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ADMINISTRIVIA

e Homework 3 due Wednesday, 9.30am;
send by email to crowley©cs.ubc.ca.



VARIABLE ELIMINATION ALGORITHM

Coherence

Intelligence

e Key idea 1: push sum inside products.
e Key idea 2: use (non-serial) dynamic programming to cache shared
subexpressions.
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WORKING RIGHT TO LEFT (PEELING)
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BUCKET ELIMINATION

e We first multiply together all factors that mention C' to create v1(C, D),
and store the result in C"s bucket:
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e Then we sum out C' to make 7((D):
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e Then we sum out D to make (G, I):
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e and multiply into I's bucket to make ¥3(G, S, I), etc.



COMPUTING THE PARTITION FUNCTION

o Let
P(Xlzn) — _P/<X1:n)

e For Bayes nets, Z = 1 (since each ¢, is a CPD).

e If we marginalize out all variables except (), the result is
F(Q) = Z HCbC(Xc)
Xl:n\Q ¢

e Hence if ) = (), we get
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DEALING WITH EVIDENCE

e Method 1: we instantiate observed variables to their observed
values, by taking the appropriate “slices” of the factors
ecg. evidence ] =1, H =0:
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e Method 2: we multiply in local evidence factors ¢;(.X;) for each
node. If X is observed to have value x;k we set
0i(X;) = 0(Xj, z7).
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DEALING WITH EVIDENCE

e Once we instantiate evidence, the final factor is
F(Q,e) = P/(Q,e)
e Hence
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ORDERING 1
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DIFFERENT ORDERING
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ELIMINATION AS GRAPH TRANSFORMATION

e Start by moralizing the graph (if necessary), so all terms in each
factor form a (sub)clique.

e When we eliminate a variable X;, we connect it to all variables that
share a factor with X; (to reflect new factor 7;). Such edges are
called “fill-in edges” (e.g., >_; induces G — S).
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CLIQUES AND FACTORS

e Let Iy - be the (undirected) graph induced by applying variable
elimination to G using ordering <.

e Thm 7.3.4: Every factor generating by VE is a subclique of I .

e Thm 7.3.4: Every maximal clique of I; _ corresponds to an
iIntermediate term created by VE.

ecg., <= (C,D,I,H G,S, L), max cliques =
{C,D},{D,I,G}{G,L,S,J},{G,J, H} {G,I,S}




COMPLEXITY OF VARIABLE ELIMINATION

e Consider an ordering <.

e Define the induced width of the graph as the size of the largest
factor (induced clique) minus 1:

We < = max|i] — 1

e Define the width of the graph as the minimal induced width:

WG = m{il’l WG)_<

e e.g., width of an undirected tree is 1 (cliques = edges).
e Thm: the complexity of VarElim is O(NV"Va+tl),



CHORDAL (TRIANGULATED) GRAPHS

e An undirected graph is chordal is every loop
X1 —Xo—+--— X — Xy for k > 4 has a chord, i.e., an edge
X; — X for non-adjacent 1, j.

e Thm 7.3.6: every induced graph is chordal.

e The left graph is not chordal, because the cycle 2 —6 -8 —4 — 2
does not have any of the chords 2 — 8 or 6 — 4.

e T he right graph is chordal; the max cliques are
{1,2,4},{2,3,6},{4,7,8},{6,8,9},{2,4,5,6},{4,5,6,8}
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MAX CARDINALITY SEARCH

e Thm 7.3.9: X — Y is a fill-in edge iff there is a path
X—Z1— - Zp—Yst. Z;<Xand Z; <Y foralli =1,... k.

e Hence should try to find nodes X where many of their neightbors
Z are already ordered, so X < 7

function pi = max-cardinality-search(H)
mark all nodes as unmarked
for i=N downto 1
X = the unmarked variable with the largest
number of marked neighbors
pi(X) =1
mark X
end

e Thm 7.3.10: if G is chordal, and < = max cardinality ordering,
then I _ has no fill-in edges.



TRIANGULATION

e Thm 7.3.8: finding the ordering < which minimizes the max
induced clique size, WG,<' s NP-hard.

e Max cardinality ordering is only optimal if (G is already triangulated.

e In practice, people use greedy (one-step-lookahead) algorithms:

function pi = find-elim-order-greedy(H, score-fn)
for i=1:N
X = the node that minimizes score-fn(H, X)
pi(X) =1
Add edges between all neighbors of X
Remove X from H
end



TRIANGULATION: HEURISTIC COST FUNCTIONS score(H, X)

e Min-fill (min discrepancy): minimize number of fill-ins.

e Min-size: minimize size of induced clique, |CY|.

e Min-weight: minimize number of states of induced clique,
HjECt ‘,U]‘

e Min-weight works best in practice: a 3-clique of binary nodes is
better than a 2-clique of ternary nodes, since 25 < 32



CONDITIONING

e \We can instantiate some hidden variables, perform VarElim on the
rest, and then repeat for each possible value, e.g.,

P(J) = Z P(J|I =4)P(I =)

e If the resulting subgraph is a tree, this is called cutset conditioning.

Difficulty

Letter



INEFFICIENCIES OF CUTSET CONDITIONING

&

e If we condition on U, we repeatedly call VarElim once for each
value of |U].

e T his may involved redundant work.

o Left: if we condition on Aj., we repeatedly eliminate
Al — = A

e Right: if we condition on Ay, Ay, ..., As, we break all the loops,
but the cutset has size V¥/2, whereas VarElim would take O(kV3).



CONDITIONING VS VARELIM IS SPACE-TIME TRADEOFF

e Thm 7.5.6: Conditioning on L takes the same amount of time as it
would to do VarElim on a modified graph, in which we connect L
to all other nodes (i.e., add L to every factor).
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e Thm 7.5.7: The space required is that needed to store the induced
cliques in the subgraph created by removing all links from L (i.e.,
remove L from every factor).

e Hence conditioning takes less space but more time.



EXPLOITING LOCAL STRUCTURE

e VarElim exploits the factorization properties implied by the graph to
push sums inside products.

e Hence VarElim works for any kind of factor.

e However, some factors have local structure which can be exploited
to further speed up inference.

e [wo main methods:

1. Make local structure graphically explicit (by adding extra nodes),
then run stand VarElim on expanded graph; or
2. Implement the >~ and x operators for structured factors in a
special way.
e We will focus on the first method, since it can be used to speed up
any graph-based inference engine.

e David Poole has focused on the second method (structured

VarElim).



INDEPENDENCE OF CAUSAL INFLUENCE (ICI)

e In general, a node with k parents creates a factor of size Vit to

represent its CPD P(Y'|X1..).

e Hence it takes O(V**1) time to eliminate this clique, and there are
O(VkH) parameters to learn.

e If the parents X; do not interact with each other (only with the
child), the family can be eliminated in O(k) time, and there are
only O(k) parameters to learn.

e c.g., noisy-or, generalized linear model




EXPLOITING INDEPENDENCE OF CAUSAL INFLUENCE (ICI)

e Assumes deterministic function can be represented by f(x1..) =
r1 P xo® - - P xp where @ is commutative and asssociative.

e State-space of tree is O(|Z|?), chain O(|Z|*| X]).



EXPLOITING CONTEXT SPECIFIC INDEPENDENCE (CSI)

e Suppose P(Y |A, X{.4) is represented as a decision tree. Then we
can make the structure explicit using multiplexer nodes.




MORE COMPLEX EXAMPLE

e (Recursive) conditioning provides a simpler method of exploiting CSI.

e Project idea: implement both methods and compare.



STOCHASTIC CONTEXT FREE GRAMMARS (SCFGS)

e If you construct a graphical model given a grammar and a sentence of
length N, the treewidth is O(N), suggesting inference takes O(2V).

e However, we can do exact inference using the inside-outside algorithm
in O(N?) time.

e [ he reason is that there is a lot of CSI.



STOCHASTIC CONTEXT FREE GRAMMARS (SCFGS)

e Represent production rule X — Y Z by a binary variable Ry, and
X = Y'Z"by Ro. If R{ =1, the structure of the graph is different
than if Ry = 1.
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e See “Case-factor diagrams for structured probabilistic modeling”,

McAllester, Collins, Pereira, UAI 2004.

e Project idea: implement this algorithm and compare to inside-outside
algorithm.



