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REVIEW: INDEPENDENCE PROPERTIES OF DAGS

ADMINISTRIVIA

e Spare stapled copies of the book chapters are outside my door (107).
If you take the last unstapled copy, please photocopy and return to
the door.

e Please send me comments on the book (errors, unclear parts) in one
text file at the end of the semester.

e Mark Crowley is our TA. He will hold a regular discussion section on
Fridays 1-2pm, CICSR 304. He will give a Matlab tutorial in the first
meeting.

A DISTRIBUTION MAY HAVE SEVERAL MINIMAL I-MAPS

e Defn: let I;(G) be the set of local independence properties encoded
by DAG G, namely:

{X; L NonDescendants(X;)|Parents(X;)}

e Defn: A DAG G is an I-map (independence-map) of P
if I;(G) C I(P).

e A fully connected DAG G is an |-map for any distribution, since
I,(G) =0 C I(P) for any P.

e Defn: A DAG G is a minimal I-map for P if it is an |-map for
P, and if the removal of even a single edge from G renders it not
an |l-map.

e To construct a minimal I-map, Pick a node ordering, then
let the parents of node X; be the minimal subset
UC{Xy,...,X; 1}
sit. X; L {Xl,...,XZ'— 1}\U‘U

e Suppose the left DAG G perfectly captures all and only the
independence properties of some distribution P, i.e., I(G) = I(P).
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e Now consider a different node ordering: M, J, A, B, E.

e Consider adding parents to node B. Ancestors are M, J, A. We
choose A as smallest parent set since B Lo {M, J}|A.



A DISTRIBUTION MAY HAVE SEVERAL MINIMAL I-MAPS

eOrder B,E, A, J, M
e Order M, J, A, B, FE
eOrder M.J . E,B, A
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e All represent exactly the same joint dlstrlbutlon, but
some orderings are better in terms of

— Representation: easier to understand
— Inference: faster to compute P(Xy|xy).
— Learning: fewer parameters

SOUNDNESS AND COMPLETENESS OF D-SEPARATION

GLOBAL MARKOV PROPERTIES OF DAGS

e Defn: P factorizes over DAG G if it can be represented as

P(Xb <o ;Xn> = HP(thXm)
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e Thm 3.3.3 (soundness): If P factorizes over G, then I(H) C I(P).

e Thm 3.3.5 (completeness): If ~dsepq(X;Y|Z), then X LpY|Z
in some P that factorizes over (.

e X is d-separated (directed-separated) from Y given Z if we
can't send a ball from any node in X to any node in Y, where all

nodes in Z are shaded
%Oﬂ W
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e Defn: I(G) = all independence properties that correspond to
d-separation:

I(G) = {(X L Y|2): dsep(X:Y|2)}

P-MmAPS

e Defn: A DAG G is a perfect map (P-map) for a distribution P
if I(P)=1I(G).

e Thm: not every distribution has a perfect map.

e Pf by counterexample. Suppose we have a model where
A 1L C{B,D}, and B L D|{A,C}. This cannot be represented
by any Bayes net.

ec.g., BN1 wrongly says B L D|A, BN2 wrongly says B L D.



UNDIRECTED GRAPHICAL MODELS

e Graphs where nodes = random variables, and edges = correlation
(direct dependence).

e Defn: Let H be an undirected graph. Then sepy(A; C|B) iff all
paths between A and C' go through some nodes in B (simple graph
separation).

e Defn: the global Markov properties of a UG H are
I(H) = {(X LY|Z): sepr(X:Y|2)}

e UGMs also called Markov Random Fields (MRFs) or Markov
Networks.

CLIQUES

PARAMETERIZING UNDIRECTED GRAPHICAL MODELS

e Defn: a complete subgraph is a fully interconnected set of nodes.

e Defn: a (maximal) clique C' is a complete subgraph s.t. any
superset C' O C'is not complete.

e Defn: a sub-clique is a not-necessarily-maximal clique.

e Example: max-cliques = {A, B, D}, {B, C, D}, sub-cliques =
edges = {A,D},{A,B},...

e An undirected graph H specifies a family of distributions s.t.,
I(H) C I(P).

e To specify a particular distribution P, we need to add parameters
to the graph.

e For Bayes nets, we used conditional probability
distributions (CPDs), P(X;|Xy,), where
ZXY; P(X;|Xr,) = 1.

e For Markov nets, we use potential functions or factors
defined on subsets of completely connected sets of nodes, where

Ye(Xe) > 0.

UNDIRECTED GRAPHICAL MODELS

e Defn: an undirected graphical model representing a
distribution P(X7, ..., X}) is an undirected graph H, and a set of

positive potential functions ). associated with sub-cliques of
H, s.t.

P(X1,..., Xp,) = % IT velae)

where Z is the partition function:
Z= 3 1] el
L1y Tn CeC

e Defn: if H is a UGM for P, we say that P factorizes over H,
or that P is a Gibbs distribution over H.



ExaMPLE OF UGM - MAX CLIQUES

P(x1.4) = %%24(37124) X 1h934(7234)

Z = > (i) X 1h34(r234)

L1,72,23,L4

e We can represent P(X.4) as two 3D tables instead of one 4D table.

MAX CLIQUES VS SUB CLIQUES

ExaMPLE OF UGM - SUBCLIQUES
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e Max clique version

1
P(X1:4) = —1234(X1234)
e Sub clique version
1
P(X14) = - H V(w5 2)
<ij>

= %%2(9012)¢13(3313)1/114(3714)1/123($23)¢24($24)¢34($34)

P(x14) = % IT ¢ij(ai))

<ij>
= %Mz($12)¢14($14)¢23($23)1/}24(I24)¢34($34)

z= 2 1wty

T1,22,23,04 <ij>
e We can represent P(X7.4) as five 2D tables instead of one 4D table.

INTERPRETATION OF CLIQUE POTENTIALS

X Y Z
Y
O—O—=0

e The model implies x L z |y
p(x,y,2z) = p(y)p(x|y)p(zly)

e We can write this as:

p(x,y,z) = p(x, y)p(zly) = ¥xy(x, y)tya(y, 2)
p(X, Y, Z) - p(x|y)p(z, Y) = l/)XY(Xv }’)wyz(y, Z)
cannot have all potentials be marginals
cannot have all potentials be conditionals
e The positive clique potentials can only be thought of as general

“compatibility”, “goodness” or “happiness’ functions over their
variables, but not as probability distributions.



BOLTZMANN DISTRIBUTIONS/ LOG-LINEAR MODELS

EXAMPLE: BOLTZMANN MACHINES

e We often represent the clique potentials using their logs:

vo(xe) = exp{—He(xc)}
for arbitrary real valued “energy” functions H(x).
The negative sign is a standard convention.

e This gives the joint a nice additive structure:

POX) = S oxpl— 3 Helxe)} = esp{~H(X)}

cliques C'

where the sum in the exponent is called the “free energy”:

H(X) =3 Holxo)
C

e In physics, this is called the “Boltzmann distribution”.

e In statistics, this is called a log-linear model.

EXAMPLE: ISING (SPIN-GLASS) MODELS

e A fully connected graph with pairwise (edge) potentials on
binary-valued nodes (for z; € {—1,+1} or x; € {0,1}) is called a
Boltzmann machine.

1
P(X14) = 1T ¢ijtei=))
<ij>

e where (7, vj) = exp(—H;j(z;, z5)), and

H(wj xg) = (x; — pa)Vij(@; — py)
e Hence overall energy has form

H(z) = Z Vijzir; + Z az; + C
1 1

EXAMPLE: MULTIVARIATE (GAUSSIAN DISTRIBUTION

e Nodes are arranged in a regular topology (often a regular packing
grid) and connected only to their geometric neighbours.

e Same as sparse Boltzmann machine, where V;; # 0 iff ¢, j are
neighbors.

e e.g., nodes are pixels, potential function encourages nearby pixels to

have similar intensities.

e Potts model = multi-state Ising model.

e A Gaussian distribution can be represented by a fully connected
graph with pairwise (edge) potentials of the form

H(x) =) (% — i) Vij(xj — 1)
ij
where 1 is the mean and V' is the inverse covariance (precision)
matrix, since

P(ora) = e 4

e Same as Boltzmann machine except z; € R.



SPARSE GRAPH = ZEROS IN PRECISION MATRIX

SPARSE PRECISION # SPARSE COVARIANCE

e ;; = 0 iff no edge between X; and X.
e Chain structured graph = block diagonal precision matrix

000

.00
v=x"l=1|0...0
000 - -

GRAPHS AND DISTRIBUTIONS

e Let us return to the question of what kinds of distributions can be
represented by undirected graphs (ignoring the details of the
paticular parameterization).

e Defn: the global Markov properties of a UG H are
I(H) ={(X LYI|Z): sepg(X;Y[Z)}

e Is this definition sound and complete?

Xa

16000 0.10 0.15 —-0.13 —0.08 0.15
62700 0.15 —=0.03 0.02 0.01 —-0.03
»1=107380] ©=1]-013 0.02 0.10 0.07 —0.12
00849 —0.08 0.01 0.07 —0.04 0.07
00095 0.15 —=0.03 =0.12 0.07 0.08

S =0 = X1 L X3 X0
— X; L X3|X2
# X1 1 X3
< Yi13=0

SOUNDNESS AND COMPLETENESS OF GLOBAL MARKOV
PROPERTY

e Defn: An UG H is an I-map for a distribution P if I(H) C I(P),
e, PEI(H).

e Defn: P is a Gibbs distribution over H if it can be
represented as

P(Xy,.... X, H E
CEC’ (H)
e Thm 5.4.2 (soundness): If P is a Gibbs distribution over H, then
H is an I-map of P.

e Thm 5.4.3 (Hammersley-Clifford): Let P be a positive distribution
(i.e., Vx.P(x) > 0). If H is an I-map for P, then P can be
represented as a Gibbs distribution over H.

e Thm 5.4.5 (completeness): If wsepy(X;Y|Z), then X LpY|Z
in some P that factorizes over H.



LOCAL AND GLOBAL MARKOV PROPERTIES

e For directed graphs, we defined |-maps in terms of local Markov
properties, and derived global independence.

e For undirected graphs, we defined |-maps in terms of global Markov
properties, and will now derive local independence.

e Defn: The pairwise markov independencies associated with
UG H = (V,E) are

Ip(H) ={(X LY)[V\{X, Y} {X,Y} & E}
eecg., Xl 1 X5|{X2,X3,X4}

RELATIONSHIP BETWEEN LOCAL AND GLOBAL MARKOV
PROPERTIES

LocAL MARKOV PROPERTIES

e Defn: The local markov independencies associated with UG
H=(V,FE) are

L(H) = {(X LV \{X}\ Ng(X)|[Np(X)): X € V}
where N7 (X) are the neighbors
eeg, X1 L {X3 Xy, X5} X5

e Ny (X) is also called the Markov blanket of X.
e
]

I-MAPS FOR UNDIRECTED GRAPHS

e Thm 5.53. If P |= [;(H) then P = I,,(H).
e Thm 55.4. If P = I(H) then P |= I;(H).
e Thm 555. If P> 0and P |= Iy(H), then P = I(H).
e Corollary 5.5.6: If P > 0, then [; = I}, = I.

e If 3x.P(x) = 0, then we can construct an example (using
deterministic potentials) where I;, % I; or I; # 1.

5.f.4/' ‘\5.5.5(P+)
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e Defn: A Markov network H is a minimal I-map for P if it is an
[-map, and if the removal of any edge from H renders it not an
[-map.

e How can we construct a minimal I-map from a positive distribution
P?

e Pairwise method: add edges between all pairs XY s.t.
P X LYVA{X Y}
e Local method: add edges between X and all Y € M Bp(X),
where M Bp(X) is the minimal set of nodes U s.t.
PE (X LV\{X}\UID)
e Thm 5.5.11/12: both methods induce the unique minimal I-map.

e If 3x.P(x) = 0, then we can construct an example where either
method fails to induce an I-map.



PERFECT MAPS

e Defn: A Markov network H is a perfect map for P if for any
X,Y, Z we have that

sepg(X;Y|Z) <= PE(X 1Y|Z)

e Thm: not every distribution has a perfect map.

e Pf by counterexample. No undirected network can capture all and
only the independencies encoded in a v-structure X — 7 « Y.

CONVERTING BAYES NETS TO MARKOV NETS

EXPRESSIVE POWER

e Can we always convert directed <+ undirected?

e No.
w
X Y X Q\ /Q Y
z z
(@) (b)

No directed model
can represent these
and only these
independencies.
x Ly|{w z}
w Lz|{xy}

No undirected model
can represent these
and only these
independencies.
xly

MORALIZATION

e Defn: A Markov net H is an I-map for a Bayes net G if
I(H) C I(G).

e We can construct a minimal I-map for a BN by finding the minimal
Markov blanket for each node.

e We need to block all active paths coming into node

X, from parents, children, and co-parents; so connect them all to X .

e Defn: the moral graph H(G) of a DAG is constructed by adding
undirected edges between any pair of disconnected ( “unmarried”)

nodes XY
that are parents of a child Z, and then dropping all remaining arrows.

KE



MORALIZATION

e Thm 5.7.5: The moral graph H(G) is the minimal I-map for Bayes
net G.

e Pf: moralization loses conditional independence information, and
hence is conservative; hence H(G) is an |-map of G. Moralization
only introduces where needed to make the semantics of simple
separation capture d-separation, hence minimal.

ALTERNATIVE TO D-SEPARATION

e Thm 5.7.7. Let X, Y, Z be 3 disjoint sets of nodes in DAG G. Let
U=XUY UZ, let GT[U] be the induced DAG over
Ancestors(U), and let H' = moralize(G™[U]) be the moralized
ancestral subgraph. Then dsepq(X;Y|Z) <= sepy/(X;Y|Z).

e Example: dsepq(Z1;U1|Y1)?

@‘@

BAYES NET TO MARKOV NET

e We assign each CPD to one of the clique potentials that contains
it, e.g.

P(U,X,Y,Z) = (U, X) x $(X,Y, Z)

N[~

—_ —

P(U)P(X|U) x P(Y)P(Z|X,Y)
= P(X,U) x P(Z|X,Y)P(Y)
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