
Probabilistic graphical models
CPSC 532c (Topics in AI)

Stat 521a (Topics in multivariate analysis)

Lecture 4

Kevin Murphy

Wedneday 21 September, 2004



Administrivia

• Mark Crowley will hold a regular discussion section on Fridays 1-2pm,
CICSR 304. He will discuss HW1 and give a Matlab tutorial in the
first meeting.



Course outline

• Representation

– M Sep 13. Intro (ch 1)

– W Sep 15. Bayes nets (ch 3)

– M Sep 20. Markov nets (ch 5)

– W Sep 22. Markov nets (ch 5); CPDs (ch 4)

• Exact inference in discrete state-spaces

– M Sep 27. Gaussian BNs (ch 4); Intro to inference (ch 6)

– W Sep 29. Variable elimination (ch 7)

– M Oct 4. Variable elimination (ch 7)

– W Oct 6. Junction tree (ch 8)

– M Oct 11. Thanksgiving

– W Oct 13. Guest lecture?

– M Oct 18. Belief propagation (ch 8, handout)



• Learning

– W Oct 20. Parameter learning in BNs (ch 12, 13)

– M Oct 25. EM (ch 15)

– W Oct 27. Parameter learning in MNs (handout)

– M Nov 1. Project proposals due. Structure learning (ch 14).

– W Nov 3. Structure learning (ch 14).

• Approximate inference

– Mon Nov 8. Sampling (ch 9, handout)

– Wed Nov 10. Sampling (ch 9, handout)

– Mon Nov 15. Deterministic approx (ch 10, handout)

– Wed Nov 17. Deterministic approx (ch 10, handout)

– Mon Nov 22. Hybrid BNs (ch 11)

– Wed Nov 24

– Mon Nov 29

– Wed Dec 1. Last class.



– Mon Dec 6. Project presentations

– Wed Dec 8. Project presentations



Review: independence properties

• Directed graphical models were defined in terms of local Markov
property, from which we derived global Markov property
(d-separation).

• Undirected graphical models were defined in terms of global Markov
property (simple separation), from which we derived local Markov
property.

• We can always represent any distribution by a DAG or an UG, by
adding enough edges (i.e., reducing the size of I(G) until it is
inside I(P )).

• Some distributions can be represented perfectly by a DAG, others
can be represented perfectly by an undirected graph, and others
cannot be represented perfectly by either.



Review: Expressive Power

• Can we always convert directed ↔ undirected?

• No.
W

X Y

Z

X Y

Z

(a) (b)

No directed model
can represent these
and only these
independencies.
x ⊥ y | {w, z}
w ⊥ z | {x,y}

No undirected model
can represent these
and only these
independencies.
x ⊥ y



Converting Bayes nets to Markov nets

• Defn: A Markov net H is an I-map for a Bayes net G if
I(H) ⊆ I(G).

• We can construct a minimal I-map for a BN by finding the minimal
Markov blanket for each node.

• We need to block all active paths coming into node
X, from parents, children, and co-parents; so connect them all to X.

. . .

. . .U1 Um

Yn

Znj

Y1

Z1j
X



Moralization

• Defn: the moral graph H(G) of a DAG is constructed by adding
undirected edges between any pair of disconnected (“unmarried”)
nodes X,Y that are parents of a child Z, and then dropping all
remaining arrows.

• Thm 5.7.5: The moral graph H(G) is the minimal I-map for Bayes
net G.

U1 U2

X
Z1 Z2

Y1 Y2

U1 U2

X
Z1 Z1

Y1 Y2



Bayes net to Markov net

• We assign each CPD to one of the clique potentials that contains
it, e.g.

P (U,X, Y, Z) =
1

Z
ψ(U,X) × ψ(X,Y, Z)

=
1

1
P (U )P (X|U ) × P (Y )P (Z|X,Y )

= P (X,U ) × P (Z|X,Y )P (Y )

X Y

Z

X Y

Z

U U



From Markov nets to Bayes nets

• Defn: A Bayes net G is an I-map for a Markov net H if
I(G) ⊆ I(H).

• We can construct a directed I-map by choosing a node ordering,
and then picking the parents of node Xi as the subset U that
renders Xi independent of its other predecessors X1, . . . , Xi−1.

• e.g., when we add C, the ancestors are A,B; since C 6⊥ B|A, we
need to add an edge from B to C.

A

B C

D E

F

A

B C

D E

F

• Different orderings may induce different edges.



Graph triangulation
A

B C

D E

F

A

B C

D E

F

• The example above showed how we added extra edges to the DAG
so that the largest loop was a 3-cycle (triangle).

• Defn: An undirected graph is called chordal or triangulated if
every loop X1 −X2 · · ·Xk −X1 for k ≥ 4 has a chord, i.e., an
edge connecting Xi and Xj for i, j non-adjacent.

• Defn: a directed graph is chordal if its underlying undirected graph
is chordal.

• Thm 5.7.15: If G is a minimal I-map for Markov net H, then G is
chordal.



Chordal graphs

• Converting a Bayes net to a Markov net adds extra moralization
arcs.

• Converting a Markov net to a Bayes net adds extra triangulation
arcs.

• Q: When can we convert a BN to a MN or vice versa without
having to add extra arcs?

• A: when the graph is chordal.

• Thm 5.7.18 (if): Let H be a chordal Markov net. Then there is a
Bayes net G s.t. I(H) = I(G).

• Thm 5.7.16 (only-if): Let H be a non-chordal Markov net. Then
there is no Bayes net G s.t. I(H) = I(G).



Chordal graphs

• Chordal graphs encode independencies that can be exactly
represented by either directed or undirected graphs.

• Chain graphs combine directed and undirected graphs and represent
a larger set of distributions.

 graphs

Chain graphs

Bayes
nets

Markov
netschordal



Local structure

• So far, we have mostly studied independence properties that follow
from the graph structure.

• Now we look at structure within the potentials/ CPDs of a model.

• Local structure often reduces the number of parameters in the
model (so less data is needed for learning).

• Local structure can sometimes be exploited to speed up inference.



Factorizing clique potentials

X3

X4

X2

X1

• Sometimes a clique potential can be written as a product of
subclique potentials.

• Max clique version

P (X1:4) =
1

Z
ψ1234(X1234)

• One possible sub clique version

P (X1:4) =
1

Z
ψ123(x123)ψ234(x234)



Factor graphs

• Factorized potentials can be represented graphically using a factor
graph.

• Defn: a factor graph is undirected bipartite graph with two kinds of
nodes. Round nodes represent variables, square nodes represent
factors (potentials), and there is an edge from each variable to
every factor that mentions it.

• eg if ψ1234 = ψ123 × ψ234.

X3

X4

X2

X1

f234

X4

X2

X1

X3

f123

f234

X1 X2 X4X3

f123



Application of factor graphs: error-control codes

• In ECC, we transmit a message (sequence of bits) X over a noisy
channel. The receiver receives a noisy signal Y and has to estimate
the original message:

X̂ = arg max
x
P (y|x)P (x)

where P (y|x) is the noise model and P (x) is the source model.
^

source redundancy
add noisy

channel decode
X Y X

• This is equivalent to inference in a probabilistic model.



Low-density parity check codes (LDPC)

• A parity check code adds parity bits which are 1 iff an even number
of the checked variables is 1, e.g.

fc

X1 X2 X3 X4

f1 f2 f3 f4

fa fb

where fi = p(yi|xi) and fa, fb, fc are parity check factors.

• Assigns 0 probability to settings of ~x that violate the parity
constraints.

• If we impose an upper bound on the degree of the message nodes
and the parity nodes, the graph is low-density.

• In an LDPC, the degree of the nodes is chosen from some
distribution.

• This construction comes closer to the Shannon limit than any other
code!



Representing the factors

X3

X4

X2

X1

f234

X4

X2

X1

X3

f123

f234

X1 X2 X4X3

f123

• How do we parameterize the factors themselves?

• If each variable Xi has K possible discrete values, We can
represent f (X1, X2, X3) as K ×K ×K table.

• What do we do if the number of states K is large?

• e.g., consider a model of spelling which looks at all overlapping
triples of letters, so Xi ∈ {a, b, . . . , z}. We cannot afford 263

parameters!



Log-linear models

• We can parameterize each clique potential (factor) ψc(xc) as
follows.

• Define a feature function fi(xci), where Ci ⊆ C is a subset of the
variables in C.

• Associate a scalar weight θi with each such feature.

• Then define

ψc(xc) = exp





∑

i∈IC
θifi(xci)





• e.g., for the spelling model, f1(x1, x2, x3) = δ(x1:3 = ing),
f2(x1, x2, x3) = δ(x1:2 = qu), etc.



Log-linear models

• Overall distribution is just a log-linear model (exponential family)

P (x|θ) =
1

Z(θ)

∏

c∈C
ψc(xc)

=
1

Z(θ)

∏

c∈C
exp





∑

i∈IC
θifi(xci)





=
1

Z(θ)
exp





∑

c∈C

∑

i∈IC
θifi(xci)





=
1

Z(θ)
exp





∑

i∈I
θifi(xci)





• We can infer the graph structure from the features by connecting
all the variables that are mentioned in the same function.



Log-linear models

P (x|θ) =
1

Z(θ)
exp





∑

i∈I
θifi(xci)





• This form is completely general. By defining one indicator feature
for every possible value of xci, we can associate a separate
parameter with each cell in the multi-dimensional array representing
ψci.

• For Gaussians, we can use features fij(xi, xj) = xi × xj for every
pair of connected nodes, fi(xi) = xi for every single node, and
f0 = 1 as a constant term:

P (x1:n) =
1

Z
e−H(x)

H(x) =
∑

ij

Vijxixj +
∑

i

αixi + C



Structured CPDs

• So far we have discussed how to represent potentials/factors using
a number of parameters that is less than exponential in the number
of nodes in the clique.

• Now we will examine analogous techniques for compact
representations of conditional probability distributions.

• We will start by examining compact representations for
unconditional probability distributions, i.e., nodes with no parents.



Exponential Family

• For a numeric random variable x

p(x|η) = h(x) exp{η>T (x) − A(η)}
=

1

Z(η)
h(x) exp{η>T (x)}

is an exponential family distribution with
natural parameter η.

• Function T (x) is a sufficient statistic.

• Function A(η) = logZ(η) is the log normalizer.

• Key idea: all you need to know about the data in order to estimate
parameters is captured in the summarizing function T (x).

• Examples: Bernoulli, binomial/geometric/negative-binomial,
Poisson, gamma, multinomial, Gaussian, ...



Poisson

• For an integer count variable with rate λ:

p(x|λ) =
λxe−λ

x!

=
1

x!
exp{x log λ− λ}

• Exponential family with:

η = log λ

T (x) = x

A(η) = λ = eη

h(x) =
1

x!

• e.g. number of photons x that arrive at a pixel during a fixed
interval given mean intensity λ

• Other count densities: (neg)binomial, geometric.



Bernoulli Distribution

• For a binary random variable x = {0, 1} with p(x = 1) = π:

p(x|π) = πx(1 − π)1−x

= exp

{

log

(

π

1 − π

)

x + log(1 − π)

}

• Exponential family with:

η = log
π

1 − π
T (x) = x

A(η) = − log(1 − π) = log(1 + eη)

h(x) = 1

• The logistic or sigmoid function links natural parameter and chance
of heads

π =
1

1 + e−η
=

eη

1 + eη
= logistic(η) = σ(η)



Multinomial

• For a categorical (discrete), random variable taking on K possible
values, let πk be the probability of the kth value. We can use a
binary vector x = (x1, x2, . . . , xk, . . . , xK) in which xk=1 if and
only if the variable takes on its kth value. Now we can write,

p(x|π) = π
x1
1 π

x2
2 · · · πxKK = exp







∑

i

xi log πi







Exactly like a probability table, but written using binary vectors.

• If we observe this variable several times X = {x1,x2, . . . ,xN}, the
(iid) probability depends on the total observed counts of each value:

p(X|π) =
∏

n

p(xn|π) = exp
{
∑

i

(
∑

n x
n
i

)

log πi
}

= exp {∑i ci log πi}



Multinomial as Exponential Family

• The multinomial parameters are constrained:
∑

i πi = 1.

Define (the last) one in terms of the rest: πK = 1 −
∑K−1
i=1 πi

p(x|π) = exp





K
∑

i=1

xi log πi





= exp





K−1
∑

i=1

xi log πi +



1 −
K−1
∑

i=1

xi



 log πK





= exp





K−1
∑

i=1

xi log πi −
K−1
∑

i=1

xi log πK + log πK





= exp





K−1
∑

i=1

xi log
πi
πK

+ log πK







Multinomial as Exponential Family

p(x|π) = exp





K−1
∑

i=1

xi log
πi
πK

+ log πK





ηi = log
πi
πK

, ηK = 0

T (xi) = xi
h(x) = 1

A(η) = − log



1 −
K−1
∑

i=1

πi



 = log





K
∑

i=1

eηi





• The softmax function relates moment and natural (canonical) pa-
rameters:

πi =
eηi

∑

j e
ηj



Gaussian (normal)

• For a continuous univariate random variable:

p(x|µ, σ2) =
1√
2πσ

exp

{

− 1

2σ2
(x− µ)2

}

=
1√
2π

exp

{

µx

σ2
− x2

2σ2
− µ2

2σ2
− log σ

}

• Exponential family with:

η = [µ/σ2 ; −1/2σ2]

T (x) = [x ; x2]

A(η) = log σ + µ2/2σ2

h(x) = 1/
√

2π

• Note: a univariate Gaussian is a two-parameter distribution with a
two-component vector of sufficient statistics.



Multivariate Gaussian Distribution

• For a continuous vector random variable:

p(x|µ,Σ) = |2πΣ|−1/2 exp

{

−1

2
(x − µ)>Σ−1(x− µ)

}

• Exponential family with:

η = [Σ−1µ ; −1/2Σ−1]

T (x) = [x ; xx>]

A(η) = log |Σ|/2 + µ>Σ−1µ/2

h(x) = (2π)−n/2

• Note: a d-dimensional Gaussian is a d+d2-parameter distribution
with a d+d2-component vector of sufficient statistics
(but because of symmetry and positivity, parameters are
constrained)



Moments

• We can easily compute moments of any exponential family
distribution by taking the derivatives of the log normalizer A(η).

• The qth derivative gives the qth centred moment.

dA(η)

dη
= mean

d2A(η)

dη2
= variance

· · ·
• When the sufficient statistic is a vector, partial derivatives need to

be considered.



First moment

∫

p(x|η)dx =

∫

h(x) exp{ηT (x) − A(η)}dx = 1

Z(η) =

∫

h(x) exp{ηT (x)}dx
A(η) = logZ(η)

dA

dη
=

d

dη
logZ(η) =

d
dηZ(η)

Z(η)

=

∫

T (x)h(x) exp{ηT (x)}
Z(η)

= ET (X)



Second moment

d2A

dη2
= . . .

= ET 2(X) − (ET (X))2

= V arT (X)



Example: 1D Gaussian

• Exponential family with:

η = [µ/σ2 ; −1/2σ2]

T (x) = [x ; x2]

A(η) = log σ + µ2/2σ2 = − η2
1

4η2
− 1

2
log(−2η2)

h(x) = 1/
√

2π

• First moment

∂A

∂η1
=

η1

2η2
=
µ/σ2

1/σ2
= µ

• Second moment

∂2A

∂η2
1

= − 1

2η2
= σ2



Nodes with parents

• For discrete (categorical) variables, the most basic parametrization
is the probability table which lists p(x = kth value).

• Since PTs must be nonnegative and sum to 1, for k-ary nodes
there are k − 1 free parameters.

• If a discrete node has discrete parent(s) we make one table for each
setting of the parents: this is a conditional probability table or CPT.

0

1

0 1
2x

4x

0

1
x 1

0

1

0 1
x 1

2x

0

1

0 1

3x

x 1

5x 0

1

0 1
3x

0

1

0 1

0
1

6x

2x

5x

1X

2X

3X

X 4

X 5

X6



Generalized Linear Models

• Consider the CPD for Y with parent X.

• A GLM is when p(y|x) is exponential family with conditional mean
µi = fi(θ

>x).

• The choice of exponential family member is dictated by the type of
Y :

– Class labels: Bernoulli or Multinomial

– Counts: Poisson

– Real valued: Gaussian



Canonical link

• We saw earlier that for an exponential family, µ =
dA(η)
dη .

• This mapping is invertible (since
d2A(η)
dη2 = V arT (X) > 0, so A(η)

is convex).

• Call this invertible mapping from moment parameters to canonical
parameters η = ψ(µ).

• A GLM is when p(y|x) is exponential family with conditional mean
µi = fi(θ

>x).

• The function f is called the response function.

• If f = ψ−1, then it is called the canonical response function or
canonical link:

• Example: logistic function is canonical link for Bernoulli variables;
softmax function is canonical link for multinomials



Canonical CPDs for X → Y

X Y p(Y |X)
IRn IRm Gauss(Y ;WX + µ,Σ)

IRn {0, 1} Bernoulli(Y ; p = 1

1+e−θT x
)

{0, 1}n {0, 1} Bernoulli(Y ; p = 1

1+e−θT x
)

IRn {1, . . . ,K} Multinomial(Y ; pi = softmax(x, θ))



Sigmoid function

P (Y = 1|X1, . . . , Xn) = σ(w0 +

n
∑

i=1

wiXi)

P (Y = 1) vs number of X’s that are on vs w

• a: 1D sigmoid

• b: w0 = 0

• c: w0 = −5

• d: w and w0 are
multiplied by 10



Log-odds

• We can interpret the parameters of a sigmoid in terms of how they
affect the log-odds:

P (Y = 1|X1:n)

P (Y = 0|X1:n)
=
eZ/(1 + eZ)

1/(1 + eZ)
= eZ

where Z = w0 +
∑

iwiXi.

• Consider the effect as Xj changes from 0 to 1:

P (Y = 1|X1:n)

P (Y = 0|X1:n)
=

exp(w0 +
∑

i6=j wiXi + wj)

exp(w0 +
∑

i6=j wiXi)
= ewj

• If wj > 0 then ewj > 1 so it increases the probability of P (Y = 1).
Conversely if wj < 0.

• If wj = 0, then Xj is irrelevant (feature selection).



Other CPDs for X → Y

X Y p(Y |X)
IRn IR regression-box(Y ;X)
IRn {1, . . . ,K} classification-box(Y ;x)

{1, . . . , L} IRn Gauss(Y ;µX ,ΣX)
{1, . . . , L}n IR regression-tree(Y ;X)
{1, . . . , L} {1, . . . ,K} L×K CPT
{1, . . . , L}n {1, . . . ,K} classification-tree(Y ;X)
{0, 1}n {0, 1} noisy-or



Independence of causal influence

• A CPD P (Y |X1:n) exhibits ICI if it can be represented as a mini
Bayes net as shown below, where Z is a deterministic function of
the Zi’s.

Z

X1 Xn

Z1 ZnZ0

Y



Noisy-or

Z

X1 Xn

Z1 ZnZ0

Y

• Y = Z, Z is deterministic OR of Zi’s, but the link from Xi to Zi
flips 1’s to 0’s w.p. qi. Z0 = 1 is always on (leak node). Hence

P (Y = 0|X1:n) = q0
∏

i:Xi=1

qi = q0
∏

i

q
Xi
i = q0

∑

i

eXi log qi

• Similar to sigmoid, but parameters are constrained qi ∈ [0, 1].

• Can be used to speed up inference.

• Cognitively plausible.



Context-specific independence

• CSI is when some links in the graph can be removed depending on
the values of certain variables.

• eg. P (Y |X1, X2) is represented as this decision tree:

0

X1

(0.3,0.7) X2

(0.1,0.9)    (0.8,0.2)

0 1

1

• If X1 = 1, then the link from X2 → Y can be removed.

• This property arises in data association problems: let Z determine
the identity of the observation; then P (Y |Z = i,X1:n) = f (Y,Xi).

• This property can be exploited in inference (condition on Z and the
graph becomes sparser).


