PROBABILISTIC GRAPHICAL MODELS
CPSC 532¢ (Torics IN Al)
STAT 521A (TOPICS IN MULTIVARIATE ANALYSIS)

LECTURE 7

Kevin Murphy

Monday 4 October, 2004

ADMINISTRIVIA

e Homework 3 due Wednesday, 9.30am;
send by email to crowley©cs.ubc.ca.

VARIABLE ELIMINATION ALGORITHM

Coherence

Intelligence

e Key idea 1: push sum inside products.
e Key idea 2: use (non-serial) dynamic programming to cache shared
subexpressions.

=3>>I DD N'> P(C,D,I1.G,SL,JH)

L s G H I D C

= 22030 3 > POPDICIPU)PGIL D)P(SITPLIG) P(JIL, S)P(HIG, J)

L S G H I D C

ZZZZZZZ%)op(D, C)or(Déa(G, I, D)gs(S, Dgr(L, G)bs(J, L, S)bu(H, G, J)
ZZ@SJJLS Z¢LLG Z¢HHGJ Zsbsswf ZQSGID Z% Yon(D, C)

WORKING RIGHT TO LEFT (PEELING)

P(J) = >.) ¢ JLSZ@LGZ@HGJZ%SMI ZasGIDZ c(C)én(D,C)
L S

7

~

71(D)
= > > ¢s(JL.S) ZgbLLG ZngHGJ Zgng]gbI ZQSG[DTl(D)
L S
(G 1)
= > > (L LS) Y or(L,G) Y ou(H G, J) Y ds(S, Dr(I)ma(G, 1)
L S H
75(G.5)

= Y 0L L)Y 6(L.G)Y éu(H,G,)G, S)
L S G

\ . g
~"

T4(G,J)

= Y > ¢s(JL,S)Y éu(L,G)m(G, J)7s(G, S)
L S

A\ g

T5(J,L7S)

BUCKET ELIMINATION

e We first multiply together all factors that mention C' to create v1(C, D),
and store the result in C"s bucket:

ZZ%JLSZmLGZngHGJZgbsSMI ZchIDZcbc Jon(D, C)

1/)1(0 D)

e Then we sum out C' to make 7((D):
:ZZ¢J(J>L75)Z¢L(L7G)Z¢H(H7GvJ)Z¢S(Sal)¢l([>Z¢(G,[,D)Z¢1(C7D)
L S G H I D

\C
m1(D)

g

e and muItipIy into D's bucket to make (G, I, D):
ZZ@JLS Z¢LLG Z¢HHGJ Zg;sswl)Y &G, I,D)r(D

D 2(G.1.D)

e Then we sum out D to make (G, I):
=3 ¢s(JL.S)D ¢u(L.G)> ou(H,G.J)> ¢s(S.1)¢s(1) Y 12(G,1,D)
L S G H I

D

\ 7

Vo

TQ(G,I)

e and multiply into I's bucket to make ¥3(G, S, I), etc.

COMPUTING THE PARTITION FUNCTION

o Let
P(Xlzn) — _P/<X1:n)

e For Bayes nets, Z = 1 (since each ¢, is a CPD).

e If we marginalize out all variables except (), the result is
F(Q) = Z HCbC(Xc)
Xl:n\Q ¢

e Hence if) = (), we get

FO) =S] eelx0) = 2

Xl:n C

DEALING WITH EVIDENCE

e Method 1: we instantiate observed variables to their observed
values, by taking the appropriate “slices” of the factors
ecg. evidence] =1, H =0:
P(J,I=1H=0)=
DY (L L8)Y ¢l G)gu(H =0,G, J)ps(S, 1 =1)¢r(I =1) Y ¢G, 1 =1,D)) ¢c(C)ép(D,C)
L S G D C
e Method 2: we multiply in local evidence factors ¢;(.X;) for each
node. If X is observed to have value x;k we set
0i(X;) = 0(Xj, z7).
P(J,I=1,H=0)=
SN 6011, 8) S 6u(L.G) S bu(H. G I)S(H,0) S (S, Dor(D5(1,1) S 6 GL 1, D) S 6e(C)én (D, C)
L S G

H I D C

DEALING WITH EVIDENCE

e Once we instantiate evidence, the final factor is
F(Q,e) = P/(Q,e)
e Hence
P@Qe) PQe)
Ple) >y P(d¢e)
(1/2)P'(Q,)
(1/Z) >_q P'(d e)
 F(Q.e)
> F(dse)

P(Qle)

e and

Ple)=Y P(d.e)=(1/2)> F(de)
q q

ORDERING 1

ZZCDJ(J?L?S)Z

Z¢J(J7Lvs)z
S

Z¢J(J7Lvs)z
S

> s LS ¢
S

G

G

G

G

D \C g

Tl(D)

6L(L,G)> ¢u(H,G,.J) Y 6s(S,N¢s(1)> ¢G,I,D)n(D)

D

\ . g

~"

TQ(G,I)

¢L(L7 G) ZQbH(H) G7 J) Z¢S(S7]>¢I(])T2(G7]>

\ . g

~"

T3(G,S)

L(L.G)Y ¢u(H,G,J)5(G, S)

\ . g
~"

T4(G,J)

Z ¢J(J7 L7 S) Z ¢L(L? G)T4(G7 J)T3(G7 S)
S

A\

G

g

T5(J,L7S)

DIFFERENT ORDERING

P(‘]> = ZZ¢D(D70>ZZZ¢J(J7L7S>Z¢I(I)¢S(Svl)Z¢G(G717D>¢L(L7)¢H(H7G7J)
D C H L S 1 G

g

n(1,D,L,J.H)
ZZ¢D D C)ZZZ¢J(J7L7S>Z¢I(I)¢S(87])Tl([7DaL7JaH)
D C H L S I J
72(D,L.S,J,H)

= > D op(D.C)Y > 6s(J.L,S)n(D, L, S, J, H)

D C H L _S J

75(D,L,J,H)

= > > ¢p(D.C)Y > w(D.L,J H)

D C H L)

71(DuT,H)

= > > ¢n(D,C)> 7D, J, H)

D C H J

T5(B7J)

= >) én(D,C)r5(D, J)

D C)

TG(EJ)

= ZTG(D,J)

< _

ELIMINATION AS GRAPH TRANSFORMATION

e Start by moralizing the graph (if necessary), so all terms in each
factor form a (sub)clique.

e When we eliminate a variable X;, we connect it to all variables that
share a factor with X; (to reflect new factor 7;). Such edges are
called “fill-in edges” (e.g., >_; induces G — S).

|

{ Coherence {_ Coherence

D |ff i CJ |-ry ---------- i lef icu ITyIn‘rel ligengq:'ii

CLIQUES AND FACTORS

e Let Iy - be the (undirected) graph induced by applying variable
elimination to G using ordering <.

e Thm 7.3.4: Every factor generating by VE is a subclique of I .

e Thm 7.3.4: Every maximal clique of I; _ corresponds to an
iIntermediate term created by VE.

ecg., <= (C,D,I,H G,S, L), max cliques =
{C,D},{D,I,G}{G,L,S,J},{G,J, H} {G,I,S}

COMPLEXITY OF VARIABLE ELIMINATION

e Consider an ordering <.

e Define the induced width of the graph as the size of the largest
factor (induced clique) minus 1:

We < = max|i] — 1

e Define the width of the graph as the minimal induced width:

WG = m{il’l WG)_<

e e.g., width of an undirected tree is 1 (cliques = edges).
e Thm: the complexity of VarElim is O(NV"Va+tl),

CHORDAL (TRIANGULATED) GRAPHS

e An undirected graph is chordal is every loop
X1 —Xo—+--— X — Xy for k > 4 has a chord, i.e., an edge
X; — X for non-adjacent 1, j.

e Thm 7.3.6: every induced graph is chordal.

e The left graph is not chordal, because the cycle 2 —6 -8 —4 — 2
does not have any of the chords 2 — 8 or 6 — 4.

e T he right graph is chordal; the max cliques are
{1,2,4},{2,3,6},{4,7,8},{6,8,9},{2,4,5,6},{4,5,6,8}

1 (2} (3 1 (2) 3
6@,/’/>//\\ p 6@1 :’”{>‘{\/\\\ p
4 (5N © A (5}

0Ty OO

_/

MAX CARDINALITY SEARCH

e Thm 7.3.9: X — Y is a fill-in edge iff there is a path
X—Z1— - Zp—Yst. Z;<Xand Z; <Y foralli =1,... k.

e Hence should try to find nodes X where many of their neightbors
Z are already ordered, so X < 7

function pi = max-cardinality-search(H)
mark all nodes as unmarked
for i=N downto 1
X = the unmarked variable with the largest
number of marked neighbors
pi(X) =1
mark X
end

e Thm 7.3.10: if G is chordal, and < = max cardinality ordering,
then I _ has no fill-in edges.

TRIANGULATION

e Thm 7.3.8: finding the ordering < which minimizes the max
induced clique size, WG,<' s NP-hard.

e Max cardinality ordering is only optimal if (G is already triangulated.

e In practice, people use greedy (one-step-lookahead) algorithms:

function pi = find-elim-order-greedy(H, score-fn)
for i=1:N
X = the node that minimizes score-fn(H, X)
pi(X) =1
Add edges between all neighbors of X
Remove X from H
end

TRIANGULATION: HEURISTIC COST FUNCTIONS score(H, X)

e Min-fill (min discrepancy): minimize number of fill-ins.

e Min-size: minimize size of induced clique, |CY|.

e Min-weight: minimize number of states of induced clique,
HjECt ‘,U]‘

e Min-weight works best in practice: a 3-clique of binary nodes is
better than a 2-clique of ternary nodes, since 25 < 32

CONDITIONING

e \We can instantiate some hidden variables, perform VarElim on the
rest, and then repeat for each possible value, e.g.,

P(J) = Z P(J|I =4)P(I =)

e If the resulting subgraph is a tree, this is called cutset conditioning.

Difficulty

Letter

INEFFICIENCIES OF CUTSET CONDITIONING

&

e If we condition on U, we repeatedly call VarElim once for each
value of |U].

e T his may involved redundant work.

o Left: if we condition on Aj., we repeatedly eliminate
Al — = A

e Right: if we condition on Ay, Ay, ..., As, we break all the loops,
but the cutset has size V¥/2, whereas VarElim would take O(kV3).

CONDITIONING VS VARELIM IS SPACE-TIME TRADEOFF

e Thm 7.5.6: Conditioning on L takes the same amount of time as it
would to do VarElim on a modified graph, in which we connect L
to all other nodes (i.e., add L to every factor).

/ Coherence

1
)
! Intelligence
iy
N
Ay
A
AY
\\ H

e Thm 7.5.7: The space required is that needed to store the induced
cliques in the subgraph created by removing all links from L (i.e.,
remove L from every factor).

e Hence conditioning takes less space but more time.

EXPLOITING LOCAL STRUCTURE

e VarElim exploits the factorization properties implied by the graph to
push sums inside products.

e Hence VarElim works for any kind of factor.

e However, some factors have local structure which can be exploited
to further speed up inference.

e [wo main methods:

1. Make local structure graphically explicit (by adding extra nodes),
then run stand VarElim on expanded graph; or
2. Implement the >~ and x operators for structured factors in a
special way.
e We will focus on the first method, since it can be used to speed up
any graph-based inference engine.

e David Poole has focused on the second method (structured

VarElim).

INDEPENDENCE OF CAUSAL INFLUENCE (ICI)

e In general, a node with k parents creates a factor of size Vit to

represent its CPD P(Y'|X1..).

e Hence it takes O(V**1) time to eliminate this clique, and there are
O(VkH) parameters to learn.

e If the parents X; do not interact with each other (only with the
child), the family can be eliminated in O(k) time, and there are
only O(k) parameters to learn.

e c.g., noisy-or, generalized linear model

EXPLOITING INDEPENDENCE OF CAUSAL INFLUENCE (ICI)

e Assumes deterministic function can be represented by f(x1..) =
r1 P xo® - - P xp where @ is commutative and asssociative.

e State-space of tree is O(|Z|?), chain O(|Z|*| X]).

EXPLOITING CONTEXT SPECIFIC INDEPENDENCE (CSI)

e Suppose P(Y |A, X{.4) is represented as a decision tree. Then we
can make the structure explicit using multiplexer nodes.

MORE COMPLEX EXAMPLE

e (Recursive) conditioning provides a simpler method of exploiting CSI.

e Project idea: implement both methods and compare.

STOCHASTIC CONTEXT FREE GRAMMARS (SCFGS)

e If you construct a graphical model given a grammar and a sentence of
length N, the treewidth is O(N), suggesting inference takes O(2V).

e However, we can do exact inference using the inside-outside algorithm
in O(N?) time.

e [he reason is that there is a lot of CSI.

STOCHASTIC CONTEXT FREE GRAMMARS (SCFGS)

e Represent production rule X — Y Z by a binary variable Ry, and
X = Y'Z"by Ro. If R{ =1, the structure of the graph is different
than if Ry = 1.

N VS
VAN

T j K N T 7 K N

e See “Case-factor diagrams for structured probabilistic modeling”,

McAllester, Collins, Pereira, UAI 2004.

e Project idea: implement this algorithm and compare to inside-outside
algorithm.

