 
belongs to some k-tree embedding, which is also a potential clique.  When the 
function is called, the entire function would have collected enough data structures, 
including the separators for each partial k-tree, the cliques, and the order that they are 
composed.  Note that when the program does the dynamic programming procedure, it 
uses bottom-up approach to build those cliques, so that all the partial k-trees could be 
built by the combination of the cliques with at most k+1 vertices. 
 
3.2.5 Main Data Structures 
 
 There are several data structures used in this program, including: 
 

• S{}: as defined in the algorithm, it includes all the k-vertex separators of the 
graph G.  Each separator is represented as a cell of array. 

• C{}: as Ci
j defined in the algorithm, it includes the matrix of each component.  

Note that it includes a series of cells, each of which includes cells of different 
components.  The index of the first cell is in the same order with the index of S. 

• Kpartial{}:  It has the same structure with C. It is the indicator to each Ci
j , 

showing if it has been tested to be true (k-tree embeddable).  It is initially set 
to be false to all the cells. 

• ktrees{}: This structure is used to trace the clique composition of each 
component.  When a component is verified to be a partial k-tree, the program 
will collect all the corresponding k-tree compositions of the component, which 
is either all the vertices when the size is k+1, or the ktrees{i} cells and the 
separators S{i} included. 

 
The program function calling tree is shown as graph 3.2 
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3.3 Testing 
 
 The project is mainly in a format of function and it involves several sub-
functions, therefore, the testing to each sub-function is performed to make sure that 
that the programs are all correct.  Because the main algorithm is based on the above 
mentioned paper strictly, we can verify the correctness of the entire program by the 
output answer and the related k-tree information. 
 
 Several datasets are used for the testing of the program, including different 
size of graph and connectivity, such as 3x3 grids, 2x3 grids, graph used in assignment, 
and some graph with more vertices and different k values are also used to test the 
performance of the program.   
 
 Here we only list the testing result made to 3x3 grid graph as an example to 
show how the testing is performed.  Therefore, the input for the program is the matrix 
mentioned in graph 3.1 and k value of 3.  Note that more tests have been performed to 
make sure that the functions are correct.  Only partial testing results are listed here 
for example and demonstration purpose only. 
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3.3.1 Function Testing 
 

Table 3.1 Function Testing Result 
(with input of 3x3 grid G and k=3) 

 
Function Name Input Output Res

ult 
combinations(n,k) (length(G),3) S, 84 x 3 elements, listing the 84 

combinations of 3 numbers from 1 
to length(G) 

Pass 

elimG(G,S) (G, S(8,: ) ) tempG, a 6x6 matrix, resulted from 
G by delete the 1,3,4 lines and rows 

Pass 

connected_g(G)  (tempG) Yes, when 1,3,4 are deleted 
No, when 1,2,6 are deleted 

Pass 

reachable(G,s) (tempG, 1) No. Pass 
partition(G, S) (G, S{4}) Ci

j includes two 9x9 matrix, each 
represents part of the graph 
separated by 1,2, 6 

Pass 

separators(G,k) (G,3) [S, C] S includes 36 cells; each 
includes a 3-vertex partition. 
C includes 36 cells also, each of 
which includes one or two cells of 
9x9 matrix representing each 
separated graph.(deleted nodes have 
0 to all other nodes) 

Pass 

ver_matrix(C) (C) VCij includes 36 cells, each has 2 
elements and each element is a set of 
vertices (numbers) 

Pass 

combination2(V,k) ([1 2 4 5],3) Protential_Cm includes 4 cells, each 
contains 3 numbers from input set 

Pass 

select_sept(Cm, S) (prot_Cm,S) 10,15 which are the indices  of S, 
showing S{10} is a separator among 
the set 

Pass 

ktree_triangulate(UG, 
TUG) 

(G, TUG) Triangulate, includes the 
triangulated graph with respect to 
the partial k-trees. 

Pass 

Pktree(UG,k) (G,3) 1, indicating that the graph is a 
partial 3-tree. 
TUG, includes 3 parts, {1}is the base 
separator 1,5,9 ; {2} includes all the 
cliques (partial k-tree components); 
{3} includes the triangulated graph 
 

Pass 

 
 The resulting graph is shown as below graph 3.3 : 
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3.3.2 Performance Testing 
 
 To test the performance of the algorithm, Matlab functions clock and etime are 
used to record the start time, end time and their difference.   
  
 In a Pentium IV 2.0G CPU computer, the real running time comparison is as 
following: 

Table 3.2 Program Running Time Testing Result 
 

Number 
of 

Vertices 

K Partial 
k-tree? 

Running 
Time (in 
second) 

Number of 
Vertices 

K Partial 
k-tree? 

Running 
Time (in 
second) 

1 N 0.141 2 N 2.625 
2 Y 0.406 3 Y 7.891 4 
3 Y 0.313 4 Y 10.391 
2 Y 0.984 

9 

5 Y 9.015 
3 Y 0.937 2 N 5.3600 
4 Y 0.343 3 N 180.3910 6 

5 N 0.062 4 Y 261.4370 
2 Y 1.968 5 Y 711.1880 
3 Y 3.279 

12 

6 Y 330.5940 
4 Y 3.828 2 N 13.9850 8 

5 Y 2.562 3 N 581.8910 
   4 Y 1502.032     

16 

5 ? incomplete
   
 The testing data above shows that the algorithm performs well while the size 
of the graph and k value is small.  However, with the increasing of the size and k, the 
program performs very poorly.  For a fixed N value, the running time increases with 
the size of k, until to [n/2].  This is because that in our program, the most expensive 
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part is to find the combinations of all the k-vertex separators.  While calculating the 
combinations, we know that Cn

k =Cn
n-k , therefore, when k=n/2, the program would 

generate most number of different combinations.  It execute the most time at this 
moment.  In the testing process, when n=16 and k=5, the program did not terminate 
in 3 hours.  The relation of n, k and the running time is roughly shown in the 
following graph: 

 
We can see that it roughly follows a nk+2 trend. 
 
4. Conclusion 
 
 The algorithm in Arnborg[1] ’s paper, which is successfully implemented in 
this project, is a way to find good triangulation such that the resulted graph could be 
guaranteed to have no cliques with size more than k+1, if the graph is verified to be a 
partial k-tree.  The algorithm uses dynamic programming method, which improves the 
running time and the performance of the algorithm.   However, as proved in the paper 
that the problem is a still NP-complete problem, and it costs nk+2 running time, 
therefore, it could almost be treated as exponential when the size of n and k increase 
to some extent.   
 
 There are many other later papers that use other algorithm to solve related 
problems, such as the algorithm in the paper A Practical Relaxation of Constant-
Factor Treewidth Approximation Algorithms [2] by Hopins and Darwiche (2002) 
could guarantee that the triangulation of G with width at most 4k+1; the paper 
Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs by 
Hans L. Bodlaender and Ton Kloks (1993) [5] described an O(nlog n) algorithm to 
determine if tree-width ≤ k.  The algorithm in this project is a good choice for small 
size graph.  However, if we need process larger size graphs, we’d better select one of 
above mentioned algorithms. 
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