
XUN SUN

Computer Science Department
 University of British Columbia

Finding Good Triangulation

-Implementation of the algorithm of “Finding Embeddings In A k-Tree”[1]

CPSC532C PROJECT REPORT

Dec. 17, 2004

Submitted to: Prof. Kevin Murphy

(Code accessible at: http://www.sunxun.com/ubc/532/ktree.zip)

http://www.sunxun.com/ubc/532/ktree.zip

1. General Description

1.1 Purpose

 This project will implement the optimal triangulation algorithm mentioned in
the paper “Complexity of Finding Embeddings In A k-tree”, by Arnborg (1987)[1]. As
shown in the paper that if we could find the k, then we can guarantee that the
triangulated graph respect to the embedding k-tree will only include cliques with size
no more than k+1.

 It is shown in this paper that finding the embedding partial k-tree is an NP-
Complete problem for a fixed size of k. The algorithm that is going to be
implemented in this project, using dynamic program approach, has the complexity of
O(nk+2).

 We have discussed the triangulation problem for an undirected graph in class.
We have also implemented the triangulation using an arbitrary order in our
assignment and we got to know that different elimination order could result in
significant difference in the triangulated graph. The implementation of this algorithm
will be handy when solving many graphic model related problems.

1.2 Assumptions

 It is assumed that the input will be a 0/1 matrix representation of an undirected
connected graph, and an integer k (k>0).

 Because the algorithm to be implemented in this project has O(nk+2)
complexity, we assume that the n and k would be relatively small, otherwise, the
running time is still very high. For example, if the input is a 10-by-10 grid matrix,
which means n=100, and k =10, then the complexity in this case would be 1022. It is
obvious that the algorithm will perform poorly. The project will test the value of n
and k that can be run in acceptable time.

In the paper, it doesn’t mention how to generate the elimination order

according to the partial k-tree embedding found by the algorithm. It is assumed here
that the project could only return the cliques that are generated from each component
of k-tree embedding, which guarantees that the maximum clique size will not be more
than k+1, or it could run an algorithm that triangulate the graph with respect of these
small k-tree embeddings, from smallest ones to bigger ones, and finally triangulate the
entire graph. Because the purpose of finding the partial k-tree embedding is to limit
the maximum clique size, it may not output a triangulation that has least fill-ins.

1.3 Method

 The algorithm to finding if the given graph is a partial embedding k-tree uses
dynamic programming method. Firstly, it finds all the k-vertex separators of the
graph. Each such separator separates the graph to several connected components.

1

The mission is to test if each component is a partial k-tree. The base case is that a
sub-graph with k+1 vertices is a partial k-tree. In the dynamic programming process,
the algorithm will fill out a table which is built to store the status of each connected
component in the order of vertex size. If some component could be built by the union
of the smaller components that have been proven to be partial k-trees, then this
component could be partial k-tree and would be added to the partial k-tree list. The
termination condition is that if for some separator, all its separated components are
partial k-trees, and then the entire graph is a partial k-tree.

 It is obvious that each smallest component could be a potential clique if we
triangulate the graph. Therefore, in the process of dynamic programming, the clique
composition is stored in another structure, so that when the graph is proven to be a
partial k-tree, it can be traced back how it could be decomposed by the small cliques.

2. Achievements

 The implementation of the project strictly follows the algorithm description in
the above mentioned paper. In addition, as mentioned in the proposal, the project will
also output a structure which includes some information about the k-tree, the
separators, the cliques, and the triangulated version of the graph with respect of each
clique (atomic partial k-trees).

 The project also tested the performance of the algorithm with the increase of
the graph size and k value.

3. Project Documentation

3.1 User Interface

 The project is implemented using Metalab 6.5. The process of finding k-tree
embedding is built as a function. It can be called by any other programs. The input of
the function is an undirected graph represented by a 0/1 matrix. For example:

Can be represented as

 The input value k will be a positive integer to be tested if the given graph can
be a partial k-tree. The purpose is to find the minimum k such that the given graph
could have a corresponding embedding k-tree.

3.2 Implementation

2

There are several main sub models along with the process of dynamic
programming. Each main step is built as a sub-function, so that it could be easily
tested and debugged. The main function is called [Answer, RG] = pktree(G, k). The
returned value includes: Answer, which is 0 or 1 indicating if the graph is a partial k-
tree and a structure RG, which includes: RG{1} is the base separator of the graph,
which can also be treated as the root graph of the resulting cliques; RG{2} is the entire
set of cliques; RG{3} is the triangulated version of the original graph with respect to
the partial embedding k-trees. It progressively calls the following main functions:

3.2.1 Separators

 Prototype: [S,C]= separators(GT, K)

 This function does the basic pre-procession to the input graph. It accepts the
original graph and the k value. Firstly, all the combinations of k-vertex are built,
which are potential “separator” that we need to test. Then, each potential separator is
tested to see if deleting the separator the graph can be separated to several connected
components. If it is such a separator, this function will also store the component
graphs induced by this separator. Therefore, after running this function, proper
separators and their corresponding components will be returned. The separators will
become the base graph to build k-trees and the components are to be tested to see if it
is also a partial k-tree or combination of partial k-trees.

 This function also called three other smaller functions: elimG(G, Elim), which
will eliminate the vertices from original graph; connected_g(G), which test if the
graph is still connected after removing some vertices; partition(G), which is used to
generate the components after removing the base graph separator. Some other minors
functions used include “reachable(G,s)”, which uses breadth-first-search to find all
the nodes that connect to vertex s , so that it could be judged if the given sub-graph is
connected by the length of all reachable vertices.

3.2.2 gsort

 Prototype: i_od= gsort(VCij)

 This function sorts all the components by the order of their size. The input is
the structure that includes all the components, which are represented by only the
vertices numbers, not the graph matrix. It is because that we are only interested in the
size here. It is easy to sort all the size numbers and the index of the separators. The
numbers of each component are returned as a N x 2 matrix, where N is the total
amount of such components. Therefore, the returned matrix here is only the indexes
of each Ci

j as defined in the algorithm.

3.2.3 select_sept

 Prototype: select_sept(prot_Cm, S)

 This function is used to recursively separate each component to smaller part
and find separators in further components, until it reaches the components that only
have k+1 vertices. It firstly finds all the k vertices combinations in each component

3

and then selects those ones that are separators. Because we have the separators’ set
collection, we pass all the sets as a parameter to this function. In this way, the
separators could be quickly found.

3.2.4 ktree_triangulate

 Prototype: ktree_triangulate(UG, TAG)

 This function is used after the graph has been tested if it is a partial k-tree. It
will do the triangulate part according to the partial k-trees. This function could only
be called when the entire graph has been decomposed to small parts, and each part
belongs to some k-tree embedding, which is also a potential clique. When the
function is called, the entire function would have collected enough data structures,
including the separators for each partial k-tree, the cliques, and the order that they are
composed. Note that when the program does the dynamic programming procedure, it
uses bottom-up approach to build those cliques, so that all the partial k-trees could be
built by the combination of the cliques with at most k+1 vertices.

3.2.5 Main Data Structures

 There are several data structures used in this program, including:

• S{}: as defined in the algorithm, it includes all the k-vertex separators of the
graph G. Each separator is represented as a cell of array.

• C{}: as Ci
j defined in the algorithm, it includes the matrix of each component.

Note that it includes a series of cells, each of which includes cells of different
components. The index of the first cell is in the same order with the index of S.

• Kpartial{}: It has the same structure with C. It is the indicator to each Ci
j ,

showing if it has been tested to be true (k-tree embeddable). It is initially set
to be false to all the cells.

• ktrees{}: This structure is used to trace the clique composition of each
component. When a component is verified to be a partial k-tree, the program
will collect all the corresponding k-tree compositions of the component, which
is either all the vertices when the size is k+1, or the ktrees{i} cells and the
separators S{i} included.

The program function calling tree is shown as graph 3.2

4

3.3 Testing

 The project is mainly in a format of function and it involves several sub-
functions, therefore, the testing to each sub-function is performed to make sure that
that the programs are all correct. Because the main algorithm is based on the above
mentioned paper strictly, we can verify the correctness of the entire program by the
output answer and the related k-tree information.

 Several datasets are used for the testing of the program, including different
size of graph and connectivity, such as 3x3 grids, 2x3 grids, graph used in assignment,
and some graph with more vertices and different k values are also used to test the
performance of the program.

 Here we only list the testing result made to 3x3 grid graph as an example to
show how the testing is performed. Therefore, the input for the program is the matrix
mentioned in graph 3.1 and k value of 3. Note that more tests have been performed to
make sure that the functions are correct. Only partial testing results are listed here
for example and demonstration purpose only.

5

3.3.1 Function Testing

Table 3.1 Function Testing Result
(with input of 3x3 grid G and k=3)

Function Name Input Output Res

ult
combinations(n,k) (length(G),3) S, 84 x 3 elements, listing the 84

combinations of 3 numbers from 1
to length(G)

Pass

elimG(G,S) (G, S(8,:)) tempG, a 6x6 matrix, resulted from
G by delete the 1,3,4 lines and rows

Pass

connected_g(G) (tempG) Yes, when 1,3,4 are deleted
No, when 1,2,6 are deleted

Pass

reachable(G,s) (tempG, 1) No. Pass
partition(G, S) (G, S{4}) Ci

j includes two 9x9 matrix, each
represents part of the graph
separated by 1,2, 6

Pass

separators(G,k) (G,3) [S, C] S includes 36 cells; each
includes a 3-vertex partition.
C includes 36 cells also, each of
which includes one or two cells of
9x9 matrix representing each
separated graph.(deleted nodes have
0 to all other nodes)

Pass

ver_matrix(C) (C) VCij includes 36 cells, each has 2
elements and each element is a set of
vertices (numbers)

Pass

combination2(V,k) ([1 2 4 5],3) Protential_Cm includes 4 cells, each
contains 3 numbers from input set

Pass

select_sept(Cm, S) (prot_Cm,S) 10,15 which are the indices of S,
showing S{10} is a separator among
the set

Pass

ktree_triangulate(UG,
TUG)

(G, TUG) Triangulate, includes the
triangulated graph with respect to
the partial k-trees.

Pass

Pktree(UG,k) (G,3) 1, indicating that the graph is a
partial 3-tree.
TUG, includes 3 parts, {1}is the base
separator 1,5,9 ; {2} includes all the
cliques (partial k-tree components);
{3} includes the triangulated graph

Pass

 The resulting graph is shown as below graph 3.3 :

6

3.3.2 Performance Testing

 To test the performance of the algorithm, Matlab functions clock and etime are
used to record the start time, end time and their difference.

 In a Pentium IV 2.0G CPU computer, the real running time comparison is as
following:

Table 3.2 Program Running Time Testing Result

Number
of

Vertices

K Partial
k-tree?

Running
Time (in
second)

Number of
Vertices

K Partial
k-tree?

Running
Time (in
second)

1 N 0.141 2 N 2.625
2 Y 0.406 3 Y 7.891 4
3 Y 0.313 4 Y 10.391
2 Y 0.984

9

5 Y 9.015
3 Y 0.937 2 N 5.3600
4 Y 0.343 3 N 180.3910 6

5 N 0.062 4 Y 261.4370
2 Y 1.968 5 Y 711.1880
3 Y 3.279

12

6 Y 330.5940
4 Y 3.828 2 N 13.9850 8

5 Y 2.562 3 N 581.8910
 4 Y 1502.032

16

5 ? incomplete

 The testing data above shows that the algorithm performs well while the size
of the graph and k value is small. However, with the increasing of the size and k, the
program performs very poorly. For a fixed N value, the running time increases with
the size of k, until to [n/2]. This is because that in our program, the most expensive

7

part is to find the combinations of all the k-vertex separators. While calculating the
combinations, we know that Cn

k =Cn
n-k , therefore, when k=n/2, the program would

generate most number of different combinations. It execute the most time at this
moment. In the testing process, when n=16 and k=5, the program did not terminate
in 3 hours. The relation of n, k and the running time is roughly shown in the
following graph:

We can see that it roughly follows a nk+2 trend.

4. Conclusion

 The algorithm in Arnborg[1] ’s paper, which is successfully implemented in
this project, is a way to find good triangulation such that the resulted graph could be
guaranteed to have no cliques with size more than k+1, if the graph is verified to be a
partial k-tree. The algorithm uses dynamic programming method, which improves the
running time and the performance of the algorithm. However, as proved in the paper
that the problem is a still NP-complete problem, and it costs nk+2 running time,
therefore, it could almost be treated as exponential when the size of n and k increase
to some extent.

 There are many other later papers that use other algorithm to solve related
problems, such as the algorithm in the paper A Practical Relaxation of Constant-
Factor Treewidth Approximation Algorithms [2] by Hopins and Darwiche (2002)
could guarantee that the triangulation of G with width at most 4k+1; the paper
Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs by
Hans L. Bodlaender and Ton Kloks (1993) [5] described an O(nlog n) algorithm to
determine if tree-width ≤ k. The algorithm in this project is a good choice for small
size graph. However, if we need process larger size graphs, we’d better select one of
above mentioned algorithms.

8

5. Reference

[1] Arnborg, S., Corneil, D.G., and Proskurowski, A., Complexity of Finding
Embedding in a k- tree, Journal of SIAM, Algebraic Discrete Methods, 8(2):177-184
(1987).

[2] Mark Hopkins and Adnan Darwiche, A Practical Relaxation of Constant-Factor
Treewidth Approximation Algorithms,
http://reasoning.cs.ucla.edu/fetch.php?id=31&type=pdf

[3] Mark A. Paskin and Gregory D. Lawrence (2003). Junction Tree Algorithms for
Solving Sparse Linear Systems. Technical Report UCB/CSD-03-1271, University of
California, Berkeley. http://www.stanford.edu/~paskin/pubs/

[4] Graphical Models Reading Group, Presented by Chris Bartels, University of
Washington Department of Electrical Engineering January 29, 2004
http://ssli.ee.washington.edu/~bilmes/grg/notes_Jan_29_2004.ppt

[5] Hans L. Bodlaender and Ton Kloks (1993), Efficient and Constructive Algorithms
for the Pathwidth and Treewidth of Graphs Journal of Algorithms 21 (1996) 358-402.

9

http://reasoning.cs.ucla.edu/fetch.php?id=31&type=pdf
http://www.stanford.edu/%7Epaskin/pubs/
http://ssli.ee.washington.edu/~bilmes/grg/notes_Jan_29_2004.ppt

