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Administrivia

• Spare stapled copies of the book chapters are outside my door (107).
If you take the last unstapled copy, please photocopy and return to
the door.

• Please send me comments on the book (errors, unclear parts) in one
text file at the end of the semester.

•Mark Crowley is our TA. He will hold a regular discussion section on
Fridays 1-2pm, CICSR 304. He will give a Matlab tutorial in the first
meeting.

Review: independence properties of DAGs

• Defn: let Il(G) be the set of local independence properties encoded
by DAG G, namely:

{Xi ⊥ NonDescendants(Xi)|Parents(Xi)}

• Defn: A DAG G is an I-map (independence-map) of P
if Il(G) ⊆ I(P ).

• A fully connected DAG G is an I-map for any distribution, since
Il(G) = ∅ ⊆ I(P ) for any P .

• Defn: A DAG G is a minimal I-map for P if it is an I-map for
P , and if the removal of even a single edge from G renders it not
an I-map.

•To construct a minimal I-map, Pick a node ordering, then
let the parents of node Xi be the minimal subset
U ⊆ {X1, . . . , Xi−1}
s.t. Xi ⊥ {X1, . . . , Xi − 1} \ U |U .

A distribution may have several minimal I-maps

• Suppose the left DAG G perfectly captures all and only the
independence properties of some distribution P , i.e., I(G) = I(P ).
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• Now consider a different node ordering: M,J,A,B,E.

• Consider adding parents to node B. Ancestors are M , J,A. We
choose A as smallest parent set since B ⊥G {M,J}|A.



A distribution may have several minimal I-maps

•Order B,E,A, J,M

•Order M,J,A,B,E

•Order M,J,E,B,A
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•All represent exactly the same joint distribution, but
some orderings are better in terms of

– Representation: easier to understand

– Inference: faster to compute P (Xq|xv).

– Learning: fewer parameters

Global Markov properties of DAGs

•X is d-separated (directed-separated) from Y given Z if we
can’t send a ball from any node in X to any node in Y , where all
nodes in Z are shaded.
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• Defn: I(G) = all independence properties that correspond to
d-separation:

I(G) = {(X ⊥ Y |Z) : dsepG(X ;Y |Z)}

Soundness and completeness of d-separation

• Defn: P factorizes over DAG G if it can be represented as

P (X1, . . . , Xn) =
∏

i

P (Xi|Xπi)

• Thm 3.3.3 (soundness): If P factorizes over G, then I(H) ⊆ I(P ).

• Thm 3.3.5 (completeness): If ¬dsepG(X ;Y |Z), then X 6⊥P Y |Z
in some P that factorizes over G.

P-maps

• Defn: A DAG G is a perfect map (P-map) for a distribution P
if I(P ) = I(G).

• Thm: not every distribution has a perfect map.

• Pf by counterexample. Suppose we have a model where
A ⊥ C|{B,D}, and B ⊥ D|{A,C}. This cannot be represented
by any Bayes net.

• e.g., BN1 wrongly says B ⊥ D|A, BN2 wrongly says B ⊥ D.
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Undirected Graphical Models

• Graphs where nodes = random variables, and edges = correlation
(direct dependence).

• Defn: Let H be an undirected graph. Then sepH(A;C|B) iff all
paths between A and C go through some nodes in B (simple graph
separation).
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• Defn: the global Markov properties of a UG H are

I(H) = {(X ⊥ Y |Z) : sepH(X ;Y |Z)}

• UGMs also called Markov Random Fields (MRFs) or Markov
Networks.

Parameterizing undirected graphical models

• An undirected graph H specifies a family of distributions s.t.,
I(H) ⊆ I(P ).

• To specify a particular distribution P , we need to add parameters
to the graph.

• For Bayes nets, we used conditional probability
distributions (CPDs), P (Xi|Xπi), where
∑

Xi
P (Xi|Xπi) = 1.

• For Markov nets, we use potential functions or factors
defined on subsets of completely connected sets of nodes, where
ψc(Xc) > 0.

Cliques

• Defn: a complete subgraph is a fully interconnected set of nodes.

• Defn: a (maximal) clique C is a complete subgraph s.t. any
superset C ′ ⊃ C is not complete.

• Defn: a sub-clique is a not-necessarily-maximal clique.
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• Example: max-cliques = {A,B,D}, {B,C,D}, sub-cliques =
edges = {A,D}, {A,B}, . . .

Undirected graphical models

• Defn: an undirected graphical model representing a
distribution P (X1, . . . , Xn) is an undirected graph H, and a set of
positive potential functions ψc associated with sub-cliques of
H, s.t.

P (X1, . . . , Xn) =
1

Z

∏

c∈C

ψc(xc)

where Z is the partition function:

Z =
∑

x1,...,xn

∏

c∈C

ψc(xc)

• Defn: if H is a UGM for P , we say that P factorizes over H,
or that P is a Gibbs distribution over H.



Example of UGM - max cliques
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P (x1:4) =
1

Z
ψ124(x124)× ψ234(x234)

Z =
∑

x1,x2,x3,x4

ψ124(x124)× ψ234(x234)

•We can represent P (X1:4) as two 3D tables instead of one 4D table.

Example of UGM - subcliques
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3

P (x1:4) =
1

Z

∏

<ij>

ψij(xij)

=
1

Z
ψ12(x12)ψ14(x14)ψ23(x23)ψ24(x24)ψ34(x34)

Z =
∑

x1,x2,x3,x4

∏

<ij>

ψij(xij)

•We can represent P (X1:4) as five 2D tables instead of one 4D table.

Max cliques vs sub cliques
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•Max clique version

P (X1:4) =
1

Z
ψ1234(X1234)

• Sub clique version

P (X1:4) =
1

Z

∏

<ij>

ψij(xi, xj)

=
1

Z
ψ12(x12)ψ13(x13)ψ14(x14)ψ23(x23)ψ24(x24)ψ34(x34)

Interpretation of Clique Potentials

X Y Z

• The model implies x ⊥ z | y

p(x,y, z) = p(y)p(x|y)p(z|y)

•We can write this as:

p(x,y, z) = p(x,y)p(z|y) = ψxy(x,y)ψyz(y, z)

p(x,y, z) = p(x|y)p(z,y) = ψxy(x,y)ψyz(y, z)

cannot have all potentials be marginals
cannot have all potentials be conditionals

• The positive clique potentials can only be thought of as general
“compatibility”, “goodness” or “happiness” functions over their
variables, but not as probability distributions.



Boltzmann Distributions/ log-linear models

•We often represent the clique potentials using their logs:

ψC(xC) = exp{−HC(xC)}

for arbitrary real valued “energy” functions HC(xC).
The negative sign is a standard convention.

• This gives the joint a nice additive structure:

P(X) =
1

Z
exp{−

∑

cliques C

HC(xc)} =
1

Z
exp{−H(X)}

where the sum in the exponent is called the “free energy”:

H(X) =
∑

C

HC(xc)

• In physics, this is called the “Boltzmann distribution”.

• In statistics, this is called a log-linear model.

Example: Boltzmann machines
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• A fully connected graph with pairwise (edge) potentials on
binary-valued nodes (for xi ∈ {−1,+1} or xi ∈ {0, 1}) is called a
Boltzmann machine.

P (X1:4) =
1

Z

∏

<ij>

ψij(xi, xj)

• where ψij(xi, xj) = exp(−Hij(xi, xj)), and

H(xi, xj) = (xi − µi)Vij(xj − µj)

• Hence overall energy has form

H(x) =
∑

ij

Vijxixj +
∑

i

αixi + C

Example: Ising (spin-glass) models

• Nodes are arranged in a regular topology (often a regular packing
grid) and connected only to their geometric neighbours.

• Same as sparse Boltzmann machine, where Vij 6= 0 iff i, j are
neighbors.

• e.g., nodes are pixels, potential function encourages nearby pixels to
have similar intensities.

• Potts model = multi-state Ising model.

Example: multivariate Gaussian Distribution

• A Gaussian distribution can be represented by a fully connected
graph with pairwise (edge) potentials of the form

H(x) =
∑

ij

(xi − µi)Vij(xj − µj)

where µ is the mean and V is the inverse covariance (precision)
matrix, since

P (x1:n) =
1

Z
e−H(x)

• Same as Boltzmann machine except xi ∈ R.



Sparse graph ≡ zeros in precision matrix

• Vij = 0 iff no edge between Xi and Xj.

• Chain structured graph ≡ block diagonal precision matrix
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V = Σ−1 =













· · 0 0 0
· · · 0 0
0 · · · 0
0 0 · · ·
0 0 0 · ·













Sparse precision 6⇒ sparse covariance
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Σ−1 =













1 6 0 0 0
6 2 7 0 0
0 7 3 8 0
0 0 8 4 9
0 0 0 9 5













Σ =













0.10 0.15 −0.13 −0.08 0.15
0.15 −0.03 0.02 0.01 −0.03
−0.13 0.02 0.10 0.07 −0.12
−0.08 0.01 0.07 −0.04 0.07
0.15 −0.03 −0.12 0.07 0.08













Σ−1
13 = 0 ⇐⇒ X1 ⊥ X3|Xnbrs(1)

⇐⇒ X1 ⊥ X3|X2

6⇒ X1 ⊥ X3

⇐⇒ Σ13 = 0

Graphs and distributions

• Let us return to the question of what kinds of distributions can be
represented by undirected graphs (ignoring the details of the
paticular parameterization).

• Defn: the global Markov properties of a UG H are

I(H) = {(X ⊥ Y |Z) : sepH(X ;Y |Z)}

• Is this definition sound and complete?

XA

XB

XC

Soundness and completeness of global Markov
property

• Defn: An UG H is an I-map for a distribution P if I(H) ⊆ I(P ),
i.e., P |= I(H).

• Defn: P is a Gibbs distribution over H if it can be
represented as

P (X1, . . . , Xn) =
1

Z

∏

c∈C(H)

ψc(xc)

• Thm 5.4.2 (soundness): If P is a Gibbs distribution over H, then
H is an I-map of P .

• Thm 5.4.3 (Hammersley-Clifford): Let P be a positive distribution
(i.e., ∀x.P (x) > 0). If H is an I-map for P , then P can be
represented as a Gibbs distribution over H.

• Thm 5.4.5 (completeness): If ¬sepH(X ;Y |Z), then X 6⊥P Y |Z
in some P that factorizes over H.



Local and global Markov properties

• For directed graphs, we defined I-maps in terms of local Markov
properties, and derived global independence.

• For undirected graphs, we defined I-maps in terms of global Markov
properties, and will now derive local independence.

• Defn: The pairwise markov independencies associated with
UG H = (V,E) are

Ip(H) = {(X ⊥ Y )|V \ {X,Y } : {X,Y } 6∈ E}

• e.g., X1 ⊥ X5|{X2, X3, X4}
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Local Markov properties

• Defn: The local markov independencies associated with UG
H = (V,E) are

Il(H) = {(X ⊥ V \ {X} \NH(X)|NH(X)) : X ∈ V }

where NH(X) are the neighbors

• e.g., X1 ⊥ {X3, X4, X5}|X2
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•NH(X) is also called the Markov blanket of X.

Relationship between local and global Markov
properties

• Thm 5.5.3. If P |= Il(H) then P |= Ip(H).

• Thm 5.5.4. If P |= I(H) then P |= Il(H).

• Thm 5.5.5. If P > 0 and P |= Ip(H), then P |= I(H).

• Corollary 5.5.6: If P > 0, then Il = Ip = I.

• If ∃x.P (x) = 0, then we can construct an example (using
deterministic potentials) where Ip 6⇒ Il or Il 6⇒ I.

I

Il Ip

5.5.4 5.5.5 (P+)

5.5.3

I-maps for undirected graphs

• Defn: A Markov network H is a minimal I-map for P if it is an
I-map, and if the removal of any edge from H renders it not an
I-map.

• How can we construct a minimal I-map from a positive distribution
P ?

• Pairwise method: add edges between all pairs X,Y s.t.

P 6|= (X ⊥ Y |V \ {X,Y })

• Local method: add edges between X and all Y ∈MBP (X),
where MBP (X) is the minimal set of nodes U s.t.

P |= (X ⊥ V \ {X} \ U |U )

• Thm 5.5.11/12: both methods induce the unique minimal I-map.

• If ∃x.P (x) = 0, then we can construct an example where either
method fails to induce an I-map.



Perfect maps

• Defn: A Markov network H is a perfect map for P if for any
X,Y, Z we have that

sepH(X ;Y |Z) ⇐⇒ P |= (X ⊥ Y |Z)

• Thm: not every distribution has a perfect map.

• Pf by counterexample. No undirected network can capture all and
only the independencies encoded in a v-structure X → Z ← Y .

Expressive Power

• Can we always convert directed ↔ undirected?

• No.
W

X Y

Z

X Y

Z

(a) (b)

No directed model
can represent these
and only these
independencies.
x ⊥ y | {w, z}
w ⊥ z | {x,y}

No undirected model
can represent these
and only these
independencies.
x ⊥ y

Converting Bayes nets to Markov nets

• Defn: A Markov net H is an I-map for a Bayes net G if
I(H) ⊆ I(G).

•We can construct a minimal I-map for a BN by finding the minimal
Markov blanket for each node.

•We need to block all active paths coming into node
X, from parents, children, and co-parents; so connect them all to X.

. . .

. . .U1 Um

Yn

Znj

Y1

Z1j
X

Moralization

• Defn: the moral graph H(G) of a DAG is constructed by adding
undirected edges between any pair of disconnected (“unmarried”)
nodes X,Y
that are parents of a child Z, and then dropping all remaining arrows.

U1 U2

X
Z1 Z2

Y1 Y2

U1 U2

X
Z1 Z1

Y1 Y2



Moralization

• Thm 5.7.5: The moral graph H(G) is the minimal I-map for Bayes
net G.

• Pf: moralization loses conditional independence information, and
hence is conservative; hence H(G) is an I-map of G. Moralization
only introduces where needed to make the semantics of simple
separation capture d-separation, hence minimal.

Bayes net to Markov net

•We assign each CPD to one of the clique potentials that contains
it, e.g.

P (U,X, Y, Z) =
1

Z
ψ(U,X)× ψ(X,Y, Z)

=
1

1
P (U )P (X|U )× P (Y )P (Z|X,Y )

= P (X,U )× P (Z|X,Y )P (Y )

X Y

Z

X Y

Z

U U

Alternative to d-separation

• Thm 5.7.7. Let X,Y, Z be 3 disjoint sets of nodes in DAG G. Let
U = X ∪ Y ∪ Z, let G+[U ] be the induced DAG over
Ancestors(U), and let H ′ = moralize(G+[U ]) be the moralized
ancestral subgraph. Then dsepG(X ;Y |Z) ⇐⇒ sepH ′(X ;Y |Z).

• Example: dsepG(Z1;U1|Y1)?
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