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1 Introduction work and the one of computing the maximum a posteri-

ori (MAP) instantiation of all variables. Both of these prob-
Conclusive comparisons of approximate inference algolems have applications in computer vision [2, 10, 12] and
rithms are difficult due a number of handicaps. Thea great number of other areas including problems from so
main problem is that most algorithms were developed infheterogneous areas as medical diagnosis, speech recogni-
dependently for different domains and consequently hav&on, side-chain prediction in protein folding, and computer
different input and output representations and formula-diagnosis [5].

gons’f.f?(; example, Bayesir?n networkshvs Markcl)lv rarll'For the task of computing marginals for single variables,
om Tields (MTFS) [13]' T u_s,f researc Iers_t:\sua Y OMYour system currently interfaces to Gibbs sampling (GS) [9]
compare novel approximate in erence ang ms againgf hicp js prominent in the Al literature, as well as the clus-
a small subset of well-known algorithms .|r'lstead of theter sampling algorithms Swendsen-Wang (SW) [11] and
current state-of-the-art. Analogously, practltloner§ usually o (WO) [14] with roots in statistical physics. Further-
employ weII-k_nowr_1 aIgonthms developed for thelr prob- more, it interfaces to the Mean-Field algorithm [13] and the
lem at ha_nd, ignoring pote_r_mally superior algon_thms thatsum—product versions of the iterative message passing algo-
only require a slightly modified problem formulation. rithms loopy belief propagation (BP) [9], and generalized

We developed a simple framework that automates the tasRP (GBP) [17].

of converting between different problem formulations and . o mAP task, our system currently only supports the
offers a unified interface to a variety of approximate in'max-product versions of BP and GBP. In the future. we
ference algorithms. This framework promises to fac'“tatewould like to compare these algorithms against prominent

straightforward comparisons of an arbitrary set of approxi-methods based on graph cuts (GC) [2, 12] as well as recent

mate inference algorithms which to date could only be dong;; \hastic Local Search algorithms [5]. Since adding new

with considerable overhead. Consequently, a new algo|"nference algorithms to our framework is very simple, we

r|thbr|r_1 Sh pgrfo:m_ance_ can nov‘é bz compa_rﬁd a_lg_amslt Otheﬁope to be able to carry out this comparison based on the
published solutions in a standard way with minima OVer'existing framework.

head. Furthermore, when assessing the best algorithm for
a given problem, one can simply call the desired set of alTo both test the system and provide use cases of the sys-
gorithms with a unified interface and compare the results. tem, we carried out a number of experiments on real-world

BNs, randomly generated pairwise MRFs and on an image
The unified Matlab interface we implemented to date inter- 9 P g

. ) . . segmentation problem.
faces to implementations of a number of approximate infer-

ence algorithms for pairwise Markov random fields in the The rest of this report is structured as follows. Section 2
programming language & as well as to our own Matlab formal describes several compact representations for high-
implementation of the exact variable elimination algorithm dimensional probability distributions, as well as conver-
in factor graphs and a Matlab implementation of loopy be-sions between them. In Section 3, we then sketch out
lief propagatior?. For Bayesian networks, Markov random a number of prominent approximate inference algorithms
fields, factor graphs, and pairwise MRFs, we are mainlyand their applicability. Section 4 gives an overview of the
interested in two problems, namely the one of computingarchitecture of our system, followed by a description of our
marginal probabilities for every random variable in the net-experiments and their results in sections 5 and 6, and con-
- clude in Section 7.

Thanks to Talya Meltzer for providing implementations of
these algorithms.

2Thanks to Kevin Murphy for providing his code.



2 Representation Of particular interest in many applications are so-called
pairwise MRFs(MRF2s) whose potential functions are
In this section, we introduce several compact representaonstrained to be associated with at most two variables.
tions for high-dimensional probability distributions, con- Since a number of algorithms can be easily formulated for
versions between them and algorithms to compute margingdairwise MRFs, it is interesting that discrete networks in
probabilities of single variables as well as the most likelyany of the above representations can be converted to pair-
instantiation of all variables. wise MRFs. For such a conversion, Bayesian networks and
MRFs can first be converted to factor graphs. The conver-
sion of factor graphs to MRF2s introduces a newega-
nodefor every potential function of the factor graph. Such
a mega-node has a domain size that equals the number of
entries in the original potential function, has the original
potential function as local evidence, and has deterministic
pairwise potentials connecting it to its associated variables.
For details and an example of this conversion, see [17].

A discreteBayesian networl3 is a tuple(G, ®), where

G = (V,€) is a directed acyclic graph (DAG) whose
nodes represent discrete random variables,darglan or-
dered set of conditional probability tables (CPTs) =
P(V|pa(V)), specifying the conditional probability dis-
tribution of eachV € V given its parents irg. The set
fa(V) = {V}Upa(V) is calledV’s family. The seman-
tics of a Bayesian Network is that it specifies a joint prob-
ability distribution¢ over its variabled’ in factored form:  Denoting the pairwise potentials between variableand

¢=PV)=]lyey ov. x;j inan MRF2 byy;; and the local evidence potentials as-
. , sociated with every variable; by ¢;, the joint probability
A discreteMarkov Random FieldMRF) B, also known as of an MRF2 under variable instantiation= (x1 .. ., xz)

a Markov network s a tuple(G, ¥, whereg is an undi- can be written as
rected graph whose nodes represent discrete random vari- L
ables, andl is a set of non-negative potential functions as- I

5, A > i p(x) = Vij(xi, %5) | | #i(xi)-
sociated with cliques of. More specifically, eacly € ¥ ) Z 1;[ (%0, %) H n
is associated with a set of variablés C V that form a

not necessarily maximal clique §, andy assigns a non-  priven by results from statistical physics as well as prac-
negative value to every instantiation@f Like a Bayesian  tica| concerns from applications such as computer vision,
network, an MRF encodes a joint probability distribibution 5 nymbper of specialized MRF2s have been proposed. The
¢ over its variable®’, but since its potential functions are fjrst such model was the Ising Model, proposed in 1925 by
not required to define probabilities, a normalization con-grnst |sing to model a system of interacting parallel or an-
stantZ is necessary to compute probabilities. The jointtiparallel spins [15], possibly embedded in a magnetic field.
probability of an MRF is given by) = 1/Z x [,y ¥ Parallel adjacent spins are energetically desirable while an-
Based on its origins in statistical physics, the normalizationjparallel spins require more energy. The Ising model ex-
constant is called thpartition functionand can be com- presses this by means of interaction tetfjsetween pairs
puted asZ = 3y, [[yeq ¢ of adjacent nodesand;j which arel if their spins match

Both Bayesian networks and MRFs can be easily convertegd —1 otherwise. The magnetic field is modelled as the
to a simple and highly general representation called facfield strengthi; (z;) at every node.

tor graphs. Afactor graphis a bipartite graph¥G = any state of the system (a complete assignnxesftup- or
(YU ¥, ) with one parition) representing variables, one gown-spins to each of the nodes) then exhibits the follow-

partition representing potential functions, and with edgeqng free energy that is to be minimized across all complete
{v,v} € & indicating that variable € V is in the scope of assignments:

potential functiory) € W. A factor graph explicitly repre-
sents a non-negative function owgiin factored form:

F) = [I vV e Vi{w,v} € €).

Ppew

E(X) = —Z Jij(l‘i,l‘j) — Zh,(l’z)

With interaction termsJ;;(z;, z;) = In(¢;;(z;, x;)), a
This function can be normalized to become a probabilitymagnetic field ofh;(z;) = In(¢(x:,y:)), and tempera-
distribution by divisionbyZ = 3, f(V). ABayesiannet- tyre 7 = 1, this energy then corresponds to a probability

work can be converted to a factor graph by creating & nodg, an MRF2 via Boltzmann’s law from statistical mechan-
for every variable and every CPT of the Bayesian networkics [17):

and connecting the node for every CBiF to each variable

in V’s family fa(V'). Similarly, the conversion of an MRF

to a factor graph results in a node for every MRF node, as p(x) = Eemp(_E(x)/T)'

well as a node for every MRF potential functignthat is

connected to the nodes representifig set of associated Since the form of pairwise potentials decides about the ap-
variables. plicability of prominent algorithms like Graph-Cuts [1, 2,



6], we explicitly note that the Ising model exhibits pairwise can also be applied for graphs with loops, in which case

potentials it becomes an approximate algorithm. For notational con-
venience, we explain BP for MRF2s; [17] states that this is
U, = exp(Jij)  exp(—Jij) mathematicall i i
ij = y equivalent to BP on other graphical models
exp(—Ji;)  exp(Jij)

like factor graphs or Bayesian networks. For MRF2s, BP is
The original problem formulation required all interaction an iterative message passing algorithm where the message
termsJ;; to be the same, but subsequently, the generalizedend from nodé to any of its adjacent nodgse N (i) is

Ising model allowed them to differ for every pair of nodes.

One prominent example of Ising models ap@n glasses mij(x;) = Zzil)(fwxj)i/)(xi) H M (24)

which exhibit a phase transition in problem hardness as the Ti keN()\{j}

Jij get negative, indicating a so-callédistrationin sys- \yhen computing marginal probabilities; for MAP estima-
tems where every node prefers to be in a different state thafy,, 4 maximization replcase the sum. The belief at every
its neighbours. node upon termination of BP is then

The Potts mode[15] generalizes the Ising model to non-

binary variables in a straight-forward fashion. In this beli(w;) = Zypi(xi) H Mk (7)-

model, the interaction term between adjacent nadasd kEN()

J in the graph is0 for matching values and otherwise.  BP is not guaranteed to converge, but if it does so, then it
The Ising and Potts model are traditionally defined for grid-converges to a local stationary point of the Bethe approx-
structured MRF2s, but to our best knowledge, almost ngmation to the free energy [17]Generalized BP (GBP)
exact or approximate inference algorithm is bound to onlypuilds on this fact and generalizes the energy function to be
work on grid-structured networks. The only exception weminimized upon convergence to the Kikuchi approximation
are aware of is an encode-and-solve approach where eaehfree energy [16, 17]. For every network to be applied for,
layer of the MRF2 is viewed as a single variable in a Hid- GBP requires the specification of a so-called region graph,
den Markov Model which can then be solved by the promi-in which more powerful messages are passed between clus-
nent forwards-backwards algorithm [8]. Other specializedters of nodes. When bigger clusters are chosen in GBP, its
algorithms for grid-structured networks, such as specialmessages become more powerful and its approximation im-
ized versions of loopy belief propagation, only require thisproves, but unfortunately its complexity per iteration grows
representation due to programming language specific feasxponential in the cluster size. Since GBP usually needs to
tures, such as efficient vectorization of parallel updates inbe adapted to the model at hand, we only report results for
Matlab. it on MRF2s. In this case, we choose the straightforward

Grid-structured pairwise MRFs are frequently employed®9ion graph consisting of quadruples of nodes (the graph's
for a variety of problems in computer vision where an im- Smallest loops) and their intersections.

age can be viewed as a grid-structured MRF2 with one variSimilar to BP and GBP, theean-field MF) algorithm it-

able per pixel or patch of pixels [2, 10, 12, 6]. The pairwiseerates local updates of beliefs [13]. Its update equation
potentials in this domain enforce conformity constraints

and smoothness between neighbouring variables, whereas bel(z;) = ¢(x;, ;) exp( Z Z logiij(xi, x5)
potentials for single variables encode domain-dependent JEN; =;

local ewdgnce. Both th'e' Ising and the Potts model arfor every nodeg; is derived from minimizing the average
gmployed in porr]puter vision, and for the latter one a va,\1aan Field free energy.

riety of modifications have been proposed. For larger do-

main sizes, these generalizations assign a penalty to diffeAnother widely used algorithm i§ibbs sampling(GS)

ing values of adjacent variablésindj that depends on the Whose popularity is mainly due to its generality. Since
actual differencel(z;, z;) between values; andz;. Lin- complete instantiations of a network usually cannot be
ear or quadratic interaction penalties are used, but a cusampled efficiently in the presence of evidence, this al-
off is essential in order to prevent oversmoothing at objecgorithm, starting by some random initiailization, iterates
boundaries. through the variables, sampling each variablat a time,
conditional on the current instantiation of all other network
variables. Despite its usual generality, this algorithm does
not apply to networks which have undergone the conver-

. . . . sion from factor graphs to MRF2s. This is due to the de-
In this section, we sketch out some prominent mferenc;j

3 Algorithms and their applicability

; o : . terministic potentials between all variables. After an initial
algorithms and indicate which models they can be applied:,, . . .
for. iliclimbing phase, the algorithm would stay at the same

spot of the search space forever, since, in that representa-
Belief propagation (BPhas originally been introduced as tion, each variable is constrained by its neighbours to keep
an exact algorithm for tree-structured models [9], but isits current value.



The cluster sampling algorithn®wvendsen-Wand.1] and Algorithm Marg. | MAP Potentials
Wolff [14] would not get stuck in a state where chang- Loopy BP + + any

ing only one variable at a time yields probability zero. GBP + + any
However, unfortunately, they have been formulated withi  Mean-Field + - any?

out reference to local evidence which cannot be added inja deterministic
straightforward fashioA.Multiplying the evidence into the Gibbs + (+) constraints
pairwise potentials is always possible, but would probably are a problem
hurt algorithm performance considerably since they are op- Swendsen-Wang + ) Spin glasses
timized for Ising model$. w/o local evidence
For solving the MAP problem in MRF2s, algorithms based Wolff * *) ’ i
ongraph cut§GC) have recently been employed with great|_Graph cuts - + see caption
success [1, 2, 12, 10]. For binary variables and pairwise pa- SLS - + any

tentials.J;(1,1) + J”(z’.Q) < Jij(1,2) + 1y .(2’ 1.)’ asin Table 1: Applicability of different algorithms. + means ap-
gle g_rap_h cut already.ylelds an exact solution "_" low pOly'plicable, - means not applicable and (+) in the case of sampling
nomial time by reducing the problem to a maximum flow aigorithms for MAP means that MAP can naturally be approxi-
problem (for details, see e.g., [6]). Even for non-binarymated by simply using the best sample seen so far; this approach,
settings with comparable domain sizes, binary graph cut§owever, usually performs much worse than specialized MAP al-
can be applied as powerful local search steps in a greecﬂ?“th.ms with strong bias like SLS. The applicability of Mean-
S . . . ield is not clear to us; theoretically, we would expect it to work
h|II-<_:I|mb|ng procedure, either _'n_ So-calleml-expansmns properly on all representations, but in our experiments it failed
(which cast the problem as deciding for each pixel whethebadly on arbitrary networks that were encoded as MRF2s: it did
to keep its current instantiation or to adopt instantiatipn  not even converge on an encoding of a simple tree-structured fac-
or in so-calledn — 3 swaps (which solve the subproblem tor graph with three nodes and two factors. The application of

S ; ; ; Graph cuts to the inference problem or a subproblem requires a
of assigning optimal labels ify, 5} to the pixels currently problem formulation with binary domains and potentials of the

labelled either or 3.) [6]. form Ju; (1, 1)+ Ji; (2,2) < Ji;(1,2) + Jiy (2, 1).
Last but not least, recently introduce&tochastic Local
Search (SLSalgorithms for solving the MAP problem in

arbitrary graphical models show much promise [5]. Matlab class that inherited from a generalised interface. We

also implemented a variable elimination engine to compute
4 System architecture exact marginal probabilities. Based on what representation
the algorithm requires, we apply the appropriate conversion
In order to create a unified interface to the various algoFoutinés before running inference. Our simple interface al-
rithms above, we developed conversion routines that refo®Ws the user to run inference and query beliefs with four
mulated the various inputs (Bayesian networks (BNs) anchnctlon calls: a constructor to |n'stant|ate the inference en-
Markov random fields (MRFs)) to conform to a consistent9ine, & method to enter local evidence, a method that runs
structure. Our structure of choice for new algorithms toinference and a method that queries the beliefs. This simple
be developed on was factor graphs (FGs). All of the de_deS{gn is exte.nS|bIe and mod_ular and will easily facilitate
pendence properties in Bayesian networks and Markov nethe incorporation of new algorithms into the system.
works can be represented as factor graphs [4]. Many of the
algorithms we interfaced to are defined on pairwise MRFs,
but we simply converted FGs to pairwise MRFs [17]to run§ Experiments
these algorithms. With these converters in hand, we were
then able to convert any input into a FG and apply any al-
gorithm, regardless of the structure of the original input. We conducted four experiments to both test our system
) ) o o ] S and compare performance of the algorithms under differ-
While the main scientific gontrlbutlon of this project is the g types of input networks. Where applicable, ground
framework itself, we applied the framework to an exper-{,ih results were obtained by running variable elimination
imental comparison of some algorithms on a number 0f3) Thjs Jimited the size of networks we could test against
real-world BNs and MRFs for computing image segmen-grq,nq truth, however reasonably sized networks were in-
tation as well as marginal beliefs on randomly generatetgeed tested. We measured accuracy of algorittioy com-

spin glass models (see Section 5). Figure 1 shows the afting the sum of squares errgrover the marginal beliefs
chitecture of our framework that will take as input @ BN ¢ the nodes in the network:

or an MRF. For each algorithm in the system, we created a

*Email communication with Talya Meltzer. ep = Z(pk' —q)? 1)

“Personal communication with Firas Hamze. ;



creased running time for the converted networks by an ap-
proximate factor of 2.6 (see Figure 2); this is most likely

due to the introduction of additional nodes in the graph in

the conversion process.

\ Factor graphs |
ﬁ [& ) Convergence time of bploopy for mrf2 and converted mrf2

|

Figure 1: System architecture. Boxes are problem representa-
tions, ellipses are implementations of inference algorithms. Dot-
ted ellipses are implementations that can only compute marginal Ml
probabilities, dashed ellipses are implementations that can only af
compute the most probable explanation (or the M best ones). Grey
arrows are conversions, black arrows are calls to other algorithms,
white arrows are calls to our algorithms and BNT code. Interfaces
to Jtree, M-BP, and Graph cuts remain to be built. of

time (s)

wherepy, are the beliefs of nodeéin the network found

using algorithm¥: andg; are the ground truth beliefsUn-  Figure 2: Wall clock time of BP for spin glasses with differ-
less explicitly stated otherwise, all runtimes reported arang size, both for unconverted spin glasses (red) and spin glasses
Wall clock runtimes on otherwise idle machines measuredonverted to FGs and then back to MRF2s. Plot shows mean run-

by Matlab’ s built-in commands tic and toc. ning time over 10 runs for spin glass siz&sfrom 2 to 9 with
psi = 1.0 andlsi = 0.1. Running time for converted networks

) ) was on average.6 longer over all runs.
5.1 Experiment 1 - Conversion effect

We measured the effect of the conversion routines from5 . . . .
. .2 Experiment 2 - Comparing algorithms on spin

MRFs to FG to MRF2s to ensure they did not affect the | P paring aig P

. ; : glass models

inference results of the generally applicable algorithm BP.

For this purpose, we generated MRF2s in the form of spinyse compared the running time and accuracy of BP, GBP,
glasses conforming to the description in Section 2. Thegs and MF under the three different parameter regimes for
spin glass generation process had three parameters thagnerating spin glass models described above. First, we
could be setpsi, the variance of the zero-mean indepen-yaried N from 3 to 9 while keepingsi andisi fixed at1.0
dently drawn random interaction terng; Isi, which gov-  and0.1 respectively. Second, we varigdi while keeping
erns the strength of local evidenag and N, which gives v andys; fixed at5 and0.1. The range opsi is centered
the dimension of the spin glass. We creafédN sizeé  zround the parameter reported in [16] hoping to reveal the
networks forN' from 2 to 9 and ran inference using BP. |eyels of variance of the edge potentials at which point rel-
Inference was run on both the uncoverted model and thggjye accuracy of algorithms diverge. Third, we varied
converted model which first converted the MRF2 to a FGkeeping NV andisi fixed at5 and0.1 respectively. Again,
(using the fact that the MRF2 is just a special MRF) andyye |ooked to find divergence points of relative accuracy
then converted the FG to an MRF2 (employing the genysing this method. For all combinations of parameter set-
eral procedure outlined in section 2). We compared thgings, the inference algorithms were run 10 times and we

marginal probabilities of each node in the original graphreport mean and standard deviations of the approximation
under the two scenarios and in every single case foungdror.

identical marginal probabilities. We also measured the run-_ ) .
ning time to assess whether conversion was affecting exd=igure 3, Figure 4 and Figure 5 show the accuracy and run-

cution time. Our results for this experiment show an in-ning time for the BP, GBP, GS and MF algorithms for vary-
ing N, psi, andisi respectively. For larger problems, GBP

*We are aware of the fact that KL divergence is often a preferperformed best, whereas for smaller systems BP performed

able measure of error, but we experienced technical problems vvjt est. GBP showed the highest performance for problems
some algorithms. These were due to those algorithms estimatin

small probabilities as zero, resulting in infinite KL divergence; \%ith high variance in the potentials (and thus possibly tight

this was especially often the case for the mean-field algorithm, dntéractions between variables), as well as for problems
result that is interesting on its own. with weak local evidence (for which again interactions be-



tween variables dominate). With the other parameters be-
ing fixed, we were able to determine crossing over points
of N > 6, psi > 1.0, andisi < 0.2 where GBP was more

accurate than BP (see Figures 3, 4, and 5). GBP always
ran slower than BP under all parameter regimes although
we caution the reader that GBP and BP did not always con-

verge and running time was measured as time of execution System variance v sum o sauares eror
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spmglasz‘::‘jijzmme Figure 4: Error (top) and running time (bottom) of BP, GBP,
1or &P GS and MF for varying variancesi in the interaction terms; es-

i 5 W timates based on 10 runs for each value of psi. BP was the most
accurate for lower variance, followed by GS, GBP and MF. For

8
af psi > 1, GBP performed better than BP, GS and MF. par < 1
o
0

execution time (s)

running time followed the same trend as shown in Figure 3 with
L PR L+ SN GBP slowest, followed by BP, GS and MF. Running time values
2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ for psi > 1 should be viewed with caution as the algorithms did

2 3 4 5 6 7 8 9 10

spin glass size not always converge to a solution in which and therefore the re-
ported time is simply the time when the execution stopped. For
further discussion on this point, please refer to the Discussion sec-
Figure 3: Error (top) and running time (bottom) of BP, GBP, tion.
GS and MF plotted against spin glass si¥e estimates based
on 10 runs for each value d¥. BP was the most accurate for
small networks (3x3), followed by GS, GBP and MF. For larger 5.4 Experiment 4 - Comparing MPE algorithms on
networks, (7x7 to 9x9), GBP was the most accurate, followed by Bayesian networks
BP, GS and MF. GBP however, was consistently the slowest in
terms of running time, followed by BP, GS and MF. For MAP solving in general networks, our framework cur-
rently only supports the BP algorithm, operating on en-
coded MRF2$. Experiment 1 showed that the conver-
5.3 Experiment 3 - Comparing BP and GBP for sion into MRF2s does not affect BP's result, only increas-
natural image processing ing its runtime by a nearly constant factor; we concluded
from this that we can use our available BP implementa-
This experiment was done in collaboration with Tim Rees tion to solve general graphical models, such as Bayesian
The problem was to find the optimal segmentation of mannetworks. In Table 2, we compare this algorithm to pub-
made and natural objects in images. For previous work ofished results for a number of Bayesian networks from the
this problem, please refer to [7]. Using model parametergayesian network repository. The algorithms used for this
for local evidence and edge potentials of a MRF2 learnedomparison are the Branch-and-Bound algorithm BBMB
by feature-weighting (see report by Tim Rees), we com-Which employs a Mini-Bucket heuristic withbound 10, as
pared the Segmentation performance of MPE versions Bmell as with the recent Stochastic Local Search algorithm
and GBP under an MRF model with the same edge potenGLS+ (for detailed descriptions of these algorithms, the
tial over the entire image and the Discriminative RandomProblem instances, and the results, see [5]). Identical ma-

Field (DRF) model [7] with different edge potentials for 6As mentioned in section 2, GBP requires the specification

each edge. Accuracy was determined qualitatively by Vi'of a region graph which needs to be specified on an instance-by-

sually inspecting the output images which indicated maninstance basis; thus, we only report experiments with GBP for
made structures with white boxes. grid-structured MRF2s, where the region graph can be built easily.

R




(a) log class (b) mrf BP (c) mrf GBP (d) drf BP (e) drf GBP

Figure 6: Segmentation of image delineating man made structures with white boxes computed with a) log classifier (no
inference), b) BP under MRF model ¢) GBP under MRF model, d) BP under DRF model, e) GBP under DRF model

Network BP BBMB GLS™*
Alarm 9/0.05/0.006 | 0.00/+ 0.00/+
Barley -/880.14/0 | 36.76/+| 19.22/+

Diabetes -/1835.34/0 4.57/+ | 100/0.0099
Hailfinder | 24/0.2510-1® | 0.00/+ 0.00/+
Insurance| 12/0.0710-%* | 0.00/+ 0.00/+

. Iocal e factor vs sum of squares error Link 10/4.48/0 100/0 1.25/+
O R T Mildew | -/834.2/0 | 1.25/+ | 0.26/+
R e R S S 0 S S Muninl | 42/2.6710 ™ | 30.14/+| 0.34/+
i R A A S B e Munin2 | 20/7.7310~°2 | 3.98/+ | 0.96/+
Lol Munin3 | 19/8.4710 °' | 4.55/+ | 0.87/+
) N ‘ ‘ ‘ ‘ ‘ ‘ ‘ Munin4 | 20/8.5010—°° | 31.72/+| 100/0.035
’ o o2 o evtacmro('\:i) o8 %0 o PlgS 5/0.84/107113 0.08/+ 0.14/+
. local e factor s execuion time Water -/28.14/0 0.01/+ 0.10/+
g i ¢ G Table 2: Performance of BP, BBMB, and'LS™ [5] on in-
5 °“">\\ T . stances from thg Bayesian network repository. Eor BP, we re-
“ oafl >\(\’\“T“+"T\’f\l\ i port numbe_r qf iterations u_ntll convergence (- indicates no con-
L e R R B o o S e vergence within 2000 iterations), time until convergence, and ap-
proximation quality (found likelihood / optimal likelihood); and
% o1 02 03 o4 E o5 o7 for BBMB and GLS™, we report runtime and approximation

local ev factor (Isi)

quality (+ indicates optimal solution quality).

Figure 5: Error (top) and running time (bottom) of BP, GBP, GS

and MF for varying strengthsi of the local evidence; estimates

based on 10 runs for each valud ef. GBP was the most accurate confidence that the conversion process would not affect any

for lower Isi, followed by BP, GS and MF. Fdsi > 0.3, BP  future results when comparing algorithms. The results ob-

performed better than GBP, GS and MF. Running time followed ained from Experiment 4, however, suggest that the con-

the same trend as shown in Figure 3 with GBP slowest, followe . . ! !

by BP, GS and MF. version may indeed affect results. In retrospect, we real-
ize that we should have also tested the effect of the con-
version for the max-product version of BP instead for the

chines were used for the runtime analysis of all algorithmsSum-product version, for the max-product version should
for BBMB and GLS*, CPU time is reported, and for BP be subject to the same shortcomings as Gibbs sampling
experiment, we conclude that BP performs vastly inferiorP€riment 2 suggest that GBP can handle highly correlated
to current state-of-the-art MAP algorithms on real-world variables much better than BP, while the faster BP is su-
Bayesian network instances. perior for systems with comparably strong local evidence.
Experiment 3 showed a progression of segmentations of
images using a log classifier with no edge potentials, MPE

6 Discussion of BP and GBP on an MRF model with consistent edge po-
tentials and MPE of BP and GBP using a DRF model with
6.1 Experimental Results variable edge potentials. It is clear from inspection that in-

ference improved the results of the log classifier. Our qual-
Experiment 1 showed that the conversion process had nitative results suggest that GBP had higher sensitivity when
effect on the marginal probabilities computed using BP.detecting regions with man-made objects (good coverage),
This was significant in that it allowed us to proceed with but lower specificity than BP (more false positives). Future



work on this project should apply Graph cuts and comparderence algorithms. Although we did not include all algo-
its performance with GLS. The particularly strong scal- rithms originally outlined in our proposal, we nevertheless
ing behaviour of GLS (see [5]) would be most useful in succeeded in creating a functional interface and general
this setting, especially for larger images or for formulationsframework for approximate inference that could be easily
of the problem that use regions smaller than 16x16 blockextended in the future. Using our system, we were able
inducing more nodes in the graph. to design experiments comparing performance of different
combinations of algorithms under different input data sce-
narios. Although slower, GBP generally outperformed BP,
MF, and GS for marginal beliefs on lattice-type input data.
In some cases, error bars in the plots of Figures 3, 4, anth a use case of the system a colleague was successfully
5 were highly overlapping, which leads to difficulty in in- able to compare results of max-product BP and GBP and
terpreting relative performance. More runs would likely choose the better of the two to yield promising results in
reduce the error and create more interpretable results. Dudentifying man-made structures in landscape-type images
to long running times of VE to obtain ground truth, this (see Figure 6 and report by Tim Rees). We were also able
was not feasible in the scope of this project. Future studiego add results of max-product BP to previously published
however should keep this in mind. results for standard BNs. In retrospect, BP’s disastrous re-
sults in this domain may be due to the conversion to MRF2s
&yhich may affect the performance of max-product BP but

running time was simply taken as execution time of thetnhc;; fsljjr?{eprroduct BP. Future experiments will investigate

6.2 Experimental design

All our experiments suffered from a non-optimal timing

algorithm with some default stopping criterion, such as a
predefined maximal number of iterations. This could be
significantly improved where, for example, the time for
each iteration could first be calibrated in order to determinel
the numer of iterations an algorithm would take for a fixed
amount of time. Then, all algorithms could be run with @
comparable runtimes, which results in a much more use-
ful comparison. Also, in order to be of practical use, our
framework needs to implement a better timing mechanismy,
than Matlab’s built-in measure of Wall clock time. Espe-
cially for large experiments, it can in general not be guar- s
anteed that the used machine is otherwise idle, such that
Wall clock measurements would often be uninformative. -

6.3 Improvements to the system |

There are many possible useful additions and improve-[el
ments that can be made to our system. We would like to
include GC (see Introduction) into the system. This would ©
allow us to compare state of the art algorithms for stereo
data to other algorithms presently in our system. We coulgho
also then use GC to run inference on the natural images
presented in Experiment 3. As shown in Table 1, some oftu
the algorithms are limited on the types of models on which
they can run. Implementations for GS and MF that can rud*?
on FGs would add to the system and allow us to compare
more algorithms on general networks. We would also like
to include generalised versions of SW and WO that can op[-13]
erate on MRF2s with local evidence. 14
7 Conclusions =
[26]
We developed a general framework to interface to various
approximate inference algorithms. The framework allows;,,,
users to input networks in various representations (namely
BNs, MRFs, MRF2s, and FGs), and run their choice of in-
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