PROBABILISTIC GRAPHICAL MODELS
CPSC 532¢ (Torics IN AI)
STAT 521A (TOPICS IN MULTIVARIATE ANALYSIS)

LECTURE 9

Kevin Murphy

Monday 18 October 2004

REVIEW

e Variable elimination can be used to answer a single query, P(Xgle).

e VarElim requires an elimination ordering; you can use elimOrderGreedy
to find this.

e VarElim implicitly creates an elimination tree (a junction tree with
non-maximal cliques).

e You can create a jtree of maximal cliques by triangulating and using
max weight spanning tree.

e Given a jtree, we can compute P(X,|e) for all cliques ¢ using belief
propagation (BP).

ADMINISTRIVIA

e HW4 due today

BELIEF PROPAGATION

e There are 2 variants of BP, which we will cover today:

e Shafer-Shenoy, that multiplies by all-but-one incoming message:

dimj=F 1] Ok
kEN\{j}

e Lauritzen-Spiegelhalter, that multiplies by all incoming messages and
then divides out by one

Hk -5l<:—>'
0i—j=1f <—§NZ . :
j—i

Ck~

/i:q%u
e’

SHAFER-SHENOY ALGORITHM

SUB-FUNCTIONS

{1&21} 1 function Ctree-VE-calibrate({¢}, T, @)

R := pickRoot(T)
DT := mkRootedTree(T', R)
{¢?} := initializeCliques(¢,)
(* Upwards pass *)
for ¢ € postorder(DT)

j = pa(DT,1)

0i—j = VE-msg({6y—; : k € ch(DT,i)},%)

O\
R Puals PR

oo

SHAFER-SHENOY ALGORITHM

(* Downwards pass *)
for i € preorder(DT)
for j € ch(DT,1)
0j—j = VE-msg({—; : k € N\ 5}, ¢y)
(* Combine *)
fori=1:C
%1 = ¢? erNLv Of—si

C >i<:ck<—Cr

ck”

{¢?} def function initializeCliques(¢,)
for 7:=1:C

YC) = Tpa(e)=i ¢
Oi—s def function VE-msg({d1.—;}, ¢?>

HCy) = NC) T Ok—si
0i—j(5ij) = 2cns;; bHCy)

SHAFER SHENOY FOR HMMSs

® ® ® ® CL: X1X2—— C2:X2,X3—— C3:X3,X4

WXt Xep1) = P(Xe| Xe)p(Wes1) Xes1)
Sttt (Xer1) = D S 1t X (X, Xep1)
Xt
Spt—1(Xp) = D Spp1t(Xy)] (Xp, Xyp1)
Xt+1
(Xt Xe1) = Ot 1—t(X) 01—t (Ko)V (X, Xi11)

FORWARDS-BACKWARDS ALGORITHM FOR HMMSs

ar(i) € 61 14(6) = P(Xt = i, y14)
B1(6) 6y 1(6) = plys 171X = 1)
&t(i,) o U (X =i, Xe1 = j) = P(Xy =i, Xpy1 = joyir
P(Xei1 = j1X =) & AG, j)
Pyl X; = i) € By(i)
ar(j) = Zoét 1(1)A(7,) Bt (J)

Bi(i) = Y Bre1(4) A, 5)Brir(j)
J

&i.) = atli)Br1()AG,) Bria (i)
(i) € P(X; = ilyir) o aali) () o< 3 6l)

HMM TRELLIS
O O

oo o

e Forwards algorithm uses dynamic programming to efficiently sum
over all possible paths that state 7 at time ¢.

(i) o P(X: =i,y1:)

-

L X Xi1

P(X3|Xe-1) | p(yel X3)

= Z P(X; — 1~,,711:11)P(XrXr1):| p(yel Xi)

= Zﬂr 1(X)) P(X4| X 1>:| P(ye| X:)

FORWARDS-BACKWARDS ALGORITHM, MATRIX-VECTOR FORM

® ® ® ®
= 2ol

Oét = (A (07 1) *Bt
Zﬁtﬂ (i, J)Bt41(j)

By = (5t+1- * Bri1)
(i, J) = ar(i)Be+1(5) Al 7) Be1(d)
& = (at(ﬁtﬂ- * Bt+1)T) kA
V(i) o an(i)Be(4)

Yt o< 0. * By

A(i, 7)B(j)

AVOIDING NUMERICAL UNDERFLOW IN HMMSs

o oy(j) o P(Xy = j,y14) is a tiny number

e Hence in practice we use

et P(Xy, uilyrs
a(j) = ¢ P(X¢ = jlyr) = (Xt yelyre—1)
o) | |
_ S P = dlyie—) P(X = X1 =)plyd Xe = J)
p(ytlyr.e—1)
2—2%1 Ali,)Bi(j)
where

et @ Plyrlyri—1) ZZ% 1(4

Al(i, 7)Bt(j)

= log H ct = Z log ¢¢

logp(y1.r) = logp(y1)p(y2|y1)p(y3ly1:2) -

AVOIDING NUMERICAL UNDERFLOW IN SHAFER SHENOY

e We always normalize all the messages
. 1 . 0
0i—j = —VE-msg(dp—i, ¥;)
1

e By keeping track of the normalization constants during the collect-
to-root, we can compute the log-likelihood

logp(e) = Z log z;
1

MESSAGE PASSING WITH DIVISION

e The posterior is the product of all incoming messages
0
mi(Ci) = m(Ci) [T dk—si(Sin)
keN;
e The message from i to j is the product of all incoming messages

excluding 0;_;:
Ck-x

/i:q%u

e’

0imj(Sig) = Y mC) [kil Sir)
Ci\Si; keNi\{j}

o -0 ‘erNiékHi(Si)
= 2 ™G dj—i(Sij)

SHAFER-SHENOY FOR PAIRWISE MRFSs

e Consider an MRF with one potential per edge

P(X) :% IT i X5 [] ea(X0)

<ij> i

e We can generalize the forwards-backwards algorithm as follows:

mij(x) = Y dile)ilri ;) [mjila)
keNA(}
bi(ws) o< dilay)] mjilas)
JEN;
e [n matrix-vector form, this becomes

T
mij = ¢;. *¢¢meki
k

JEN;

LAURITZEN-SPIEGELHALTER ALGORITHM

{vi} U function Ctree-BP-two-pass({¢}, T, a)

R := pickRoot(T)
DT := mkRootedTree(T', R)
{1;} := initializeCliques(¢, «)
pij -= 1 (* initialize messages for each edge *)
(* Upwards pass *)
for i € postorder(DT)
j = pa(DT,1)
[0, i j] = BP-msg(;, 45, i ;)

O\
R Puals PR

oo

LAURITZEN-SPIEGELHALTER ALGORITHM

PROPERTIES OF BP

(* Downwards pass *)
for i € preorder(DT)
for j € ch(DT,1)
[0}, pij] = BP-msg(v, 5, i 5)

def .
[wj‘,/«%,j} = function BP-msg(v;, ¥, 115 ;)
0ij = 2ocp\s;; Vi

o)y Vi
Vi =i

Pij = Oimj

< >i<: Ck——Cr
ck””

PARALLEL BP

® /1; j stores the most recent message sent alone edge C; — C, in
either direction.

e We can send messages in any order, including multiple times,
because the recipient divides out by the old 1; ;, to avoid
overcounting.

e Hence the algorithm can be run in a parallel, distributed fashion.

e 1; oc P(C;le’) contains the product of all received messages so far
(summarizing evidence ¢’); it is our best partial guess (belief) about

USING A CLIQUE TREE TO ANSWER QUERIES

(* send *)
fori=1:C
for j € N;
o0 ;= 5i
Oi—j = 200\, Vi
end
end
(* receive *)
fori=1:C
for j € N;
Vi =i * %
i—j
end
end

e We can enter evidence about X; by multiplying a local evidence
factor into any potential that contains X in its scope.

o After the tree is calibrated, we can compute P(X|e) for any ¢
contained in a clique (e.g., a node and its parents).

e If new evidence arrives about X;, we pick a clique C that contains
X; and distribute the evidence (downwards pass from C;.).

SEPARATOR SETS

e Define the separator sets on each edge to be S;; = C; N C.

e Thm 8.1.8: Let X; be all the nodes to the “left” of S;; and X be
all the nodes to the “right”. Then X; 1 X;|S;;.

e ABCDE 1 DEF|DE, ie., ABC L F|DE.
A—B

\CL D
DE
N, (nac)ce (oo oo

CLIQUE TREE AS A DISTRIBUTION

CLIQUE TREE AS A DISTRIBUTION

e Defn 8.9: The clique tree invariant for T is

. . HieT %(CZ)
T = H ¢ = (S -
H<z‘jeT> i, j(Si.5)
e Initially, the clique tree over all factors satisfies the invariant since
pij = 1 and all the factors ¢ are assigned to cliques.

e Thm 8.3.6: Each step of BP maintains the clique invariant.

e Consider Markov net A — B — C' with clique tree
Cl:A,B-C2:B,C
o After BP has converged, we have
V1(A, B) = Pp(A, B),4»(B,C) = Pr(B,C)
e In addition, neighboring cliques agree on their intersection, e.g.

> 014, B) =) ¢a(B,C) = Pp(B)
A C

e Hence the joint is

P(A,B,C) = P(A,B)P(C|B) = P(A, B)P](D?’BC)j>
B (B, C) (B, C)
= wl(Av B)gfgzg’@ wl(A,B)Zawl(av C)
. 2\,
= 14, B) p1,2(B)

MESSAGE PASSING MAINTAINS CLIQUE INVARIANT

e Proof. Suppose C; sends to C'; resulting in new message ,u?jw and

new potential
(e
new Y
Vi =t -
Hij
Then
I vp

H<@'j>/ M?’e}f
- ¢§Lew Hi/#j by
piy Ueijsrpi gy g
new
_ Vil [Tz i
pij pay cijorpii gy mr
[L i

Hecijsriar j

T

PROOF OF CORRECTNESS OF BP

e Message passing does not change the invariant, so the clique tree
always represents the distribution as a whole.

e However, we want to show that when the algorithm has converged,
the clique potentials represent correct marginals.

e Defn 8.3.7. C; is ready to transmit to C'; when C; has

received informed messages from all its neighbors except from C';; a

message from C; to C; is informed if it is sent when C; is ready
to transmit to C;.

e e.g., leaf nodes are always ready to transmit.

e Defn 8.3.8: A connected subtree T" is fully informed if, for each
C; € T" and each C; ¢ T’, we have that Cj has sent an informed
message to (.

e Thm 8.3.9: After running BP, then 77 = Pp(Scope(T")) for any
fully informed connected subtree 7"

OUT-OF-CLIQUE QUERIES

PROOF OF CORRECTNESS OF BP

e To compute P(X,|e) where ¢ is not contained with a clique, we
look at the smallest subtree that contains ¢, and perform variable
elimination on those factors.

e e.g. Consider Markov net A — B — C' — D with clique tree

Cl:AB-C2:B,C—-C3:C,D

e We can compute P(B, D) as follows

P(B,D) = > P(B,C,D)
C
_ Z ﬂ'Q(Ba 0)73<Ca D)
C

p2.3(C)
= Y P(B|C)P(C, D)
C

= VarElim({m, —-},{B, D})
H2.3

e Corollary 8.3.10: If all nodes in T" are fully informed, then
mp = Pp(Scope(T)). Hence m; = Pp(C}).

e Claim: There is a scheduling such that all nodes can become fully
informed (namely postorder/ preorder).

e Defn 8.3.11. A clique tree is said to be calibrated if for each
edge C; — ('}, they agree on their intersection

> ilC)= >, i(C))
Ci\Sij Cj\Si;
e Claim: if all nodes are fully informed, the clique tree is calibrated.
Hence any further message passing will have no effect.

VITERBI DECODING (FINDING THE MPE)

o Let 2], = argmaxy, , P(x1.y) be (one of the) most probable
assignments.

e We can compute p* = P(x7]. ;) using the max product algorithm.
eecg, A— B.
P(a*,b") = maxm?XP(a)P(b\a)
a

= mexmax ¢ 4(a)¢p(b, a)

= max ¢ 4(a) max ¢p(b, a)
a b
(a)
= max ¢ 4(a)p(a)

N J/

~\

74(0)
e We can push max inside products.

e (max, []) and (> _,[]) are both commutative semi-rings.

VITERBI DECODING (FINDING THE MPE)

o Max-product gives us p* = maxz, ,, P(z1.y), but not
r].y = argmaxg, v P(r1.y).

e To compute the most probable assignment, we need to do
max-product followed by a traceback procedure.

eecg., A— B.

e We cannot find the most probable value for A unless we know what
B we would choose in response.

e So when we compute 7g(a) = maxy, ¢ (b, a), also store
Apla) = argmax ¢p(b, a)
e When we compute 74()) = max, ¢ 4(a)74(a), we also compute
a* = argmax ¢ 4(a)T4(a)
a

e Then traceback: b* = Ap(a™).

MORE COMPLEX EXAMPLE

p* = max meax ¢r(L,G) max ¢p(D) max o1(1)oc(G, 1, D) WX ¢s(1,5)

(7)
Gl
= maxmax ¢y (L, G) mgX¢D(D)fH?X¢1(I)¢G(G, 1 D)ﬁ(I)J
™(G.D)
= mgXngX(ﬁL(L?G)fIng(ﬁD(D)TQ(G,Dz
73(G)
= maxmax ¢y, (L, G)m3(G)
mi(G)
= mgxm(G)
75(0)
= 0.184

MORE COMPLEX EXAMPLE

Pt = max max ¢p (L, G) max ¢ p(D) max ¢1(I)¢g(G, I, D) max ds(I, 5)

TRACEBACK

P o= m({mxmLaquL(L.(})m[é)quOD(D)nlflxqf)[(l)cé(;((},I‘D)méxx(pg(l,s)
7 K
(1)
= m{a}xm{uxoL(L‘G)m}g)xxd)D(D)111}1)(6)1([)@5(;(6”‘I,D)Tl([)

72(G,D)
= maxmax or(L,G) max op(D)m(G, D)

—_—
73(G)

= max mLaX(pL(L. G)13(G)

71(G)
= maxm (@)

As(0) = argmax(g) = g
) = argmax ¢r(L, G)rs(g), 1" = M(g”)
A3(g) = arg mex ¢p(d)72(G.d), d* = A3(g")
)
)

= arg mgx@()66(G. i, D)ry(i),i* = dolg”, &)
M (i) = argmaxdg(1, s), s = A (i)

FINDING K-MOST PROBABLE ASSIGNMENTS

e There may be several (m1) assignments with the same highest

(L1) (L),

probability, call them z,.)", ...,z

e These can be found by breaking ties in the argmax.

e The second most probable assignment(s) after these,

2,1 2 . . .
xg:;L >, . ,x%ﬁmﬁ, must differ in at least one assignment,.

e Hence we assert evidence that the next assignment must be distinct
from all m; MPEs, and re-run Viterbi.

e Project idea: implement this and compare to the loopy belief
propagation version to be discussed later.

e This is often used to produce the “N-best list” in speech
recognition; these hypotheses are then re-ranked using more
sophisticated (discriminative) models.

CONSTRAINED ELIMINATION ORDERINGS MAY INDUCE LARGE
CLIQUES

MARGINAL MAP (MAX-SUM-PRODUCT)

e We must eliminate all the X;'s first, which induces a huge clique
over all the Y;'s!

e Thm: exact max-marginal inference is NP-hard even in
tree-structured graphical models.

e An identical problem arises with decision diagrams, where we must
sum out random variables before maxing out action variables.

e An identical problem arises with “hybrid networks”, where we must
sum out discrete random variables before integrating out Gaussian
random variables (ch 11).

p* = mgxm‘s@ngb[/([’? G) Z¢[(1)¢S<Sv [) Z¢G<G>[7D)
G 1 D

e We can easily modify the previous algorithms to cope with
examples such as this.

e However, max and sum do not commute!

m)gx; O(X,Y) # g max ¢(X, Y)

e Hence we must use a constrained elimination ordering, in which we
sum out first, then max out.

