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Abstract 
 
This report presents work done on the use of CRFs for image labeling. The project is based on the paper titled 
‘Multiscale Conditional Random Fields in Image Labeling’ by Xuming he et al [1]. Contextual information can 
significantly improve image classification. The paper proposes an approach to include contextual features for 
labeling images. The features defined in the framework encode information occurring at different scales in the 
image. The outputs of various features are then combined probabilistically to yield an image labeling. The 
contrastive divergence algorithm is used to learn features from labeled data and inference is done using the 
maximum posterior marginals (MPM) criterion.  The advantages and limitations of this approach are discussed. The 
report also presents a brief survey of recent literature on using context in vision.  



1. Introduction 
 
The term image labeling is used to mean a classification of every pixel of an image into one of a set of predefined 
classes. A labeled image is thus a segmentation of the image into regions of interest. Such a classification can also 
be used to identify object classes in the image. 
Context in Vision: Images contain information at different levels or scales. At the local scale, color and texture can 
be obtained from pixels in a small locality. Color, for instance, can be used to distinguish the ‘sky’ and ‘vegetation’ 
classes. However, most real world scenes have many different objects and local information is not enough to 
identify a pixel’s object class.  The following images from the paper by Xuming et al [1] (henceforth referred to as 
the paper) illustrate how local information is insufficient.  
 

Figure 1: Top: 2 small 
image patches that are 
difficult to label. 
Bottom: Context makes 
it clear that one image 
patch is water while the 
other is sky.   

 
Clearly, context can be useful in disambiguating local information. Methods of capturing contextual information 
from an image are an area of active research.  Conditional Random Fields (CRFs) [2] are well suited to capturing 
context for image classification. Since a CRF can model the posterior probability of labels given the images, it needs 
smaller training samples than generative models like MRFs that model the joint distribution over labels and images. 
Context in an image occurs at different scales ranging from the local to the global. The paper uses regional and 
global features to capture these long range interactions between pixels. Neural nets are used to extract the local 
information. Probabilistic information from the different features and the neural net is then composed 
multiplicatively to yield a single labeling. Section 7 gives a general discussion of the problem of capturing context 
and various solutions proposed thus far. 
 

2. Code Developed 
 
The implementation is complete. It comprises 23 files and more than 1100 lines of Matlab code. The manual 
accompanying the project lists the Matlab code files that comprise the implementation. It also contains step by step 
instructions for configuring the codes for use. For training data, the MIT-CSAIL [3] dataset has been chosen. 
Potential users may note that the codes have not been cleaned up and therefore it is important to closely follow the 
steps described in the manual to set the project up. 
 
Parameter Estimation: The contrastive divergence [4] algorithm is used to maximize the conditional likelihood of 
labels given the feature variables. Additionally, since the model is a Restricted Boltzmann Machine [5], block Gibbs 
sampling [6] can be implemented. Thus the hidden variables can all be updated in parallel given the label nodes and 
vice versa. The algorithm requires the sampling to be performed for three steps in the Markov chain. When it can 
converge, the one step learning algorithm requires significantly less computation. The paper by MacKay [7] 
discusses examples of a Markov chain is true likelihood is unimodal but the one-step algorithm does not converge to 
the maximum likelihood parameters.  



The Matlab files are as follows: 
RegionalPEstimation.m, GlobalPEstimation.m: Parameter Estimation for Regional and Global parameters 
respectively 
 
UpdateHiddenVariables.m, UpdateLabels.m: Block gibbs sampling of the regional hidden variables and associated 
label nodes respectively 
 
UpdateHiddenVariablesG.m, UpdateLabelsG.m: Block gibbs smapling of global hidden variables and associated 
label nodes respectively 
 
multinomial.m: Draws a sample from a multinomial distribution 
 
GlobalPatchToVector.m, RegionToVector.m: Helper files for converting indices from features to label sites 
 
CalculateLabelPr.m, CalculateLabelPrG.m: Calculates the posterior over labels given the features  
 
LocalClassifier 
MLP.m / MLPBatch.m: Create and train a multi-layer perceptron 
 
Inference: The MPM criterion is used to minimize the number of mislabeled sites. Again, Gibbs sampling is used. 
The sampling is begun from the labeling produced by the neural net.  
GibbsInferenceMPM.m, GlobalGibbsInferenceMPM.m: Inference using the regional and global features respectively 
 
runLocalClassifier.m : inference using the neural net 
 
PoE1.m : Combines the experts multiplicatively and uses the MPM criterion 
 
Image Statistics: The inputs to the neural net are in the form of raw image statistics. There are 30 statistics 
calculated for each image pixel. These include color, difference-of-Gaussian at 3 scales and quadrature pairs at 4 
orientations and 3 scales. 
CalculateImageStatistics.m: Calculates image statistics.  
 
CreateStatData.m: Parses a folder and its subfolders for all images and calls CalculateImageStatistics.m. The folder 
structure is replicated in a different folder to store the statistics. 
 
Quadrature.m: For the quadrature pairs  
 
getInitialLabelingAndStatData.m : Converts ground truth labeling from the CSAIL annotations to a more convenient 
format. Additionally, does the same work as CreateStatData.m. 
 
Other  
createImagesFolderStructure.m, getObjectSegment.m,  

3. Background Information 
 
Conditional Random Fields: Representation is a key issue in labeling image data. For images, a generative model 
that represents a joint distribution over labels and observations is undesirable. Conditional Random Fields (CRFs) 
[2],[8]   can be used, instead, to specify a conditional distribution over labels given an observed image. Inference is 
performed by choosing the labeling which maximizes this conditional probability for the input image. The entire 
observation space need not be modeled. Also, arbitrary attributes of the observation data can be captured whereas a 
joint distribution would require the model to make unnecessary independence assumptions about the data. 
 
Restricted Boltzmann Machines and Products of Experts: Products of Experts (PoE) [9] combine many 
individual expert models by multiplying their probability distributions and renormalizing. PoEs can produce much 
sharper distributions than the individual expert models. A restricted Boltzmann machine (RBM) [5] is a PoE with 



one expert per hidden unit. When the hidden unit of an expert is off, each visible unit is equally likely to be in any of 
its states. When a hidden unit is on, the weights on its connections to the visible units specify the preferences for the 
various states of the visible units. Hidden units are conditionally independent given the visible units and vice versa. 

 

4. The Multiscale CRF framework 
 
X = {xi}; i ε S 
X = observed data from input image 
S = set of image sites to be labeled 
* Pixels refer to elements of the image and sites refer to elements of the label field 
xi = local observation at site I  
li = labeling for site i from a set of labels or classes L 
 
Features: Label Features are used to encode patterns within label variables. These patterns capture the geometric 
relationships between objects in an image. The following figures taken from [1] give examples of regional and 
global label features. 

 
Figure 2: The aim is to 
associate one label class 
with each image site i 
corresponding to a patch 
in the image. The 
column on the right 
shows 7 different label 
classes into which a site 
may be classified. 
 
 
 
 
 
 

Figure 3: Global and     
Regional Features 

 
 
The regional feature shown above encodes the pattern ‘ground above water’. The global feature acts over a larger 
area and encodes a courser pattern such as ‘rhino/hippo in water with sky above’. Global features specify common 
values for a patch of pixels and can also specify ‘don’t care’ cells which are shown as grey here. A don’t care cell 
specifies a uniform probability distribution over all the label classes. 
 



The Model as an RBM: The model can be visualized as an undirected graph with hidden variables and nodes 
corresponding to image pixels (called label nodes). Corresponding to every label feature, there is a hidden variable. 
There are no intra-layer connections between labels or between the hidden variables. Therefore, these can be 
separated into a two layer network called the RBM (see figure 4 taken from the paper). In section 4, we discussed 
how inference and learning are simplified in such a structure. It is important to note that label nodes are connected to 
each other via the hidden variables. This allows the model to capture long term interactions between pixels to extract 
context. 
 

 
Figure 4: Graphical Model representation 
 
Each of these features specifies a conditional distribution on the label field albeit at different scales.  The Multiscale 
CRF combines the different distributions multiplicatively as follows 
 
  P (L / X) = 1/Z ∏s Ps (L/X)  
 

Where Z = ∑L ∏s Ps (L/X)  
 
This makes the model similar to the Product-of-Experts model with the difference that the component experts here 
are conditionals on the image X and the hidden variables.  The different label features produce multiple predictions 
for every pixel by drawing on information drawn from different scales in the image. These predictions or probability 
distributions are combined multiplicatively. An important thing to note here is that the label features need not 
specify the distribution for every label site within a region. A don’t care condition can be specified by a uniform 
distribution over the label classes. The other convenient feature of a product-of-experts is that a number of weak 
predictions can agree to produce a strong prediction. A more detailed discussion is given by the Hinton [4],[9].  
 
The paper describes components at 3 different scales: a local classifier, regional features and global features (fig. 4). 
 
1. Local Classifier 
A 3 layer perceptron network is used for a local classifier. The hidden layers have sigmoid transfer functions. There 
are |L| outputs and a softmax activation function. The network outputs can thus be interpreted as a posterior 
distribution over the label classes.  For each image pixel, a 3 x 3 window of neighboring pixel statistics is used as an 
input to the MLP. The scaled conjugate gradient algorithm is used to train the network to minimize the cross entropy 
for multiple classes.  
 
The image statistics for each pixel includes color, edge and texture information. For color, the RGB values are 
changed to CIE Lab* color space.  For edge information, the difference-of-Gaussian filter is applied to the image at 
three different scales. Finally, for texture, quadrature filter pairs at 4 orientations (0, π/4, π/2, 3π/4) and 3 scales are 
used. For each pixel we get 30 raw image statistics which are used by the neural network as inputs.  
 



The distribution given by the classifier can be written as PC (L | X) = ∏i PC (li / xi)  
For each label site i , the term within the product gives the probability of the label class li for that site. 
 
2. Regional Label Features  
Regional features represent local relationships between objects such as edges and corners.  The image is divided into 
a series of overlapping regions. The feature for each region has one hidden variable but shares the probability 
distribution with other regions.  The mathematical formulation for these features as an RBM follows. 
 
Let r index regions, a index the different regional features within each region, and j = {1…… J} index the label sites 
within the region r.  
f(  r, a ): hidden regional variable  
l( r , j ): a vector with |L| elements.  l( r , j , v )= 1 if  node belongs to class v and 0 otherwise 
w(a , j ) : parameter connecting  f( r , a ) with l( r , j ) . It is a vector with |L| elements. w(a , j , v ) represents the 
preference for class v for label node j specified by the feature a 
The posterior distribution over the label variables given the hidden variables is written as 
 
PR ( li = v / f )=exp[ ∑ a ,  ( r , j ) = i    f(  r, a ) w(a , j , v )]/∑ v’ exp[ ∑ a ,  ( r , j ) = i    f(  r, a ) w(a , j , v’ ) ] 
                 
In the formula above, i indexes the sites and the summation is over all regions that contain the site i. 
 
3. Global Label Features 
The global features are defined over regions that span the entire image. The image is divided into non-overlapping 
patches. The parameters for all the label sites within a patch are tied together. This is done to encourage the global 
features to represent coarser features. Of course, it is also necessary to reduce the number of parameters.  
 
Let m index patches, b index the different global features and j = {1…… J} index the label sites within the patch m.  
g( b): hidden regional variable  
l(m , j ): a vector with |L| elements.  l(m , j , v )= 1 if  node belongs to class v and 0 otherwise 
u(b ,m ) : parameter connecting  g(b) with the entire p(m) . It is a vector with |L| elements. u (b , m , v) represents 
the preference for class v for patch m specified by the feature b 
 
The posterior distribution over the label variables given the hidden variables is written as 
 
PG(li = v /g)=exp[∑ b , ( m , j ) = i   g( b)u(b , m , v )]/∑ v’ exp[ ∑ b ,  ( m , j ) = i    g( b) u(b , m , v’ )] 
 
Again, the summation is over all patches that contain the site i.  
 
The three components are combined multiplicatively. All components need not model the entire label field. We 
would expect that the components would learn to model different aspects of images. The final labeling got by the 
product maximally satisfies the predictions at every site.  
 

5. Parameter Estimation 
The Contrastive Divergence algorithm [4] is used to learn the parameters θ = { λ, {w a }, {u b }, γ }. λ are the 
local classifier’s parameters and γ is a tradeoff factor to prevent confident but in-correct local classifier predictions 
from dominating. The training is performed sequentially. The local classifier is trained first, followed by the regional 
and global features. A joint training of the models is likely to produce a more optimal training but training them 
sequentially is more efficient. Block Gibbs sampling is used since the model is an RBM. The formulation is changed 
to maximize the approximate conditional likelihood.  
 



 
i indexes the data or the label variables and j indexes the hidden variables. Each arrow corresponds to a block 
Gibb’s sampling. Hinton’s paper [4] describes the algorithm in detail. For our model the formulation can be 
expressed as  

∆ w( i , j )≈ < si sj>0 - < si sj>1 

6. Inference 
 
The maximum posterior marginals (MPM) are used to infer the optimal label configuration L given an image X. The 
MPM criterion effectively minimizes the number of mislabeled sites. Again, the posteriors are evaluated by 
performing block Gibb’s sampling [6]. The sampling is begun at the initial configuration output by the local 
classifier.  
 

li
* = arg max( li ) P(Li | X) 

 
 

7.  Discussion 
 
Related work: Context in an image can be extracted from nearby image data, scene information, and the presence 
and locations of other objects.  The human visual system uses context extensively to identify objects. Part of an 
object’s description can be had from its function. For instance, cars run on ground, birds fly.  So an object not on the 
ground is unlikely to be a car. The context of an object can give us clues about its function. Scene context can also 
aid object identification. A car would normally be on a street scene and a bird is unlikely to be in the water. Finally, 
neighboring objects can give important clues too. For instance, a keyboard and a computer screen are likely to occur 
together. 
 
Neighbor based contextual constraints, as in MRFs, have been shown to be useful even when training data is not 
fully labeled. Carbonetto et al [10] learn models of objects from captioned images. Kumar et al [11] demonstrated 
that using nearby labels and nearby data is better than using just the data at the label site. The multiscale CRF 
framework proposed by Xuming et al captures local site data through the local classifier. The regional label features 
incorporate the relationships with nearby objects and the global features capture scene context.  
 
Scene based contextual constraints were sought to be captured using a gist representation to focus attention on a 
particular object class or determine the likelihood of an object’s presence [12]. The gist is used as a low-dimensional 
representation of the entire image that can be used to evaluate the likely objects Contextual features are used to 
define context based priors on object classes and help disambiguate information from local features.  Murphy et al 
[13] combine object detection and scene context to resolve local ambiguities. Object location/scale information from 
the global context is combined with the information from a detector to yield the object probability at a location/state.  
 
Object based context, as captured through mutual boosting by Fink and Perona [14], demonstrates that using the 
location of other objects in the scene can improve results. Furthermore, using BRFs, Torralba et al [15] constructed 
contextual models that search for objects in a cascaded fashion. As the easier objects are identified, information 



about their location is used to identify other objects in the scene. The approach uses boosting to build progressively 
stronger classifiers and combines this with a CRF’s ability to model the correlation between labels given an input. 
Labeled data is used to derive template features. Boosting selects from amongst these features to build the graph 
structure.  
 
The approaches mentioned above try to extract context from neighboring data, the entire scene or neighboring 
objects. A better understanding of what contextual information may be extracted from a scene and an integrated 
framework to extract, represent and use this contextual information in conjunction with image data will significantly 
enhance our ability to process images.  
 
Multiscale CRF: Advantages and limitations: The preceding discussion intends to indicate how the approach used 
in the paper fits in within the larger scheme of research into the use of context in object detection and image 
labeling. The common motivation is to combine local classification with a model of label relationships. In this 
approach, the model comprises regional and global features. The structure of the model allows efficient training and 
inference. Besides, label features form a redundant specification of label predictions and can hence be combined 
multiplicatively. Due to the same reasons, the features tend to encode simple, geometric relationships between 
specific label classes.  The paper [1] provides a good discussion of the strengths of the approach. In what follows, I 
discuss certain weaknesses. 
 
The regional and global label features have no access to image statistics used by the local classifier. The model, thus 
implicitly assumes that the context is independent of local evidence. It will be interesting to train features that have 
access to local image statistics. The label features are defined at two different scales. In reality, there is a continuum 
from local to global context. One solution could be to spread out features over different scales. This is unlikely to be 
the optimal solution. If label features could be automatically learnt over optimal scales from labeled data, it might 
yield a better representation of context in an image. Fixing two different scales should affect the model’s ability to 
classify objects that consistently occur at a small scale, such as a mouse or a keyboard. Let us consider how the 
approach will scale to a general purpose image labeling scenario with a large number of label classes. The features 
encode geometric relationships between object classes. As the number of object classes increases, the number of 
features required to reasonably capture most such relationships will explode. Experiments with the model and 
training data should reveal empirical estimates for how the number of features required scales with the number of 
object classes to be considered. 
 
 

8. Conclusion and Future Plans 
 
The implementation is complete. It has not been executed on the complete CSAIL database, and hence, results 
haven’t been compiled. The codes were tested by using two images drawn from the CSAIL set and resized to 300 x 
400 as against the original size of 1200 x 1600. Running the codes on the full sized CSAIL images and evaluating 
the results obtained is left as future work. The CSAIL database was not the best choice of image database for this 
project due to two reasons. First, the ground truth labels are very sparse. Hence, large parts of the image are 
classified into the unlabeled class. This will definitely affect training results. A different approach that was not tried 
was to train on only the labeled parts of the images. While overcoming the sparse labeling problem, this approach 
would not provide any contextual information to the model. It is unlikely to produce favorable results. Another 
problem encountered with CSAIL was the extremely large size of the images. While the images were of good 
quality, the large size meant that training and inference would take inordinate amounts of time. Resizing the images 
is not practical since the annotations would also have to be modified accordingly. This process has been automated 
so that users may choose to resize their images by changing the scaling parameter in the file 
getInitialLabelingAndStatData.m. 
 As part of the project, recent literature on the use of context in image labeling was surveyed. The previous section 
provides a brief discussion of this literature along with an analysis of the approach being implemented.  
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