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1 Introduction

Conclusive comparisons of approximate inference algo-
rithms are difficult due a number of handicaps. The
main problem is that most algorithms were developed in-
dependently for different domains and consequently have
different input and output representations and formula-
tions, for example, Bayesian networks vs Markov ran-
dom fields (MRFs) [13]. Thus, researchers usually only
compare novel approximate inference algorithms against
a small subset of well-known algorithms instead of the
current state-of-the-art. Analogously, practitioners usually
employ well-known algorithms developed for their prob-
lem at hand, ignoring potentially superior algorithms that
only require a slightly modified problem formulation.

We developed a simple framework that automates the task
of converting between different problem formulations and
offers a unified interface to a variety of approximate in-
ference algorithms. This framework promises to facilitate
straightforward comparisons of an arbitrary set of approxi-
mate inference algorithms which to date could only be done
with considerable overhead. Consequently, a new algo-
rithm’s performance can now be compared against other
published solutions in a standard way with minimal over-
head. Furthermore, when assessing the best algorithm for
a given problem, one can simply call the desired set of al-
gorithms with a unified interface and compare the results.

The unified Matlab interface we implemented to date inter-
faces to implementations of a number of approximate infer-
ence algorithms for pairwise Markov random fields in the
programming language C1, as well as to our own Matlab
implementation of the exact variable elimination algorithm
in factor graphs and a Matlab implementation of loopy be-
lief propagation.2 For Bayesian networks, Markov random
fields, factor graphs, and pairwise MRFs, we are mainly
interested in two problems, namely the one of computing
marginal probabilities for every random variable in the net-

1Thanks to Talya Meltzer for providing implementations of
these algorithms.

2Thanks to Kevin Murphy for providing his code.

work and the one of computing the maximum a posteri-
ori (MAP) instantiation of all variables. Both of these prob-
lems have applications in computer vision [2, 10, 12] and
a great number of other areas including problems from so
heterogneous areas as medical diagnosis, speech recogni-
tion, side-chain prediction in protein folding, and computer
diagnosis [5].

For the task of computing marginals for single variables,
our system currently interfaces to Gibbs sampling (GS) [9]
which is prominent in the AI literature, as well as the clus-
ter sampling algorithms Swendsen-Wang (SW) [11] and
Wolff (WO) [14] with roots in statistical physics. Further-
more, it interfaces to the Mean-Field algorithm [13] and the
sum-product versions of the iterative message passing algo-
rithms loopy belief propagation (BP) [9], and generalized
BP (GBP) [17].

For the MAP task, our system currently only supports the
max-product versions of BP and GBP. In the future, we
would like to compare these algorithms against prominent
methods based on graph cuts (GC) [2, 12] as well as recent
Stochastic Local Search algorithms [5]. Since adding new
inference algorithms to our framework is very simple, we
hope to be able to carry out this comparison based on the
existing framework.

To both test the system and provide use cases of the sys-
tem, we carried out a number of experiments on real-world
BNs, randomly generated pairwise MRFs and on an image
segmentation problem.

The rest of this report is structured as follows. Section 2
formal describes several compact representations for high-
dimensional probability distributions, as well as conver-
sions between them. In Section 3, we then sketch out
a number of prominent approximate inference algorithms
and their applicability. Section 4 gives an overview of the
architecture of our system, followed by a description of our
experiments and their results in sections 5 and 6, and con-
clude in Section 7.



2 Representation

In this section, we introduce several compact representa-
tions for high-dimensional probability distributions, con-
versions between them and algorithms to compute marginal
probabilities of single variables as well as the most likely
instantiation of all variables.

A discreteBayesian networkB is a tuple〈G,Φ〉, where
G = (V, E) is a directed acyclic graph (DAG) whose
nodes represent discrete random variables, andΦ is an or-
dered set of conditional probability tables (CPTs)φV =
P (V |pa(V )), specifying the conditional probability dis-
tribution of eachV ∈ V given its parents inG. The set
fa(V ) = {V } ∪ pa(V ) is calledV ’s family. The seman-
tics of a Bayesian Network is that it specifies a joint prob-
ability distributionφ over its variablesV in factored form:
φ = P (V) =

∏
V ∈V φV .

A discreteMarkov Random Field(MRF) B, also known as
a Markov network, is a tuple〈G,Ψ〉, whereG is an undi-
rected graph whose nodes represent discrete random vari-
ables, andΨ is a set of non-negative potential functions as-
sociated with cliques ofG. More specifically, eachψ ∈ Ψ
is associated with a set of variablesC ⊆ V that form a
not necessarily maximal clique inG, andψ assigns a non-
negative value to every instantiation ofC. Like a Bayesian
network, an MRF encodes a joint probability distribibution
φ over its variablesV, but since its potential functions are
not required to define probabilities, a normalization con-
stantZ is necessary to compute probabilities. The joint
probability of an MRF is given byφ = 1/Z ×

∏
ψ∈Ψ ψ.

Based on its origins in statistical physics, the normalization
constant is called thepartition functionand can be com-
puted asZ =

∑
V

∏
ψ∈Ψ ψ.

Both Bayesian networks and MRFs can be easily converted
to a simple and highly general representation called fac-
tor graphs. Afactor graph is a bipartite graphFG =
(V ∪Ψ, E) with one paritionV representing variables, one
partition representing potential functions, and with edges
{v, ψ} ∈ E indicating that variablev ∈ V is in the scope of
potential functionψ ∈ Ψ. A factor graph explicitly repre-
sents a non-negative function overV in factored form:

f(V) =
∏
ψ∈Ψ

ψ({V ∈ V|{ψ, v} ∈ E).

This function can be normalized to become a probability
distribution by division byZ =

∑
V f(V). A Bayesian net-

work can be converted to a factor graph by creating a node
for every variable and every CPT of the Bayesian network
and connecting the node for every CPTφV to each variable
in V ’s family fa(V ). Similarly, the conversion of an MRF
to a factor graph results in a node for every MRF node, as
well as a node for every MRF potential functionψ that is
connected to the nodes representingψ’s set of associated
variables.

Of particular interest in many applications are so-called
pairwise MRFs(MRF2s) whose potential functions are
constrained to be associated with at most two variables.
Since a number of algorithms can be easily formulated for
pairwise MRFs, it is interesting that discrete networks in
any of the above representations can be converted to pair-
wise MRFs. For such a conversion, Bayesian networks and
MRFs can first be converted to factor graphs. The conver-
sion of factor graphs to MRF2s introduces a newmega-
nodefor every potential function of the factor graph. Such
a mega-node has a domain size that equals the number of
entries in the original potential function, has the original
potential function as local evidence, and has deterministic
pairwise potentials connecting it to its associated variables.
For details and an example of this conversion, see [17].

Denoting the pairwise potentials between variablesxi and
xj in an MRF2 byψij and the local evidence potentials as-
sociated with every variablexi by φi, the joint probability
of an MRF2 under variable instantiationx = (x1, . . . ,xn)
can be written as

p(x) =
1
Z

∏
ij

ψij(xi,xj)
∏
i

φi(xi).

Driven by results from statistical physics as well as prac-
tical concerns from applications such as computer vision,
a number of specialized MRF2s have been proposed. The
first such model was the Ising Model, proposed in 1925 by
Ernst Ising to model a system of interacting parallel or an-
tiparallel spins [15], possibly embedded in a magnetic field.
Parallel adjacent spins are energetically desirable while an-
tiparallel spins require more energy. The Ising model ex-
presses this by means of interaction termsJij between pairs
of adjacent nodesi andj which are1 if their spins match
and−1 otherwise. The magnetic field is modelled as the
field strengthhi(xi) at every nodei.

Any state of the system (a complete assignmentx of up- or
down-spins to each of the nodes) then exhibits the follow-
ing free energy that is to be minimized across all complete
assignments:

E(x) = −
∑
ij

Jij(xi, xj)−
∑
i

hi(xi).

With interaction termsJij(xi, xj) = ln(ψij(xi, xj)), a
magnetic field ofhi(xi) = ln(φ(xi, yi)), and tempera-
tureT = 1, this energy then corresponds to a probability
in an MRF2 via Boltzmann’s law from statistical mechan-
ics [17]:

p(x) =
1
Z
exp(−E(x)/T ).

Since the form of pairwise potentials decides about the ap-
plicability of prominent algorithms like Graph-Cuts [1, 2,



6], we explicitly note that the Ising model exhibits pairwise
potentials

Ψij =
(

exp(Jij) exp(−Jij)
exp(−Jij) exp(Jij)

)
.

The original problem formulation required all interaction
termsJij to be the same, but subsequently, the generalized
Ising model allowed them to differ for every pair of nodes.
One prominent example of Ising models arespin glasses,
which exhibit a phase transition in problem hardness as the
Jij get negative, indicating a so-calledfrustration in sys-
tems where every node prefers to be in a different state than
its neighbours.

The Potts model[15] generalizes the Ising model to non-
binary variables in a straight-forward fashion. In this
model, the interaction term between adjacent nodesi and
j in the graph is0 for matching values and1 otherwise.
The Ising and Potts model are traditionally defined for grid-
structured MRF2s, but to our best knowledge, almost no
exact or approximate inference algorithm is bound to only
work on grid-structured networks. The only exception we
are aware of is an encode-and-solve approach where each
layer of the MRF2 is viewed as a single variable in a Hid-
den Markov Model which can then be solved by the promi-
nent forwards-backwards algorithm [8]. Other specialized
algorithms for grid-structured networks, such as special-
ized versions of loopy belief propagation, only require this
representation due to programming language specific fea-
tures, such as efficient vectorization of parallel updates in
Matlab.

Grid-structured pairwise MRFs are frequently employed
for a variety of problems in computer vision where an im-
age can be viewed as a grid-structured MRF2 with one vari-
able per pixel or patch of pixels [2, 10, 12, 6]. The pairwise
potentials in this domain enforce conformity constraints
and smoothness between neighbouring variables, whereas
potentials for single variables encode domain-dependent
local evidence. Both the Ising and the Potts model are
employed in computer vision, and for the latter one a va-
riety of modifications have been proposed. For larger do-
main sizes, these generalizations assign a penalty to differ-
ing values of adjacent variablesi andj that depends on the
actual differenced(xi, xj) between valuesxi andxj . Lin-
ear or quadratic interaction penalties are used, but a cut-
off is essential in order to prevent oversmoothing at object
boundaries.

3 Algorithms and their applicability

In this section, we sketch out some prominent inference
algorithms and indicate which models they can be applied
for.

Belief propagation (BP)has originally been introduced as
an exact algorithm for tree-structured models [9], but is

can also be applied for graphs with loops, in which case
it becomes an approximate algorithm. For notational con-
venience, we explain BP for MRF2s; [17] states that this is
mathematically equivalent to BP on other graphical models
like factor graphs or Bayesian networks. For MRF2s, BP is
an iterative message passing algorithm where the message
send from nodei to any of its adjacent nodesj ∈ N(i) is

mij(xj) = Z
∑
xi

ψ(xi, xj)ψ(xi)
∏

k∈N(i)\{j}

mki(xi)

when computing marginal probabilities; for MAP estima-
tion a maximization replcase the sum. The belief at every
node upon termination of BP is then

beli(xi) = Zψi(xi)
∏

k∈N(i)

mki(xi).

BP is not guaranteed to converge, but if it does so, then it
converges to a local stationary point of the Bethe approx-
imation to the free energy [17].Generalized BP (GBP)
builds on this fact and generalizes the energy function to be
minimized upon convergence to the Kikuchi approximation
to free energy [16, 17]. For every network to be applied for,
GBP requires the specification of a so-called region graph,
in which more powerful messages are passed between clus-
ters of nodes. When bigger clusters are chosen in GBP, its
messages become more powerful and its approximation im-
proves, but unfortunately its complexity per iteration grows
exponential in the cluster size. Since GBP usually needs to
be adapted to the model at hand, we only report results for
it on MRF2s. In this case, we choose the straightforward
region graph consisting of quadruples of nodes (the graph’s
smallest loops) and their intersections.

Similar to BP and GBP, themean-field(MF) algorithm it-
erates local updates of beliefs [13]. Its update equation

bel(xi) = φ(xi, xj)exp(
∑
j∈Ni

∑
xj

logψij(xi, xj)

for every nodexi is derived from minimizing the average
Mean Field free energy.

Another widely used algorithm isGibbs sampling(GS)
whose popularity is mainly due to its generality. Since
complete instantiations of a network usually cannot be
sampled efficiently in the presence of evidence, this al-
gorithm, starting by some random initiailization, iterates
through the variables, sampling each variablexi at a time,
conditional on the current instantiation of all other network
variables. Despite its usual generality, this algorithm does
not apply to networks which have undergone the conver-
sion from factor graphs to MRF2s. This is due to the de-
terministic potentials between all variables. After an initial
hillclimbing phase, the algorithm would stay at the same
spot of the search space forever, since, in that representa-
tion, each variable is constrained by its neighbours to keep
its current value.



The cluster sampling algorithmsSwendsen-Wang[11] and
Wolff [14] would not get stuck in a state where chang-
ing only one variable at a time yields probability zero.
However, unfortunately, they have been formulated with-
out reference to local evidence which cannot be added in a
straightforward fashion.3 Multiplying the evidence into the
pairwise potentials is always possible, but would probably
hurt algorithm performance considerably since they are op-
timized for Ising models.4

For solving the MAP problem in MRF2s, algorithms based
ongraph cuts(GC) have recently been employed with great
success [1, 2, 12, 10]. For binary variables and pairwise po-
tentialsJij(1, 1) + Jij(2, 2) ≤ Jij(1, 2) + Jij(2, 1), a sin-
gle graph cut already yields an exact solution in low poly-
nomial time by reducing the problem to a maximum flow
problem (for details, see e.g., [6]). Even for non-binary
settings with comparable domain sizes, binary graph cuts
can be applied as powerful local search steps in a greedy
hill-climbing procedure, either in so-calledα-expansions
(which cast the problem as deciding for each pixel whether
to keep its current instantiation or to adopt instantiationα),
or in so-calledα − β swaps (which solve the subproblem
of assigning optimal labels in{α, β} to the pixels currently
labelled eitherα or β.) [6].

Last but not least, recently introducedStochastic Local
Search (SLS)algorithms for solving the MAP problem in
arbitrary graphical models show much promise [5].

4 System architecture

In order to create a unified interface to the various algo-
rithms above, we developed conversion routines that refor-
mulated the various inputs (Bayesian networks (BNs) and
Markov random fields (MRFs)) to conform to a consistent
structure. Our structure of choice for new algorithms to
be developed on was factor graphs (FGs). All of the de-
pendence properties in Bayesian networks and Markov net-
works can be represented as factor graphs [4]. Many of the
algorithms we interfaced to are defined on pairwise MRFs,
but we simply converted FGs to pairwise MRFs [17] to run
these algorithms. With these converters in hand, we were
then able to convert any input into a FG and apply any al-
gorithm, regardless of the structure of the original input.

While the main scientific contribution of this project is the
framework itself, we applied the framework to an exper-
imental comparison of some algorithms on a number of
real-world BNs and MRFs for computing image segmen-
tation as well as marginal beliefs on randomly generated
spin glass models (see Section 5). Figure 1 shows the ar-
chitecture of our framework that will take as input a BN
or an MRF. For each algorithm in the system, we created a

3Email communication with Talya Meltzer.
4Personal communication with Firas Hamze.

Algorithm Marg. MAP Potentials
Loopy BP + + any

GBP + + any
Mean-Field + - any?

deterministic
Gibbs + (+) constraints

are a problem
Swendsen-Wang + (+) Spin glasses

w/o local evidence
Wolff + (+) ”

Graph cuts - + see caption
SLS - + any

Table 1: Applicability of different algorithms. + means ap-
plicable, - means not applicable and (+) in the case of sampling
algorithms for MAP means that MAP can naturally be approxi-
mated by simply using the best sample seen so far; this approach,
however, usually performs much worse than specialized MAP al-
gorithms with strong bias like SLS. The applicability of Mean-
Field is not clear to us; theoretically, we would expect it to work
properly on all representations, but in our experiments it failed
badly on arbitrary networks that were encoded as MRF2s: it did
not even converge on an encoding of a simple tree-structured fac-
tor graph with three nodes and two factors. The application of
Graph cuts to the inference problem or a subproblem requires a
problem formulation with binary domains and potentials of the
form Jij(1, 1) + Jij(2, 2) ≤ Jij(1, 2) + Jij(2, 1).

Matlab class that inherited from a generalised interface. We
also implemented a variable elimination engine to compute
exact marginal probabilities. Based on what representation
the algorithm requires, we apply the appropriate conversion
routines before running inference. Our simple interface al-
lows the user to run inference and query beliefs with four
function calls: a constructor to instantiate the inference en-
gine, a method to enter local evidence, a method that runs
inference and a method that queries the beliefs. This simple
design is extensible and modular and will easily facilitate
the incorporation of new algorithms into the system.

5 Experiments

We conducted four experiments to both test our system
and compare performance of the algorithms under differ-
ent types of input networks. Where applicable, ground
truth results were obtained by running variable elimination
[3]. This limited the size of networks we could test against
ground truth, however reasonably sized networks were in-
deed tested. We measured accuracy of algorithmk by com-
puting the sum of squares errorek over the marginal beliefs
of the nodes in the network:

ek =
∑
i

(pki − qi)2 (1)



Figure 1: System architecture. Boxes are problem representa-
tions, ellipses are implementations of inference algorithms. Dot-
ted ellipses are implementations that can only compute marginal
probabilities, dashed ellipses are implementations that can only
compute the most probable explanation (or the M best ones). Grey
arrows are conversions, black arrows are calls to other algorithms,
white arrows are calls to our algorithms and BNT code. Interfaces
to Jtree, M-BP, and Graph cuts remain to be built.

wherepki
are the beliefs of nodei in the network found

using algorithmk andqi are the ground truth beliefs.5 Un-
less explicitly stated otherwise, all runtimes reported are
Wall clock runtimes on otherwise idle machines measured
by Matlab’ s built-in commands tic and toc.

5.1 Experiment 1 - Conversion effect

We measured the effect of the conversion routines from
MRFs to FG to MRF2s to ensure they did not affect the
inference results of the generally applicable algorithm BP.
For this purpose, we generated MRF2s in the form of spin
glasses conforming to the description in Section 2. The
spin glass generation process had three parameters that
could be set:psi, the variance of the zero-mean indepen-
dently drawn random interaction termsJij ; lsi, which gov-
erns the strength of local evidencehi; andN , which gives
the dimension of the spin glass. We createdNxN size
networks forN from 2 to 9 and ran inference using BP.
Inference was run on both the uncoverted model and the
converted model which first converted the MRF2 to a FG
(using the fact that the MRF2 is just a special MRF) and
then converted the FG to an MRF2 (employing the gen-
eral procedure outlined in section 2). We compared the
marginal probabilities of each node in the original graph
under the two scenarios and in every single case found
identical marginal probabilities. We also measured the run-
ning time to assess whether conversion was affecting exe-
cution time. Our results for this experiment show an in-

5We are aware of the fact that KL divergence is often a prefer-
able measure of error, but we experienced technical problems with
some algorithms. These were due to those algorithms estimating
small probabilities as zero, resulting in infinite KL divergence;
this was especially often the case for the mean-field algorithm, a
result that is interesting on its own.

creased running time for the converted networks by an ap-
proximate factor of 2.6 (see Figure 2); this is most likely
due to the introduction of additional nodes in the graph in
the conversion process.
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Figure 2: Wall clock time of BP for spin glasses with differ-
ing size, both for unconverted spin glasses (red) and spin glasses
converted to FGs and then back to MRF2s. Plot shows mean run-
ning time over 10 runs for spin glass sizesN from 2 to 9 with
psi = 1.0 andlsi = 0.1. Running time for converted networks
was on average2.6 longer over all runs.

5.2 Experiment 2 - Comparing algorithms on spin
glass models

We compared the running time and accuracy of BP, GBP,
GS and MF under the three different parameter regimes for
generating spin glass models described above. First, we
variedN from 3 to 9 while keepingpsi andlsi fixed at1.0
and0.1 respectively. Second, we variedpsi while keeping
N andlsi fixed at5 and0.1. The range ofpsi is centered
around the parameter reported in [16] hoping to reveal the
levels of variance of the edge potentials at which point rel-
ative accuracy of algorithms diverge. Third, we variedlsi
keepingN andlsi fixed at5 and0.1 respectively. Again,
we looked to find divergence points of relative accuracy
using this method. For all combinations of parameter set-
tings, the inference algorithms were run 10 times and we
report mean and standard deviations of the approximation
error.

Figure 3, Figure 4 and Figure 5 show the accuracy and run-
ning time for the BP, GBP, GS and MF algorithms for vary-
ingN , psi, andlsi respectively. For larger problems, GBP
performed best, whereas for smaller systems BP performed
best. GBP showed the highest performance for problems
with high variance in the potentials (and thus possibly tight
interactions between variables), as well as for problems
with weak local evidence (for which again interactions be-



tween variables dominate). With the other parameters be-
ing fixed, we were able to determine crossing over points
of N > 6, psi > 1.0, andlsi < 0.2 where GBP was more
accurate than BP (see Figures 3, 4, and 5). GBP always
ran slower than BP under all parameter regimes although
we caution the reader that GBP and BP did not always con-
verge and running time was measured as time of execution
of the algorithm.
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Figure 3: Error (top) and running time (bottom) of BP, GBP,
GS and MF plotted against spin glass sizeN ; estimates based
on 10 runs for each value ofN . BP was the most accurate for
small networks (3x3), followed by GS, GBP and MF. For larger
networks, (7x7 to 9x9), GBP was the most accurate, followed by
BP, GS and MF. GBP however, was consistently the slowest in
terms of running time, followed by BP, GS and MF.

5.3 Experiment 3 - Comparing BP and GBP for
natural image processing

This experiment was done in collaboration with Tim Rees.
The problem was to find the optimal segmentation of man-
made and natural objects in images. For previous work on
this problem, please refer to [7]. Using model parameters
for local evidence and edge potentials of a MRF2 learned
by feature-weighting (see report by Tim Rees), we com-
pared the segmentation performance of MPE versions BP
and GBP under an MRF model with the same edge poten-
tial over the entire image and the Discriminative Random
Field (DRF) model [7] with different edge potentials for
each edge. Accuracy was determined qualitatively by vi-
sually inspecting the output images which indicated man-
made structures with white boxes.
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Figure 4: Error (top) and running time (bottom) of BP, GBP,
GS and MF for varying variancepsi in the interaction terms; es-
timates based on 10 runs for each value of psi. BP was the most
accurate for lower variance, followed by GS, GBP and MF. For
psi > 1, GBP performed better than BP, GS and MF. Forpsi < 1
running time followed the same trend as shown in Figure 3 with
GBP slowest, followed by BP, GS and MF. Running time values
for psi > 1 should be viewed with caution as the algorithms did
not always converge to a solution in which and therefore the re-
ported time is simply the time when the execution stopped. For
further discussion on this point, please refer to the Discussion sec-
tion.

5.4 Experiment 4 - Comparing MPE algorithms on
Bayesian networks

For MAP solving in general networks, our framework cur-
rently only supports the BP algorithm, operating on en-
coded MRF2s.6 Experiment 1 showed that the conver-
sion into MRF2s does not affect BP’s result, only increas-
ing its runtime by a nearly constant factor; we concluded
from this that we can use our available BP implementa-
tion to solve general graphical models, such as Bayesian
networks. In Table 2, we compare this algorithm to pub-
lished results for a number of Bayesian networks from the
Bayesian network repository. The algorithms used for this
comparison are the Branch-and-Bound algorithm BBMB
which employs a Mini-Bucket heuristic withi-bound 10, as
well as with the recent Stochastic Local Search algorithm
GLS+ (for detailed descriptions of these algorithms, the
problem instances, and the results, see [5]). Identical ma-

6As mentioned in section 2, GBP requires the specification
of a region graph which needs to be specified on an instance-by-
instance basis; thus, we only report experiments with GBP for
grid-structured MRF2s, where the region graph can be built easily.



(a) log class (b) mrf BP (c) mrf GBP (d) drf BP (e) drf GBP

Figure 6: Segmentation of image delineating man made structures with white boxes computed with a) log classifier (no
inference), b) BP under MRF model c) GBP under MRF model, d) BP under DRF model, e) GBP under DRF model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.2

0

0.2

0.4

0.6

0.8

local ev factor (lsi)

e
xe

cu
tio

n
 t

im
e

 (
s)

local ev factor vs execution time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−15

−10

−5

0

5

local ev factor (lsi)

lo
g

 s
u

m
 o

f 
sq

u
a

re
s 

e
rr

o
r

local ev factor vs sum of squares error

BP
GS
MF
GBP

BP
GS
MF
GBP

Figure 5: Error (top) and running time (bottom) of BP, GBP, GS
and MF for varying strengthlsi of the local evidence; estimates
based on 10 runs for each value oflsi. GBP was the most accurate
for lower lsi, followed by BP, GS and MF. Forlsi > 0.3, BP
performed better than GBP, GS and MF. Running time followed
the same trend as shown in Figure 3 with GBP slowest, followed
by BP, GS and MF.

chines were used for the runtime analysis of all algorithms;
for BBMB andGLS+, CPU time is reported, and for BP
wall clock time on an otherwise idle machine. From this
experiment, we conclude that BP performs vastly inferior
to current state-of-the-art MAP algorithms on real-world
Bayesian network instances.

6 Discussion

6.1 Experimental Results

Experiment 1 showed that the conversion process had no
effect on the marginal probabilities computed using BP.
This was significant in that it allowed us to proceed with

Network BP BBMB GLS+

Alarm 9/0.05/0.006 0.00/+ 0.00/+
Barley -/880.14/0 36.76/+ 19.22/+

Diabetes -/1835.34/0 4.57/+ 100/0.0099
Hailfinder 24/0.25/10−15 0.00/+ 0.00/+
Insurance 12/0.07/10−4 0.00/+ 0.00/+

Link 10/4.48/0 100/0 1.25/+
Mildew -/834.2/0 1.25/+ 0.26/+
Munin1 42/2.67/10−15 30.14/+ 0.34/+
Munin2 20/7.73/10−52 3.98/+ 0.96/+
Munin3 19/8.47/10−64 4.55/+ 0.87/+
Munin4 20/8.50/10−59 31.72/+ 100/0.035

Pigs 5/0.84/10−113 0.08/+ 0.14/+
Water -/28.14/0 0.01/+ 0.10/+

Table 2: Performance of BP, BBMB, andGLS+ [5] on in-
stances from the Bayesian network repository. For BP, we re-
port number of iterations until convergence (- indicates no con-
vergence within 2000 iterations), time until convergence, and ap-
proximation quality (found likelihood / optimal likelihood); and
for BBMB and GLS+, we report runtime and approximation
quality (+ indicates optimal solution quality).

confidence that the conversion process would not affect any
future results when comparing algorithms. The results ob-
tained from Experiment 4, however, suggest that the con-
version may indeed affect results. In retrospect, we real-
ize that we should have also tested the effect of the con-
version for the max-product version of BP instead for the
sum-product version, for the max-product version should
be subject to the same shortcomings as Gibbs sampling
when handling deterministic potentials. The results for Ex-
periment 2 suggest that GBP can handle highly correlated
variables much better than BP, while the faster BP is su-
perior for systems with comparably strong local evidence.
Experiment 3 showed a progression of segmentations of
images using a log classifier with no edge potentials, MPE
of BP and GBP on an MRF model with consistent edge po-
tentials and MPE of BP and GBP using a DRF model with
variable edge potentials. It is clear from inspection that in-
ference improved the results of the log classifier. Our qual-
itative results suggest that GBP had higher sensitivity when
detecting regions with man-made objects (good coverage),
but lower specificity than BP (more false positives). Future



work on this project should apply Graph cuts and compare
its performance with GLS+. The particularly strong scal-
ing behaviour of GLS+ (see [5]) would be most useful in
this setting, especially for larger images or for formulations
of the problem that use regions smaller than 16x16 blocks
inducing more nodes in the graph.

6.2 Experimental design

In some cases, error bars in the plots of Figures 3, 4, and
5 were highly overlapping, which leads to difficulty in in-
terpreting relative performance. More runs would likely
reduce the error and create more interpretable results. Due
to long running times of VE to obtain ground truth, this
was not feasible in the scope of this project. Future studies
however should keep this in mind.

All our experiments suffered from a non-optimal timing
mechanism. Sometimes algorithms did not converge and
running time was simply taken as execution time of the
algorithm with some default stopping criterion, such as a
predefined maximal number of iterations. This could be
significantly improved where, for example, the time for
each iteration could first be calibrated in order to determine
the numer of iterations an algorithm would take for a fixed
amount of time. Then, all algorithms could be run with
comparable runtimes, which results in a much more use-
ful comparison. Also, in order to be of practical use, our
framework needs to implement a better timing mechanism
than Matlab’s built-in measure of Wall clock time. Espe-
cially for large experiments, it can in general not be guar-
anteed that the used machine is otherwise idle, such that
Wall clock measurements would often be uninformative.

6.3 Improvements to the system

There are many possible useful additions and improve-
ments that can be made to our system. We would like to
include GC (see Introduction) into the system. This would
allow us to compare state of the art algorithms for stereo
data to other algorithms presently in our system. We could
also then use GC to run inference on the natural images
presented in Experiment 3. As shown in Table 1, some of
the algorithms are limited on the types of models on which
they can run. Implementations for GS and MF that can run
on FGs would add to the system and allow us to compare
more algorithms on general networks. We would also like
to include generalised versions of SW and WO that can op-
erate on MRF2s with local evidence.

7 Conclusions

We developed a general framework to interface to various
approximate inference algorithms. The framework allows
users to input networks in various representations (namely
BNs, MRFs, MRF2s, and FGs), and run their choice of in-

ference algorithms. Although we did not include all algo-
rithms originally outlined in our proposal, we nevertheless
succeeded in creating a functional interface and general
framework for approximate inference that could be easily
extended in the future. Using our system, we were able
to design experiments comparing performance of different
combinations of algorithms under different input data sce-
narios. Although slower, GBP generally outperformed BP,
MF, and GS for marginal beliefs on lattice-type input data.
In a use case of the system a colleague was successfully
able to compare results of max-product BP and GBP and
choose the better of the two to yield promising results in
identifying man-made structures in landscape-type images
(see Figure 6 and report by Tim Rees). We were also able
to add results of max-product BP to previously published
results for standard BNs. In retrospect, BP’s disastrous re-
sults in this domain may be due to the conversion to MRF2s
which may affect the performance of max-product BP but
not sum-product BP. Future experiments will investigate
this further.
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