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Abstract

In this paper we present an implementation of the Rao-Bladised par-
ticle filtering (RBPF) with one step look-ahead and applyatgorithm
within the domain of agent navigation. Specifically we tackie si-
multaneous localization and mapping problem (SLAM), whdelscribes
how a agent must concurrently attempt to determine its locand gen-
erate a map of the surrounding landmarks. Our implememtétibuilt
on top of previous implementation of normal RBPF using a mégpie
called fastSLAM. We compare the performance of normal RBR# a
look-ahead RBPF in terms of computational time and accuoécyate
estimation.

1 Introduction

We apply a variant of a Rao-Blackwellised particle filteringhe FastSLAM algorithm [1].
In this section we introduce various concepts used in oukwtamely particle filtering,
Rao-Blackwellisation, the FastSLAM algorithm, and lodkead RBPF.

1.1 SimultaneousL ocalization and Mapping (SLAM)

The problem of simultaneously determining of map of the emvwinent and one’s location
within it is widely regarded [2] as being one of the fundana¢mroblems in robotics.
At an abstract level the problem seems to mirror the classicken-and-egg’ problem
- “location” makes sense only with respect to a map or modehefenvironment, and
determining such a map of course depends where one is whthiertvironment.

In SLAM, an agent or robot’s state within an environment igegi by (z, y, ¢) wherex
andy are its Cartesian (surface) coordinates within the enwiramt andp is its orientation
angle. The moving robot makes noisy measurements of theommeent usually with laser
range finders, which give the range and bearing to variodsresor landmarks.

Formally, we can model the environment to Beuniquely distinguishable landmarks. A
mapof the environmen® consists of the relative distance (component-wise) to eatire

F landmarks, if they are visible. The robot’s current stéte= (z,y, ¢) is where in®© it
currently is at timet. Its control signak:! is a displacement which directs it where in the
environment it should move to next. We denoteybyts measurements at tintegiven by

a list of landmarks it sees and relative distances to thera.prboblem of SLAM then is to



determine

p(2', By’ u') 1)
known as the SLAM posterior.

1.2 MonteCarlo Methods

Given some target probability density functipr) defined on a high-dimensional space,

we seek to draw an i.i.d set of samples” } ¥ ,. The simplest Monte Carlo simulation of
such a distributiop(z) would be
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whered,, denotes the Dirac-delta function @t”). Such an approach would allow the
approximation of intractable integrals (as the integradrahe Dirac-delta function would
“pick out” the function in the integral evaluated at the s#esp.

If the target distribution(z) is difficult to sample from, then another Monte Carlo variant
calledimportance samplingan be used instead. The idea is to use a simpler to evaluate
proposal distribution;(z) to sample from instead. A weight is then calculated

and thus approximated integrals involving:) become

Ip(z dw—ZP( @)

For dynamic modelgarticle filteringis the generalization of Monte Carlo sampling. Dy-
namic models consist of three equations: the initial prdtakp(z(), the transition prob-
ability p(z¢|z:—1),t < 1 and the observation modg(y|z;),t < 1. The observations
y; are assumed to be conditionally independent given the psageand of the marginal
distributionp(y:|x:).

In dynamic settings, inference falls into three categories

1. Filtering: p(x¢|y1:¢)
2. Predictionp(ziir|y1:¢)
3. Smoothingp(z:—|y1.¢)

In the filtering problem we havepredictionandfiltering step:

p(xelyre—1) = /p($t|$t—1)]9(5€t—1|y1:t—1)d£€t—1 2
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For high dimensional state spaces, estimates typicallib@xttigh variance. The idea of
Rao-Blackwellised samplinig to sample on some subspace of the large state space, and
compute the expect value of the rest of the space analytiedllbf which result in reduced
variance in the estimate.



1.3 Approachesto SLAM

Approaches to SLAM include using an Extended Kalman Fil€K) [3] to represent the
robot’s internal map and pose estimate by a high-dimenki@aassian over all features
in the map and robot states. The limitations of this appr@aehcomputational in nature
[4], as maintaining such a multivariate Gaussian requiras guadratic in the number
of features in the map. Another approach using a Thin Jumdiree Filter (TJTF) [5]
represents approximation of the belief state as a junctiem tFor each filter update the
junction trees is periodically thinned by efficient maximlikelihood projections. Such
a representation has a linear-space belief state and-liimeafiltering operation. Another
approach using Rao-Blackwellised particle filtering in #&oathm called FastSLAM [1,
6, 4] is presented in the next section.

14 FastSLAM

As pointed out in [7], the SLAM posterior 1 can be factored as

F
p(z',8ly",u') = p(='|y", u' H (CHERTY) (4)

This says that calculation of the posterior over robot patitsinternal maps can be decom-
posed intoF + 1 recursive estimators, one over the robot stté |y’ u') andF' separate
estimators over feature locatiopg,,|z?, y).

In FastSLAM, the posterior over robot paths is estimatedgusi particle filter, or more
specifically a Rao-Blackwellised particle filter since itlypronsiders a subspace of the
possible space. The remainidgposterior of feature locations (which are conditional on
the sampled robot posg) are calculated by using extended Kalman filters (EKF). &inc
each EKF estimates a single landmark positiex, ©:), it is low-dimensional.

Each particle is of the form [4]
S = (Il 20l 2R 5)

that is, at the*" step in the robot’s patrﬁt["] denotes the!” particle out of allV particles,

wherez*!"! is a position sampley + 1s the mean of a landmark, alid is its covariance
matrix.

The filtering step- generating &} from S;_; — involves using the control signal, and
observationy, in the following steps:

1. Sampling a new pose
2"~ plala w) ©)

wherep(zt|zt["],ut) is our “motion model”.

2. Updating the observed landmark estimates. If a landnsasks$erved, which can
be determined by,

ni_y = A+ D) @)
S0 = AESACTT + B BT ®
yﬁft . = C’(zt(l))ut‘t 1+G(ztl))ut 9)
STO = C{")n)_ C(NT + D(z{")D(z{")" (10)



forgiven A, B, C, D, F, and the Kalman update is then given by

u = A S CED ST O ) A
m0 = S-S OED)TSTTO0EDE ., (12)
3. Resampling is carried out according to the following virtég
Jn]|a,t ot
m_ P )
Wy = p(2bM 211 ut) (13)
o8 p(yt|y1:t—laz[n],1:t) (14)

which we take to be a Gaussian with me,é@fl and covariancé&T'. The deriva-
tion of this can be found in [4, 8].

1.5 Lookahead Rao Blackwellised Particle Filtering
In [8] a variant of Rao-Blackwellised particle filtering isgsented with these differences:
1.

wE"] o< p(Yelyr:e—1, 2[n)1:¢)

N,
x Zp(yt|l/1;t71,Zl;tfl,Zt)p(2t|z1:t71,y1:t71) (15)

zi=1

wheren, are all the possible states the robot could be in. Sinceglasnarginal-
ization, it is an exact analytical solution.

2. Since the importance weights do not depend offbecause we are marginalizing
over them), we can select particles before the sampling atkving the choice
of the fittest particles at time— 1 using the information at time

2 Our Contribution

This section describes our contribution to the SLAM prob#emd discusses our implemen-
tation of look-ahead RBPF to this particular applicatiomddn.

2.1 Implementation | ssues

Our code is built on top of a Matlab implementation of RBPF by v .oh Wenzel [9]. As
a result we attempted to improve upon his code in terms of mawitly functionality and
efficiency. We were able to in several ways. Firstly, we wddle o vectorize many of the
functions used heavily by the RBPF code. This reduced theimgrtime of RBPF even for
a large number of particles\( = 200).

Secondly, we altered the vision model to include a paran{é)efor the robot’s angle of
vision. This implies that the robot can only detect featwréhin its angle of vision. For
example, if the robot is facing 45 degrees North of East (Ni) is vision angle is 90
degrees, then it can see any obstacles bound by North andEssThe implementation
in [9] uses a simpler vision model, which employs eight idzaitlaser rays that leave
the robot at fixed angles. So the robot would be able to detattifes surrounding it at
the specified fixed angles regardless of what angle it waadadiVe feel that our model
provides a more realistic model of how a robot (or human) waidtect features in an
environment. We discuss our vision model further in the sekisection.



Since RBPF requires a prior distribution to update the pdgberobot, the algorithm
requires an initial set of particles that must be sampletdaut any "help”. Depending on
how one decides to sample the initial particles the robet'fgsm may vary considerably. If
the initial set of particles are set close to the real posh@fabot, then the initial sampling
will obviously represent the target distribution more aetely and our task is simplified.
However, if the initial set of samples are selected unifgratlrandom, then SLAM wiill
be much harder to perform. This is because the random samiés potentially be very
far away from target distribution and so it will take more ¢irsteps for the particles to
converge.

2.2 Robot Orientation

Previously, the discrete states were modeled as coordinate positignsy),1 < z <
Wi, 1 <y < W,. To make the state space more realistic, we added an or@néatgleg

to each statér, y, ). Given state, - representing the position the robots believes itself to
be in at steg - and a control signal,, z; = (2/,y’, ¢') is calculated to be:

_ /0,2 2
r = Ut,"’“ty

¢ = arctan(@) —¢
Utz

¥ = rsin(¢p+¢)

y = rcos(¢+¢)

3 Testing and Results

To compare our look-ahead RBPF algorithm against normallRB& used a 10 x 10 grid
world (small.data). The world contains a perimeter waltgunding the outside edges. The
world has exact 42 uniquely numbered features. The map isngfritc about the diagonal
(from bottom left corner to top-right corner), which incses the difficulty of accurately
mapping the features since the robot could see the samersmnokobstacles but actually
be at one of two possible locations in the map. To comparentbealtgorithms we decided
to calculate the average Euclidean distance between agarénle and the true position of
the robot - we only considered the x and y coordinates. Thastgr the distance between
the proposed position of the particle the true position tleatgr the amount of error. Given
that there weréV particles we weighted each Euclidean distance value fotioveestep and
calculated the average over these weighted error meastieealso did the same thing for
the mapped feature positions (i.e. calculate the Euclidiéstance between the estimated
position of a feature and that features true position). Weragyed the values for both the
localization error and map error over all timesteps to arat/a single for each for a single
run of the algorithm. We then plotted these two error measueesus the computational
time required per timestep and also versus the number otlesrtused. We ran each
configuration exactly three times and then averaged thétsester those runs.

We also ran tests first using no noise in the scanned obsamgdiie. simulating the fact
that the robot’s detection system is completely accurate Ylaen using a moderate amount
of noise (i.e. weighting the covariance matrix high). Weser the results of both no
noise and moderate noise in the following subsections. ,Asmoted above in our contri-
butions section, our results reflect the fact that we do netsegds for the random number
generators (i.e. the Matlab functions rand and randn) amslittiere is quite a bit variation
between runs using the same number of particles and map.

Originally we had planned to run tests using larger sizedsifam. a 20 x 20 grid world),



containing more difficult configurations of features. Hoeewve found that our look-
ahead RBPF algorithm did not sale well to larger maps; atjhdhe increase in computa-
tional time per timestep was linear in the increase in sizb®@iap it was still too slow to
perform adequate trial runs.

3.1 Resultsusing Zero Noise

In Figure 1 we see that using the same number of particles RB®PF and look-ahead
RBPF perform roughly the same, although RBPF appears toaddization better. This is
very discouraging considering that look-ahead RBPF isrétasally supposed to perform
better than RBPF because it is using the optimal proposaitdition. It is most likely that
our technique of marginalization over all discrete statethé map contains a logical bug.
Note, that in our code we only marginalize over discreteestéihat are not features (i.e.
open spaces). We assumed that the robot could be in fouhp®ssientations (i.e. the
angle it is facing). So for our given map we marginalize ou€0 — 42)z4 = 216 states.

In Figure 2 we see a more discouraging result. For computtizes per timestep RBPF
flat out beats look-ahead RBPF in terms of accuracy. Our fimidht was that perhaps
because we were using zero noise in the scan readings thaalmad, its advantage being
that it can calculate weightings over all possible statdsreeresampling, provided no
advantage because the robot’s observations at each tpneste completely accurate.
However, we will see in the next subsection, when we used aenatel level of noise

in the scan readings, RBPF still outperformed look-aheaBIRB
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Figure 1:Small Map Localization Error in Low Noise
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Figure 2:Small Map Localization Error vs. Time in Low Noise

3.2 Resultsusing M oderate Noise

In Figures 3 and 4 we see again that RBPF performs betterdlotrelhead RBPF in almost
every situation. The only exception is when both algoritluss only a single particle. In
this particular case, look-ahead produces slightly mooeii@te estimation of the robot’s
position and much better map estimation of feature locat{@e. look-ahead RBPF pro-
duces roughly half the amount of error as RBPF in this caseyveder, in terms of com-
putational time per timestep, which is the key to an algamithsuccess, it appears that
even when there is noise in the scan readings RBPF is moableli This result appears
guestionable because in principle look-ahead RBPF is deditp outperform RBPF in this
situation. Given that our observations maybe unreliabgfér better to be able to estimate
using all possible discrete states.

At this point in our analysis we are quite sure that there igmar in our implementation
and not simply because we are applying look-ahead to a nelicagign domain. As was
discussed in [8] when the number of discrete states is si@ll foughly speaking less
than 1000 states) the weighting calculations can be cordmxactly. Given that the total
number of states is 216,the look-ahead RBPF algorithm ghisailtractable and produce
very accurate results.

4 Conclusion

Based on our comparison of RBPF and look-ahead RBPF we cacomtlude that there is
an error in our implementation of look-ahead RBPF. Althoaghlysis from [8] shows that



35

Average Coordinate Error in Localization

Average Coordinate Error in Localization vs. Number of Particles Average Coordinate Error in Mapping vs. Number of Particles
T T T T T T T T T T

25f

T
—5 RBPF
O Look-ahead RBPF

T
—5 RBPF
O Look-ahead RBPF

Average Coordinate Error in Mapping

. .
8 10 12 14 16 18 20
Number of Particles

Figure 3:Small Map Localization Error in High Noise

the accuracy of RBPF and look-ahead RBPF eventually coaygigen that the number of
particles is increased high enough, look-ahead shouldediatpn RBPF for few number of

particles. Granted there will be differences in the perfange results of both algorithms
when they are applied to another application domain, naBie®M, the dramatic evidence
that RBPF outperforms look-ahead in every situation exady@n only a single particle is

used should be a warning flag that indicates our implememtatiay contain a bug.

Aside from this, our results suggest that in the SLAM domginthe experiments we per-
formed, using more particles is better. Although our RBPBlamentation used a simple
proposal distribution, using a large number of particleslené fairly accurate. Although
the computational burden of each patrticle in lookaheaddgel&or it grows with the map),
the benefits gained should have been more substantial. Mtersive tests are needed to
determine the relationship between the two approaches.

5 Future Work

The immediate extensions to this algorithm involve dealiilp some basic assumptions
made, code optimizations and comparison with other methods

e The body of work mentioned above assumes known map corrdspoas. This is
an obvious simplification not applicable in reality. The bgation of the codebase
to unknown data correspondence could be made using the dchethmaximum-
likelihood discussed in [4].

e Currently, many parts of the FastSLAM algorithm are implated naively. The
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use of advanced datastructures [10] to update the map mdaoeariances for all
the particles, such as a binary tree [1], can offer some breglyled optimizations.

e An improved version of FastSLAM dubbed FastSLAM 2.0 [4, 8ds into ac-
count the measuremenjs An implementation of these ideas and how lookahead
applies to them could be made. A more thorough comparisavdest FastSLAM
1.0, FastSLAM 2.0, with and without lookahead can be madénatthe Thin
Junction Tree Filter method [5] to see in what regime eacklsxat.

A few more interesting extensions involve reducing the cotaponal complexity of the
lookahead method and applying it to a non-trivial problem:

¢ “Fast-methods” - those family of methods related to fasttispdle methods, the
fast Gauss transform, distance transforms, kd-treestreals, dual trees, etc. -
can be used to try to reduce the complexity of the marginédinat each step.

e The FastSLAM+Lookahead variant can be applied to the simpalenpus World
problem, which would require the use of some form of decigimtesses.
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