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TYPES OF PROBABILISTIC INFERENCE

ADMINISTRIVIA

e There are several kinds of queries we can make.
e Suppose the joint is P(Y, E,W) = P(Y,W) x P(E|Y,W).
e Conditional probability queries (sum-product):

P(Y|E=e¢)x Y P(Y,W)x Ple]Y,W)

e Most probable explanation (MPE) queries (max-product, MAP):
(y,w)" = argmaxmax P(Y, W) x P(e|]Y, W)
y W

e Maximum A Posteriori (MAP) queries (max-sum-product, marginal

MAP)
y* = arg myaxZP(Y, W) x Ple|lY,W)

w

e Discussion section on Thursday, 3.30-4, in 304 (this week only).

INFERENCE IN HIDDEN MARKOV MODELS (HMM)

OnONE

e Conditional probability queries, e.g. estimate current state given
past evidence (online filtering)

P(Xilert) = > Pleri—1, Xilers)
T1:t—1

e Most probable explanation (MPE) queries, e.g., most probable
sequence of states (Viterbi decoding)

xik:t = arginax P(xlztlelzt)
Tt



WORD-ERROR RATE VS BIT ERROR RATE

e Note: Most probable sequence of states not necessarily equal to
sequence of most probable states.

eecg, X1 — Xo
0.4 0.1 0.9 0.04 0.36
Px) (o.es) Pl (0.5 0.5) PX, X2) <0.3 0.3)

argmax P(X1) =1, argmaxmax P(Xy, X9) = (0,1)
3

Ty
e Viterbi decoding minimizes word error rate

xT:t = argmax P(z1.¢[e1.4)
L1t

e To minimize bit error rate, use most marginally likely state
P(Xtly14) = D Plwri-1, Xelers)

T1:t—1
Ty = max P(X; = xe)

COMPLEXITY OF EXACT INFERENCE

e Determinining if Pg(X = x) > 0 for some (discrete) variable X
and some Bayes net B is NP-complete.

e What does this mean?

e Roughly: The best algorithm for exact inference (in discrete-state
models) probably takes exponential time, in the worst case.

e More formally: we need a review of basic computational complexity
theory.

MAP vs MARGINAL MAP

o

8

e Consider a Dynamic Bayes Net (DBN) for speech recognition,
where W = word and Q = phoneme.

e Most likely sequence of states (Viterbi/ MAP, max-product):

arg max P(Ql:tawlitlelit)
q1:¢,W1:¢

e Most likely sequence of words (Marginal MAP, max-sum-product):
argmax }  P(wys, quiler)
T oqLt
e Max-product often used as computationally simpler approximation
to max-sum-product (or can use A* decoding).

DECISION PROBLEMS

e Defn: a decision problem is a task of the form: does there exist
a solution which satisfies these conditions?

e Example: boolean satisfiability:
(1 V=@V @) A (—agV eV —gs)
is satisfiable (q1 = ¢2 = g3=true)

e 3-SAT is boolean satisfiability where ¢ = C1 A Cy... A C},, and
every clause C; has 3 literals.



P vs NP

e Defn: A decision problem Il is in P if it can be solved in polynomial
time.

e Defn: Il is in NP if it can be solved in polynomial time using a
non-deterministic oracle (i.e., you can verify its guesses in polytime).

o Defn: I1is NP-hard if VII' € NP. 3T € P. II' L IL.
e Defn: Il is NP-complete if it is NP-hard and in NP.
e Conjecture: P # NP

NP
complete

EXACT INFERENCE IN DISCRETE BAYES NETS
1S NP-COMPLETE

e Thm: the decision problem “Is Pg(X; = z) > 07" is NP-complete.

e Proof. To show in NP: Given an assignment X7.,, we can check
if X; = x and then check if P(X7.,,) > 0 in poly-time. To show
NP-hard: we can encode any 3SAT problem as a polynomially sized
Bayes net, as shown below.

e P(X =1|q1.n) > 0iff q1.,, is a satisfying assignment.

PROVING NP-COMPLETENESS

e Thm: 3-SAT is NP-complete.

e To show II is NP-hard, it suffices to find a transformation T € P
from another NP-hard problem II’ (e.g., 3-SAT) since

/
NrL I

e To show II is NP-complete, show it is NP-hard and that you can
check (oracular) guesses in poly-time.

NP
complete

COMPLEXITY OF APPROXIMATE INFERENCE

e Defn: An estimate p has absolute error € for P(yle) if
[P(yle) — ol < e
e Defn: An estimate p has relative error € for P(yle) if

P
— <P < p(1
e < Plle) <pll+e)
e Thm: Computing P(X; = x) with relative error p is NP-hard.

e Thm: Computing P(Xj|e) with absolute error for any € € (0,0.5) is
NP-hard.

e But: special cases may have error bounds.

e And: heuristics often work well.



HOw HARD IS INFERENCE IN PRACTICE?

e We will show later that exact inference can always be done in time
O(NvW), where W(; is the tree-width of the graph (to be defined
later) and v = max; | X;| is the max number of values (states) each
node can take.

e The NP-hardness proof shows that, in the worst case, we have
Wea ~ N.

e But for many models used in practice, we have W ~ constant.

e Also, for Gaussian graphical models, exact inference is O(N?) no
matter what the graph structure is!

VARIABLE ELIMINATION ALGORITHM

EXACT INFERENCE IN GAUSSIAN MODELS TAKES O(N?) TIME

Coherence

e Key idea 1: push sum inside products.
e Key idea 2: use (non-serial) dynamic programming to cache shared
subexpressions.
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e For Gaussian graphical models, exact inference is O(N?) no matter
what the graph structure is!

e c.f., linear programming easier than integer programming.

e Lecture 3: Any undirected graphical model in which potentials have
the form

Vi = exp(X; — p13) 25 1(Xj — 1)
can be converted to a joint Gaussian dlstribution.

e Book chap 4: any directed graphical model in which CPDs have the
form

p(Xi’Xm;) = N<Xi§ WX?Q; + [, 21’)
can be converted to a joint Gaussian distribution.

e Exact inference in a Gaussian graphical model = matrix inversion.
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DIFFERENT ORDERING
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DEALING WITH EVIDENCE: METHOD 2

DEALING WITH EVIDENCE: METHOD 1

e We can associate a local evidence potential with every node, and
set ¢;(X;) = 0(X;, x7) if X; is observed to have value 7, and
¢i(X;) = 1 otherwise:

P(X1plev) oc P(Xp) [ ] PlevilXy)
7
ecg,
P(J|I =1,H =0) x
> P(C,D,I,G,S L, J H)(I,1)55(H,0)
¢,D,1,G,S,L,J,.H

e \We can instantiate observed variables to their observed value:

P(JII=1,H=0) = PULI=1,H=0) x P(J,] =1,H =0)

P(I=1,H=0)
= Z P(C,D,I=1,G,S,L,J, H=0)
C,D.G,LS

e The denominator is P(e) = P(I =1,H =0).

e For Markov networks, the denominator is P(e) x Z.



