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1. INTRODUCTION 
The problems we consider in this work are that of 
recognizing a human figure from 3D motion capture 
data of a person walking, and also of generating new 
movement data useful for movies, simulations or 
games.  What is it that could make a human 
distinguishable from another by their walk? The 
answer is gait.  Previous work in this area has shown 
that if all points on the body are considered it is 
possible to differentiate between individuals.   

We attempt to recognize people by modeling each 
individual’s gait using a Hidden Markov Model 
(HMM).  The HMM is a good choice for modeling a 
walk cycle because it can model sequential processes.  
The data that we consider comes from the Carnergie 
Mellon University (CMU) motion capture database, 
but in theory any data that drives or represents a 
human figure could be used.  We build each HMM by 
converting motion capture data from .amc format to 
Matlab matrices (Converter), using feature vectors 
from that data to produce cluster sets (Clusterer), 
initializing the model with appropriate values based on 
the cluster set (Initializer) and then improving the 
model parameters to best represent the original data 
(Trainer). 

Once we have an HMM for each person, we can 
make use of the model in two applications: identifying 
individuals from new unseen data (Identifier) or from 
training data so as to test the model’s accuracy 

(Tester), and generating new pieces of motion 
(Generator).  

The rest of this paper is organized as follows: Section 
2 discusses our work in the context of previous work 
on motion recognition and generation.  In Section 3 we 
introduce and describe our approach to recognition 
and generation.  Section 4 gives an overview of our 
results (further results can be examined by running our 
matlab code and viewing our previously generated 
files).  In Section 5 we discuss the limitations of our 
system and describe avenues for future extension.  

2. BACKGROUND and RELATED WORK  
Distinguishing people by the way they walk is part of a 
greater problem of recognizing people using different 
types of biometrics.  The background for our idea 
comes from Kale et al. [7] where silhouettes of a 
human figure are extracted from video images and 
used to build an HMM and then to recognize the 
person.  This system would be useful where 
fingerprinting or eye scanning is unsuitable, and where 
there is surveillance cameras or with night vision 
goggles. Unfortunately its accuracy depends on the 
style of clothing the person wears.  Instead of using a 
silhouette we will use 3D motion capture data but 
apply HMM’s in a similar way.   

HMMs appear in many previous works, Rabiners 
paper [15] describing their use in speech recognition 
being a classic example. This paper discusses what an 
HMM is and why they are useful and goes on to state 
that such models are “rich in mathematical structure 



and hence can form the theoretical basis for use in a 
wide range of applications.”  [12] also tries to extend 
the HMM framework for the application of 
recognizing speech. Alongside this, [3] is a 
presentation on dimensionality reduction and feature 
selection and how they work, and also the application 
to human tracking. 

There are many other works that attempt recognition 
from 2D or 3D data. [18] uses video data and HMMs 
to try and recognize which sign language symbol is 
being used at a particular moment in time.  They 
manage to recognize 99% of the symbols when 
colored gloves are worn and 92% without gloves, from 
a 40 word lexicon.  [9] attempts to add HMMs when 
recognizing activities that have a predefined context 
and inherent semantics, such as in the card game 
Blackjack.  They extract behavior and strategies in 
real-time. [21] attempts to decode different types of 
gestures from video, using a technique developed by 
the same authors in [22] called a Parametric HMM 
(PHMM), that is used to model parameterized 
gestures (gestures that show a meaningful variation).  
An example of this would be a pointing gesture where 
the important parameter is direction, and therefore 
would be parameterized by the Cartesian coordinates 
that indicate direction.  The PHMM recognizes the 
gesture and also estimates the quantifying parameters 
using the Expectation-Maximization algorithm (EM). 

[16] also attempts classification from video sequences, 
and uses mixed discrete/continuous states to couple 
perception with classification.  A spline contour is 
used to track the contour of the person, along with 
mixed state condensation filtering.  Another work uses 
a switching linear dynamic system (SLDS) to analyze 
and track a human figure [13] cast in the framework 
of Dynamic Bayesian Networks (DBN’s) [11].  [2] 
uses HMM’s on video and the EM algorithm for 
human gait recognition and [14] is a more narrow 
recognition problem which attempts to recognize types 
of movements such as tennis stroke, again using an 
HMM. [20] is a Masters thesis by Donald O. Tanguay 
Jr. at MIT, which recognizes different types of motion 
gestures in video.  

[23] presents a 3D recognition scheme and efficiently 
computes the 3D appearance using a region-based 
coarse stereo matching algorithm. An unsupervised 

learning scheme is carried out to capture the cluster 
structure of these feature volumes, then the image 
sequence of a gesture is converted to a sequence of 
symbols that initialize the cluster identities of each 
image pair. Two schemes are used (forward HMM’s 
and Neural Networks) to model the dynamics of the 
gestures, and they achieve a recognition accuracy of 
96%. [5] creates what the authors call a “Continuous 
Human Movement Recognition” framework, which 
uses multiple HMM’s to infer the movement skill from 
an alphabet of “dynemes” (units of full body skills.) 
Also used is a “clone-body-model” which is 
dynamically sized and texture mapped for more robust 
tracking of humans on video of both edges and texture 
regions. 

There are also many examples of work that generate 
new movement data from existing data. [1] is an 
example of stylistic motion synthesis that uses learning 
across a varied set of choreographed dancing data to 
create new dancing motions. They achieve this using a 
“Stylistic HMM (SHMM)”, which can also be driven 
by video, scripts or even by noise to generate new 
choreography and synthesize virtual motion capture in 
many different styles. [4] classifies human movement 
compactly by using “primitives”, by filtering, 
segmenting and applying the Principle Component 
Algorithm (PCA) but in this case uses it for generating 
movement in robotics. [6] synthesizes a walking 
human motion that follows a sample trajectory and 
also generates a “synthetic partner” for a dancer who 
is acquired through motion capture. [19] synthesizes 
novel motion sequences from a database of motion 
capture examples, providing “the flexibility of 
keyframe animation with the realism of motion capture 
data.” Finally, [17] constructs new parametric models 
out of captured motion capture data, using a multi-step 
approximation for the interpolation function and motion 
data compressed by PCA, for use in real-time 
applications. They can vary the model by age, height, 
weight and gender. 

3. SYSTEM OVERVIEW  
We aim to model an individual’s walk using a Hidden 
Markov Model (HMM) with discrete hidden states 
and continuous observations from the states.  An 
HMM can model a walk cycle because it can model 
sequential stochastic processes, or states, where the 



probability of a state depends on previous states.  For 
a walk cycle we use a left-right HMM, where a state 
can only be reached by itself or by a single other state. 
The states are hidden and one can only observe a 
sequence of observations generated from a sequence 
of states.  In our case we observe skeletal joint 
configurations of a person, and assume they are 
generated from the states by a Gaussian probability 
density function.  That is we assume  that at each 
consecutive time step a new skeletal pose is generated 
from some state.  Figure 1 shows an example cyclic 
left-right HMM. 

 

 

 

 Figure 1. Cyclic Left-Right Hidden Markov Model 

 

In Figure 1, the qi nodes represent hidden states and 
the shaded xi nodes the observations from these 
states.  An HMM is parameterized by: 

• transition probabilities aij, 1 ≤ i,j ≤ N, which are the 
probabilities of transitioning from state qi to state 
qj in successive time slices,  

• initial probabilities π i, 1 ≤ i ≤ N, which are the 
probabilities of a sequence starting in any state qi, 
and 

• observation probabilities bi(x), 1 ≤ i ≤ N, which are 

the probabilities of observing x given being in state 
qi.   

These parameters can be summarized by λ = (π, A, 
B) where π  is a vector of probabilities and A is a 
matrix of probabilities.  For our system we will be 
modeling continuous Gaussian observations and so we 
can replace B with a Gaussian probability density 
function N(x; µ, Σ ) where µ and Σ  are the mean and 
covariance of the distribution.   

Our goal is to automatically learn the parameters λ = 
(π , A, N) from motion capture data of walking 
sequences.  Each person’s walk will be modeled by 
one identically structured HMM.  The unique 
parameters learned will be used to recognize people 
from new observation sequences.  By performing 
random walks on the HMM we will also be able to 
produce new walking motions for each person.  An 
overview of our system is shown in Figure 2.  In the 
rest of this section we will explain our approach by 
describing each of the modules in Figure 2 in further 
detail. 

3.1 Identification 
3.1.1 Converting 
For our system we use Acclaim formatted motion 
capture data from the CMU motion capture data base.  
The Acclaim format consists of i) a .asf file specifying 
skeleton information, and ii) a .amc file containing 
motion information for a sequence of frames.  Each 
frame specifies the position and orientation of the root 
of the skeleton (6 dimensions) and joint angles for 
each joint in a skeleton (56 dimensions).  For our 
system, we exclude skeletal information and ignore the 
root position and orientation, and focus recognition 
based on how a person is moving using only the joint 
angle information in the amc files.  All of the 
individuals we use have structurally similar skeletons.  
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 x3 

Figure 2. System Overview 

 



We extract a 56 dimensional feature vector for every 
frame in a sequence and then preprocess the data by 
centering the feature vectors about the mean pose and 
normalizing.  

3.1.2 Clustering 
After extracting the necessary features, we identify 
clusters of data which will correspond to the states in 
our HMM.  Each feature vector can be considered as 
a point in a 56 dimensional joint space.  And a walk 
can be considered as cycles through similar poses.  
These similar poses (or points near each other in the 
joint space) can then be grouped into clusters, so as to 
partition the joint space.   

To find these data clusters we employ the K-means 
clustering algorithm.  The K-means algorithm 
identifies k vectors, each corresponding to the mean of 
a cluster in the joint space.  Given a number, k, of 
clusters to find, the K-means algorithm iteratively 
identifies cluster means, µi for i = 1,..,k, and assigns 
data points, xn, to clusters.  We initialize the algorithm 
by randomly selecting feature vectors from our data to 
be the cluster means.  For each feature vector, the 
squared distance between the feature and each cluster 
mean ( || xn - µi ||

2 ) is then computed, and the feature 
vector is assigned to the cluster which minimizes the 
distance to its mean.  After each feature vector in the 
data is assigned to a cluster, the algorithm re-
computes the cluster means:  µi = 1/Ni Σ  xn .  The 

algorithm then reassigns the data to the new clusters 
(represented by the new means) and so on for a 
maximum of 100 iterations. 

For each HMM we identify four clusters using K-
means.  We found that this is an adequate and natural 
representation for a walk cycle in our system.  Figure 
3 shows an example of the joint configurations 
corresponding to the four cluster means found for a 
person by our system. 

3.1.3  Intializing 
We can now initialize the parameters, λ = (π , A, N), 
of our HMM.  Recall that we want to model the joint 
configurations of a walking sequence as continuous 
observations from discrete states.  We model these 
continuous observations using: 

 bi(x) = N(x; µi, σ i ), 1 ≤ i ≤ N 

where bi(x) models the probability density function of 
observation x generated from state i as a Gaussian.  
The four partitions (N = 4) of the feature vectors 
found by K-means are used to initialize the Gaussian 
parameters µ and σ  (the mean vector and covariance 
matrix respectively).  The identified cluster means 
correspond directly to the mean vectors µ i.  The form 
of σ  i is spherical where the covariance is set to be 
the squared distance to the next closest mean vector.  

We evenly distribute probability to the priors π  of the 
HMM.  This means that we assume it is equally likely 

 Right Foot Up       Right Foot Forward          Left Foot Up    Left Foot Forward 

                                    

 

Figure 3.  Four Cluster Means Found Using K-Means 



to begin in any state of our HMM.  EM (see Section 
3.1.4) will adjust this prior to reflect the actual initial 
state. 

The transition matrix A specifying the probability of 
transitioning from any state to any other state, is 
initialized based on frequency counts from the feature 
vector data.  Each feature vector corresponds to a 
single frame in a sequence.  From this and the 
partition information found in the last section, we can 
count how many times we transition from one state to 
another in consecutive frames.  That is the element a ij 
(1 ≤ i,j ≤ N) in A estimates the probability p(qt+1

j | qt
i ) 

of transitioning from state qi to state qj in consecutive 
frames by counting the number of times in the 
sequence that we transition from state qi to qj, divided 
by the total number of times we are in state qi. 

3.1.4 Training 
To improve our initial model parameters λ = (π , A, N), 
we use the expectation-maximization (EM) algorithm.  
Our goal is to maximize the complete log likelihood 
p(X, q | λ) that a sequence X of data vectors x was 
generated by our HMM by adjusting the HMM 
parameters λ.  However, we do not have complete 
data because the state variables qi are hidden.  So we 
must maximize (the M step) the expected complete 
log likelihood  

 argmaxλ Σq p(q | X, λ)log p(X, q |λ)   

with respect to the parameters λ, where p(q | X, λ) is 
estimated in the E step.  That is, in the E step we 
calculate the sufficient statistics for the HMM 
parameters λ using the forward-backwards algorithm, 
and then in the M step we compute the maximum 
likelihood (ML) estimates of the parameters.  These 
ML parameters are the improved HMM parameters.  
We can then repeat the E and M steps using the new 
parameters to improve our model.  

3.1.5 Testing/Identifying 
We can create and train an HMM for several 
different people using the approach described in 
Sections 3.1.1-3.1.4 for each individual.  Once we 
have a set of HMMs, recognition of a person from a 
new sequence of observations x amounts to 
calculating the log likelihood of x given each of the 
models ( log p(x | λ ) for each HMM).  The model 

that gives the highest probability is the model that most 
likely generated the new sequence x.  To calculate 
p(x | λ) we can marginalize out the hidden states q 
from the joint distribution p( x, q | λ ).  That is, the 
likelihood is the sum of the likelihoods of x for every 
possible sequence of states q in the model 

 log p(x | λ ) = Σq log p( x, q | λ). 

Using the forwards step of the forwards backwards 
algorithm, we can efficiently compute this probability.  
In the forwards algorithm we can accumulate or store 
probabilities of sequences up to any time step t.  Then 
we can update the probability for the next time step 
t+1 by multiplying the previously stored probabilities 
with the next transition and observation probabilities.  
The probabilities we store are 

 α  t (i) = p (x 1, x 2,… x t, q
t = qi  | λ)    

which are the probabilities of observing the sequence 
x up to time step t and ending up in state q i given the 
model.  At each successive time step we need only to 
update α by 

 α  t+1 (j) = [Σ i α  t (i) a ij ] bj (x t+1) 

where we sum the first equation for α  t (i) over all 
possible end states qi  multiplied by the transition 
probabilities of going from that end state to the current 
state qj.  We then only need to multiply by the 
probability of observing the current observation x from 
state qj.  This will in effect compute the likelihood of 
the data for an HMM. 

We compute the log likelihood of the data for each 
HMM in our set and then identify a person by 
choosing the HMM that produced the highest value.  
We use this same procedure for testing each HMM 
against the training data (the data that was used to create 
and train the HMM) and for recognizing new data. 

3.2 Motion Generation 
For motion generation, a trained HMM for an 
individual is taken and the means of the clustered 
states are retrieved.  Each HMM was built with four 
states which resulted in two mean vectors with 
outstretched legs and two with (roughly) straight legs, 
which is how we expected it (see Figure 3).  To 
create a new walk we worked out the number of 
frames to generate by using the values in the transition 



matrix A.  The diagonal probability values in the 
transition matrix are large (~0.97), which correspond 
to staying in the current state for a certain length of 
time.  Then in each row, there is one small probability 
(~0.03), the index of which corresponds to which 
unique state follows the current state.  The two 
remaining values are zero to signify that the other 
states are impossible as followers (as necessary for 
the left-right HMM).  By dividing one by the small 
value we get a figure (~35) which tells us the number 
of frames there should be between transitions. Also 
the order of the states is deduced from the indices of 
the small values: 

 

0.97      0            0          0.03  1 to 4 

0           0.963    0.037  0  2 to 3 

0.02      0    0.98  0  3 to 1 

0      0.031    0   0.969  4 to 2 

State Order  =  1 4 2 3 

We average the number of frames between transitions 
to work out approximately how many frames there 
should be between each state.  This number of frames 
is created by linearly interpolating between each mean 
state vector. The difference between the values of 
each state is worked out and divided by the number of 
transitions to create an alpha value which can be 
added to each frame to create a new corresponding 
position. 

Also we have to reinsert position data that we 
removed for the identification process. We choose a 
start position and add the number of frames in a single 
walk cycle to that position in the test sequence to see 
how far the character has traveled, and we use this to 
interpolate between the start and end of our new 
sequence points. 

4. RESULTS 
We ran our system using four different test subjects, 
person 7, person 35, person 39 and person 44 from the 
CMU database as they had lots of walking sequences 
to work with.  Each HMM was created and trained 
using three walking sequences from the subject.  We 
tested each HMM against these training sequences 
and also against four unseen sequences per subject.  
We tested two different types of covariance for the 

clusters, spherical and PPCA, and set the number of 
clusters to four. 

The results for each of the different types of 
covariance were different. Spherical achieved 6 out of 
12 correct when tested against the training data. 
PPCA got three wrong therefore 9 out of 12. 
Spherical got correct classification of 10 out of 16 of 
the unseen files, and PPCA got 13 out of 16. So, while 
it seems PPCA is better, further tests may reveal that 
each one is better with a certain style of walk. 

In terms of generation we took the HMM for each 
subject and then ran our generator on them, producing 
one walk cycle for each of the four subjects.1 

5. DISCUSSION AND FUTURE WORK  
In our system we used a 56 dimensional feature 
vector for our HMM observations.  This is a large 
amount of data which may contain much redundant 
information.  To minimize redundancy and compress 
the data we could have used Principal Component 
Analysis (PCA) to extract the significant components 
of the data.  PCA is a common technique used for 
compression that computes the eigenvectors of the 
high dimensional space.  By projecting our high 
dimensional data onto a lower dimensional space 
spanned by some number of eigenvectors, n, 
corresponding to the n largest eigenvalues found, we 
could have reduced this dimensionality and still retain 
the significant information needed for recognition.  For 
generation we would need to invert this reduction to 
project back to our high dimensional space and 
retrieve the new motion data.  However, the high 
dimensionality features used in our system did not 
substantially reduce performance and so we left this 
out. 

Some joint angles contain more significant information 
about a walking motion.  For example, the hip rotation 
may contain more variation then the ankle rotations 
when a person walks.  In the future we could add 
weighting information to the feature vectors to give 
more importance to these more significant joints. 

                                                                 
1 To view our results, see our code and generated motions 

at http://www.cs.ubc.ca/~andyadam/project/project.zip 

 



We used a standard left-right HMM for our system in 
which the state durations are modeled by a probability 
pi(d) = (aii)

d-1(1- aii), where aii is the self transition 
probability for state qi, and d is the number of 
consecutive self transitions.  A variable duration 
HMM in which we explicitly specify the state 
durations would more naturally represent a walking 
motion because this would allow us to explicitly state 
the duration that an HMM must be in a certain state 
before transitioning to the next.  That is, we do not 
want to jump from one state to the next without 
generating an appropriate number of observations 
from one state.  In the future we could implement this 
type of HMM and compare performance to our 
current system.   

The generated output that we produced could be 
improved in many ways. The generated motion is not 
ideal because we get a lot of foot sliding and floating 
figures.  We could have interpolated the position data 
in a better fashion to keep the new walk along the 
floor.  We also could have eliminated foot-sliding by 
using inverse kinematics and constraints to force the 
characters feet to be planted when in contact with the 
ground so as to have the character move in a more 
realistic manner such as in [8].  With more time we 
would make these additions to our system. 

In theory our system could also be used for 
recognizing different types of motion rather than 
recognizing different people from the same type of 
motion.   However this was not tested, but could easily 
be added as an extension in the future.  We also could 
extend our system to be used in conjunction with 
vision systems that can track human figures in video 
sequences.  For example [10], takes several 2D views 
of the human body, locates joint positions, and then 
uses them to estimate the body configuration and pose 
in 3D space.  This appears to be an effective way of 
pulling 3D data out of 2D video so perhaps it, or 
similar systems, could be used as input to our system 
in the future. 
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