
Designing and Building a Graphical Model Library
in Standard ML

Clint Morgan

December 2004

Abstract

This paper discusses several design considerations for a probabilistic
graphical model library. The library, dubbed GM, currentlyonly contains
a small subset of desirable features for such a library. In particular, it im-
plements several techniques for performing inference in discrete graphical
models.

Rather than introducing a complete library, this work discusses the library
design and issues which arouse during implementation. Particular attention
is paid to the benefits and burdens of developing such a library in Standard
ML using the SML module system to structure the design.

1 Introduction

Probabilistic graphical models (PGMs) are used to express independence relations
of random variables. There are many types of models that fallinto the broad cat-
egory of “graphical models”. Network topology may be directed, undirected, or a
mixture of the two. Random variables are discrete, continuous, or mixtures. The
network may be temporally static or dynamic.

Computations with PGMs are generally fall under the headingof inference or
learning. The inference problem is well studied, and there exist many algorithms
for exact and approximate inference with varying assumptions about the underlying
network. The learning problem uses data (instances of random variables) to infer
properties of the model. Interesting properties include probability distributions
(parameter learning) and network structure (structure learning).

A PGM library has the (rather broad) goals of:

• ability to represent a wide variety of models

• easily add new algorithms

1



• useful to both researchers and practitioners

This works presents a rough design for such a library, unimaginatively called
GM. The current implementation only provides a small subsetof the desired function-
ality—inference in discrete, static graphical models. Rather than describing com-
plete library implementation (or even a complete design), this work serves as a case
study of language features useful for implementing a PGM library.

In particular, we focus on how features of ML serve to help or hinder construct-
ing such a library. The implementation language is the ML variant Standard ML
(SML) [8]. The SML module system is used extensively in the library.

Section 2 discusses the relevant language features of SML. Section 3 describes
the GM library design, implementation, and issues regarding SML as the imple-
mentation language. Finally, Section 4 provides some concluding remarks.

2 Standard ML Requisites

SML is a modern functional language with an advanced type andmodule system.
While the language encourages a functional style, SML includes support for im-
pure features such as imperative assignments, exceptions,and continuations.

SML is a strongly typed language. Type checking in performedat compile
time; type inference is used so that explicit type annotations are not required. Func-
tions can be written that operate on arbitrary types—these functions are said to be
polymorphic. The strong typing mechanism allows the language to guarantee that
a compiled program will not crash due to runtime type errors.

Dynamic typing can be mimicked by explicitly constructing aggregate types
which are the union of the desired types. Functions which operated on such type
unions then have explicit cases for each type. This concept will be illustrated in the
next section when describing the GM library.

2.1 The SML Module System

The SML module system provides a mechanism to divide a program into separate
units with clearly defined interfaces. This section provides a condensed summary
of relevant features of the SML module system. Harper [4] provides a gentle yet
comprehensive coverage of SML in general and the module system in particular.

Signatures and structures are the two fundamental constructs in the module
system. Signatures are used to describe interfaces. Structures provide the imple-
mentation. In this sense, signatures can be called the “type” of structures.

SML signature’s provide an explicit definition of a structure’s contents. These
include declarations of sub-structures, exceptions, types, and values. Roughly

2



speaking, a structure matches a signature if it contains allof the elements (with
the correct identifiers and types) of the signature.

The signature/structure deceleration can be used to express object oriented de-
sign patterns by declaring (in a signature) a single type (the object) and functions
which operate on this type (member functions). Private member functions are not
included in the signature. Object inheritance is implemented by means of signa-
ture inclusion. Child signatures are supersets of their parents—providing extended
functionality. This technique is used in the GM library.

Functors are parameterized structures, which take other structures as argu-
ments. Functor definitions are abstract—they must be invoked with the appropriate
structure arguments to produce a tangible structure. The signatures of structures
produced from a single functor can vary (with the parameters) between functor
invocations.

Development with functors works with both top-down and bottom-up design
approaches. In the bottom-up approach simple structures are first constructed. The
smaller units are then combined via functor applications tocreate more complex
structures.

A top-down approach begins by constructing functors to solve main goals.
These functors are parameterized by structures which solvesub-goals. The code
can be type-checked, but the functors cannot be applied to create a concrete imple-
mentation.

2.2 Development Environment

Several SML implementations are available—this library has been developed under
the SML of New Jersey (SML/NJ) distribution. SML/NJ provides a reasonable
efficient compiler which generates machine code. The GM codebase conforms to
the SML 97 specification, and so should compiler under other distributions such as
MLton and Poly/ML.

A debugger for SML/NJ was developed in 1992 [2]. Unfortunately, recent
releases of SML/NJ lack debugging facilities.

Debugging without a symbolic debugger can be managed with a combination
of techniques. Firstly, the lack of a debugger encourages the use of concise func-
tions that can be verified by inspection. The use of side-effect free functions helps
with this reasoning process. SML/NJ (in fact, most distributions) provides an in-
teractive environment which allows interaction via a read-eval-print loop. This is
useful in the development/debugging process as the user canexamine values and
invoke functions.

3



3 Library Design

This section describes the design and (partial) implementation of the GM library.
Emphasis is placed on the design with respect to the the SML module system. The
majority of the code in GM is purely functional, however a fewimperative features
are used.

A major drawback of SML is lack of external librarys. This results in a diver-
sion of time into developing support structures for the GM library. In particular,
there was a need to develop routines for graph manipulation and multi-dimensional
arrays. Both the graph and multi-dimensional array implementations are purely
functional.

3.1 Modules

GM uses the SML module system to divide the library into independent units.
Each module includes all of the modules on which it depends assub-structures.
This allows each module to be independent of the rest of the library (given its
contents). The sub-structures of a module provide an explicit definition of the
module’s dependencies, and allow each module to be self contained.

The major modules of the GM library are:

• RVar: for representing random variables

• Potential: for specifying potentials

• CPD: for specification of CPDs

• LocalFactor: a local factor, the union of Potential and CPD

• IPotential: internal representation of potentials

• GModel: representation of a graphical model

• Inference: engines for performing inference

These modules are implemented as functors which take requisite substructures
as parameters. The GM library provides a structure (calledGM) which collects all
of the functor applications into a single structure.

More information about the interfaces can be found in the signature files (.sig)
contained in the GM distribution [9]

4



3.2 Sharing Considerations

The use of sub-structures in signatures creates a problem for the ML type system.
Structures which are include included in multiple locations are treated as disparate,
and so their types are not interoperable. This is problem solved by annotating sig-
natures with a structure sharing declaration which makes desired interoperability
explicit.

The sharing declaration is best explained by example. The following snippet
exposes a part of theGMODELandLOCALFACTORsignatures:

signature GMODEL =
sig

structure LocalFactor : LOCAL_FACTOR
structure RVar : R_VAR
...

end
signature LOCAL_FACTOR =
sig

structure RVar : R_VAR
...

end

A graphical model needs to include sub-structures for localfactors and ran-
dom variables. A local factor will also need a substructure for random variables.
However, this declaration provides no guarantee to the SML type system about the
interoperability of these two RVar structures. Namely the GModel.RVar structure
cannot operate on the values produced from the LocalFactor.RVar structure and
vice versa. Any code which tries to do so will cause a compile-time type error.

This problem is solved by introducing sharing decelerations. The SML key-
wordsharing follows a group of structure definitions to denote which structures
(ascribing a common signature) are actually the same. The GMODEL signature
would be declared as follows:

signature GMODEL =
sig

structure LocalFactor : LOCAL_FACTOR
structure RVar : R_VAR
sharing LocalFactor.RVar = RVar
...

end

5



The GM signature (which provides the top-level interface tothe library) contains
sharing specifications to assure that all of the structures which it provides can be
used together (e.g they all use the same RVar structure).

3.3 An Example

Raining

Wet Grass

Sprinkler

Cloudy

Figure 1: A simple example: Clouds exert causal influence on sprinkler and rain,
which in turn influence wet grass. This figure was produced with GModel ’s
toDotString function.

This section presents a simple example of inference in the graphical model of
Figure 1. First, the random variables are created, and givennames:

val [FALSE, TRUE] = List.map RVar.intToValue [0,1]
val [C,S,R,W] = List.map RVar.newVar [2,2,2,2]
val _ = RVar.giveName C "Cloudy"
val _ = RVar.giveName S "Sprinkler"
val _ = RVar.giveName R "Raining"
val _ = RVar.giveName W "Wet Grass"

Variable naming (RVar.giveName ) uses imperative assignment to update a ta-
ble of identifier/name pairs. This list is used by the RVar structure when printing
names.

Next, the local factors are created as conditional probability distributions:

val factors = List.map (LocalFactor.CPD o CPD.make)
[([0.5, 0.5], C, []),

([0.8, 0.2, 0.2, 0.8], R, [C]),
([0.5, 0.5, 0.9, 0.1], S, [C]),

6



([1.0, 0.0, 0.1, 0.9,
0.1, 0.9, 0.01, 0.99], W, [S,R])]

Local factors can be either conditional probability distributions or potentials, so the
LocalFactor type is a union of the two constituent types (CPDand Potential).

Finally, we construct the graphical model from a list of local factors, enter some
evidence, and perform inference:

val gmodel = GModel.make local_factors
val _ = Util.showDot (GModel.toDotString gmodel)
val engine = Eng.makeEngine (gmodel, [],[] )
val engine = Eng.enterEvidence engine (Eng.Hard (W, TRUE))
val P_S = Eng.query engine [S]
val P_SR = Eng.query engine [R, S]

GM displays graphs using the dot language [6]. Structures define atoDotString
method (where appropriate) which can be displayed with theUtil.showDot
method.

More examples are available with the GM distribution [9].

3.4 Testing

SML/NJ provides the CM structure [3] which provides a convenient mechanism for
managing the compilation process of SML projects. This is used in GM to control
both building and unit testing. Tests are written as structures which, through the
compilation process, instantiate, run, and verify parts ofthe library.

Integrating testing into the build system allows for incremental testing ap-
proach. After a modification of the code base, the command

- CM.make "tests.cm";

is issued. This causes the appropriate modules to be recompiled. Any of the test-
ing modules which depend on changed library models will alsobe recompiled.
The process of recompiling the test modules runs the testingscripts, and outputs
the results to the command line. This provides an immediate means of checking
the correctness of changes made. Of course, this requires that appropriate testing
modules are written. Currently GM has modules to test the multidimensional tables
and inference engines.

3.5 Efficiency

A preliminary experiment was done to compare the speed of GM with BNT [10]
(written in MATLAB). The model tested was a the ALARM network[1] which

7



consists of 37 discrete random variables ranging in dimension from 2 to 4. Join
tree build time was measured (as the mean of 100 runs) for bothcases libraries.
BNT does not support queries which contain variables from multiple cliques, so
querying was tested on a single variable (again as the mean of100 runs). GM
implements HUGIN style message passing [5].

Library Build time (sec) Query time (sec)
GM 0.2816 0.0001
BNT 0.7637 0.0019

Table 1: Runtime comparison of GM and BNT for building and querying a join
tree.

These results confirm that SML can offer a speedup over MATLAB. This is
hardly surprising as SML/NJ is compiled to native code whileMATLAB is inter-
preted.

4 Conclusion

A library design for probabilistic graphical models was presented. A partial imple-
mentation in SML of this design was described. There are a number of properties
of SML which are useful for implementing a graphical models library. Benefits of
using SML include: strong typing and type inference, high level programming and
an interactive development environment.

Strong typing combined with type inference allows the compiler to immedi-
ately detect nonsensical pieces of code. This allows many bugs to be caught at
compile time. It is estimated that static typing alone caught 80% of the bugs in
GM at compile time.

Coding with high-level constructs encourages the concise definition of many
of the methods implemented in GM. A particularly useful technique was to de-
fine algorithms in terms of folds over data structures. An interactive environment
facilitates the development in this style.

Several drawbacks of using SML were identified. The most important limita-
tion of SML from the viewpoint of developing a graphical models library is the
lack of library support for numerical, and particularly statistical, computations.
Extending GM to support continuous variables would requireimplementation of
additional structures to provide basic statistical functionality. In this regard, the
ML dialect OCAML is more favorable as it is often used for numerical computa-
tions.

8



Another major drawback encountered in SML/NJ is the lack of asymbolic
debugger. Other SML implementations (i.e. PolyML) providedebugging facilities,
but GM uses features (i.e. the CM structure) which are only available in SML/NJ.

It may have been worthwhile to develop this library in a monadic style. Mon-
ads are a construct which allow purely functional languagesto handle state [11].
In addition to handling imperative features such as in-place array updating in a
functionally-pure manner, monads could be used to obtain many of the benefits of
Aspect Oriented Programming (e.g. a general tracing facility for debugging) [7].

References

[1] I. Beinlich, H. Suermondt, R. Chaves, and G Cooper. The ALARM moni-
toring system: A case study with two probabilistic inference techinques for
belif networks. InSecond European Conference on Artificial Intelligence in
Medicine, 1989.

[2] Att Bell. Debugging in Standard ML of New Jersey, 1992.

[3] Matthias Blume.CM: The SML/NJ Compilation and Library Manager, May
21 2002.

[4] Robert Harper. Programming in Standard ML. Available at: http://
www-2.cs.cmu.edu/˜rwh/smlbook/online.pdf , 2004.

[5] F. V. Jensen, S. L. Lauritzen, and K. G. Olesen. Bayesian updating in causal
probabilistic networks by local computations. InComputational Statistics
Quaterly, 1990.

[6] Eleftherios Koutsofios and Stephen C. North.Drawing graphs with dot. Mur-
ray Hill, NJ, 1996.

[7] Wolfgang De Meuter. Monads as a theoretical foundation for AOP. InInter-
national Workshop on Aspect-Oriented Programming at ECOOP, 1997.

[8] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The defi-
nition of Standard ML (revised). 1997.

[9] Clint Morgan. Gm : source and documentation. Available at: www.cs.
ubc.ca/˜clint/gm-sml , 2004.

[10] Kevin P. Murphy. The Bayes Net Toolbox for MATLAB, 2001.

9



[11] P. L. Wadler. Comprehending monads. InProceedings of the 1990 ACM
Conference on LISP and Functional Programming, Nice, pages 61–78, New
York, NY, 1990. ACM.

10


