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ADMINISTRIVIA

e Spare stapled copies of the book chapters are outside my door (107).
If you take the last unstapled copy, please photocopy and return to
the door.

e Please send me comments on the book (errors, unclear parts) in one
text file at the end of the semester.

e Mark Crowley is our TA. He will hold a regular discussion section on
Fridays 1-2pm, CICSR 304. He will give a Matlab tutorial in the first
meeting.



REVIEW: INDEPENDENCE PROPERTIES OF DAGS

e Defn: let I;(G) be the set of local independence properties encoded
by DAG G, namely:

{X,; L NonDescendants(X;)|Parents(X;)}

e Defn: A DAG G is an I-map (independence-map) of P
if 1,(G) C I(P).

e A fully connected DAG G is an I-map for any distribution, since
I[;(G) =0 C I(P) for any P.

e Defn: A DAG G is a minimal I-map for P if it is an |-map for
P, and if the removal of even a single edge from G renders it not
an |l-map.

e To construct a minimal I-map, Pick a node ordering, then
let the parents of node X; be the minimal subset
U g {X17 s 7Xi—1}
S.t. XZ' 1 {Xl,...,XZ'—l}\U’U.



A DISTRIBUTION MAY HAVE SEVERAL MINIMAL I-MAPS

e Suppose the left DAG G perfectly captures all and only the
independence properties of some distribution P, i.e., I(G) = ](P).
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e Now consider a different node ordering: M, J A, B, E.

e Consider adding parents to node B. Ancestors are M, J, A. We
choose A as smallest parent set since B 1o {M, J}|A.
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A DISTRIBUTION MAY HAVE SEVERAL MINIMAL I-MAPS

e Order B,E, A, J M
e Order M,J A, B, E
e Order M, J, E. B, A
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e All represent exactly the same joint distribution, but
some orderings are better in terms of

— Representation: easier to understand
— Inference: faster to compute P(X,|xy).

— Learning: fewer parameters



(GLOBAL MARKOV PROPERTIES OF DAGS

e X is d-separated (directed-separated) from Y given Z if we
can't send a ball from any node in X to any node in Y, where all

nodes in Z are shaded
%M m
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e Defn: I(GG) = all independence properties that correspond to
d-separation:

I(G) = {(X LY|2): dsepa(X;Y|2)}



SOUNDNESS AND COMPLETENESS OF D-SEPARATION

e Defn: P factorizes over DAG G if it can be represented as

P(Xy,...,Xn) = | | P(X;|Xx,)
1

e Thm 3.3.3 (soundness): If P factorizes over GG, then I(H) C I(P).

e Thm 3.3.5 (completeness): If —~dsepz(X;Y|Z), then X [V p Y|Z
in some P that factorizes over G.



P-MAPS

e Defn: A DAG G is a perfect map (P-map) for a distribution P
if I(P)=1(G).

e Thm: not every distribution has a perfect map.

e Pf by counterexample. Suppose we have a model where
A 1L CH{B,D}, and B 1 D|{A,C}. This cannot be represented
by any Bayes net.

e e.g., BN1 wrongly says B 1. D|A, BN2 wrongly says B | D.

OROROGRONONO
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UNDIRECTED GRAPHICAL MODELS

e Graphs where nodes = random variables, and edges = correlation
(direct dependence).

e Defn: Let H be an undirected graph. Then sepg(A; C|B) iff all
paths between A and C' go through some nodes in B (simple graph
separation).

e Defn: the global Markov properties of a UG H are
I(H) = {(X L Y|2): seppr(X:Y|2)}
e UGMs also called Markov Random Fields (MRFs) or Markov

Networks.



PARAMETERIZING UNDIRECTED GRAPHICAL MODELS

e An undirected graph H specifies a family of distributions s.t.,
I(H) CI(P).
e To specify a particular distribution P, we need to add parameters

to the graph.

e For Bayes nets, we used conditional probability
distributions (CPDs), P(X;|Xy,), where
ZXZ- P<Xi’X7Tz'> = 1.

e For Markov nets, we use potential functions or factors
defined on subsets of completely connected sets of nodes, where

Ye(Xe) > 0.



CLIQUES

e Defn: a complete subgraph is a fully interconnected set of nodes.

e Defn: a (maximal) clique C'is a complete subgraph s.t. any
superset C’ O C'is not complete.

e Defn: a sub-clique is a not-necessarily-maximal clique.

®\

e Example: max-cliques = {A, B, D},{B,C, D}, sub-cliques =
edges = {A,D},{A, B}, ...



UNDIRECTED GRAPHICAL MODELS

e Defn: an undirected graphical model representing a
distribution P(X7q,...,X},) is an undirected graph H, and a set of
positive potential functions . associated with sub-cliques of

H, s.t.

P(Xq,....Xp) = % 1] velze)

where Z is the partition function:

e Defn: if H is a UGM for P, we say that P factorizes over H,
or that P 1s a Gibbs distribution over H.



EXAMPLE OF UGM - MAX CLIQUES

@\

P(x14) = %10124(1‘124) X 1)934(2234)

7 = Z V124(2124) X V234(2234)

L1,L2,L3,L4

e We can represent P(X.4) as two 3D tables instead of one 4D table.



EXAMPLE OF UGM - SUBCLIQUES

@\

1
P(xyy) = G 1] wij(aij)
<ij>
- %wlg(:Elg)¢14($14)¢23(x23)¢24<x24)¢34<x34)

z =Y ]I ¢ij=i)
T1,T2,L3,T4 <3)>
e We can represent P(X7{.4) as five 2D tables instead of one 4D table.



MAX CLIQUES VS SUB CLIQUES

@\

e Max clique version

1
P(X1y4) = 7#1234()(1234)

e Sub clique version

P<X1:4)

1
= 11 vijlwi =)
<1)>
%1&12(x12>¢13($13)¢14($14)¢23 (x23>¢24($24)¢34($34)



INTERPRETATION OF CLIQUE POTENTIALS

O—0O—C

e The model impliesx 1 z |y

p(x,y,2) = p(y)p(x|y)p(z|y)

e \We can write this as:

p(x,y,z) = p(x,y)p(zly) = ¥xy(X, y)Vyz(y. z)
p(x,y.z) = p(x|y)p(z,y) = ¥xy(X,¥)yz(y. z)
cannot have all potentials be marginals
cannot have all potentials be conditionals

e The positive clique potentials can only be thought of as general
“compatibility”, “goodness” or “happiness” functions over their
variables, but not as probability distributions.



BOLTZMANN DISTRIBUTIONS/ LOG-LINEAR MODELS

e \We often represent the clique potentials using their logs:

Vo(xo) = exp{—He(xco)}

for arbitrary real valued “energy” functions H(x().
The negative sign is a standard convention.

e This gives the joint a nice additive structure:

P(X) = e~ 3 Holxo)} = 5 ep{~H(X)}

cliques C

where the sum in the exponent is called the “free energy”:

H(X)=) Ho(x)
C

e In physics, this is called the “Boltzmann distribution”.

e In statistics, this is called a log-linear model.



EXAMPLE: BOLTZMANN MACHINES

&

e A fully connected graph with pairwise (edge) potentials on
binary-valued nodes (for x; € {—1,+1} or z; € {0,1}) is called a
Boltzmann machine.

P(X14) = H %] 55@737]
<2]>
e where 1;;(z;, x;) = exp(—H;;(x;, 7)), and
H(zxj) = (2 — pi) Vij(xj — )

e Hence overall energy has form

= Z V,LJZCZZE] -+ Z a;x; + C



EXAMPLE: ISING (SPIN-GLASS) MODELS

e Nodes are arranged in a regular topology (often a regular packing
grid) and connected only to their geometric neighbours.

O-0-0-0—0
O—~O—0—-0—<
O—O—0—-0—C
OO~
O-O—0-0—0

e Same as sparse Boltzmann machine, where V;; # 0 iff 7, j are
neighbors.

e c.g., nodes are pixels, potential function encourages nearby pixels to
have similar intensities.

e Potts model = multi-state Ising model.



EXAMPLE: MULTIVARIATE (GAUSSIAN DISTRIBUTION

e A Gaussian distribution can be represented by a fully connected
graph with pairwise (edge) potentials of the form

H(x) =Y (x; — mi)Vij(xj — pj)
]
where 1 is the mean and V is the inverse covariance (precision)
matrix, since

P(rry) = e 1)

e Same as Boltzmann machine except z; € R.



SPARSE GRAPH = ZEROS IN PRECISION MATRIX

e V;; = 0 iff no edge between X; and X .
e Chain structured graph = block diagonal precision matrix

02020020

/- -OOO\

V=x"t=1]0.--0
00 - - -

\000 - -




SPARSE PRECISION % SPARSE COVARIANCE

(16000 /010 015 —0.13 —0.08 0.15 )
62700 0.15 —0.03 0.02 0.0l —0.03
07380 ©=]-013 002 010 007 —0.12
008409 —0.08 0.01 0.07 —0.04 0.07
\000095) \ 0.15 —0.03 —0.12 0.07 0.08 )

Y3 =0 = X1 L X3X,55)
— X7 L Xg‘XQ
= X1 L X3
— 213=10




(ARAPHS AND DISTRIBUTIONS

e L et us return to the question of what kinds of distributions can be
represented by undirected graphs (ignoring the details of the
paticular parameterization).

e Defn: the global Markov properties of a UG H are
I(H) = {(X LY|2): sepu(X;Y|2)}

e Is this definition sound and complete?



SOUNDNESS AND COMPLETENESS OF GLOBAL MARKOV
PROPERTY

e Defn: An UG H is an I-map for a distribution P if I(H) C I(P),
e, PE=I(H).

e Defn: P is a Gibbs distribution over H if it can be
represented as

P(Xl,... H lbc 370

e Thm 5.4.2 (soundness): If P is a Gibbs dlstrlbutlon over H, then
H is an |-map of P.

e Thm 5.4.3 (Hammersley-Clifford): Let P be a positive distribution

(i.e., Vz.P(x) > 0). If H is an |-map for P, then P can be
represented as a Gibbs distribution over H.

e Thm 5.4.5 (completeness): If =sepy(X;Y|Z), then X L p Y |Z

in some P that factorizes over H.



LOCAL AND GLOBAL MARKOV PROPERTIES

e For directed graphs, we defined |I-maps in terms of local Markov
properties, and derived global independence.

e For undirected graphs, we defined |-maps in terms of global Markov
properties, and will now derive local independence.

e Defn: The pairwise markov independencies associated with

UG H = (V, F) are
Ip(H) ={(X LY)[VA{X, Y} {X,Y} & E}
ecg, X1 L X:|{Xo, X3, X}

O 2 & 20



LocAL MARKOV PROPERTIES

e Defn: The local markov independencies associated with UG
H = (V,FE) are
L(H) = {(X LV \{X}\ Ng(X)|Ng(X)): X e V}
where Nz (X)) are the neighbors
eeg, Xj L {X3 Xy, X5} X0

Ox 2000

e Ny (X) is also called the Markov blanket of X.
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RELATIONSHIP BETWEEN LOCAL AND GLOBAL MARKOV
PROPERTIES

e Thm 553. If P |= I;}(H) then P |= I,,(H).
e Thm554. If P=I(H) then P = I;(H).
e Thm 555. If P> 0and P = I,(H), then P = I(H).
e Corollary 5.5.6: If P >0, then I; = I, = I.

o If dx.P(x) = 0, then we can construct an example (using
deterministic potentials) where I, % I; or I} # I.

5.5)3.4/ | ‘\5.5.5 (P+)

5.5.3




I-MAPS FOR UNDIRECTED GRAPHS

e Defn: A Markov network H is a minimal I-map for P if it is an
I-map, and if the removal of any edge from H renders it not an
l-map.

e How can we construct a minimal I-map from a positive distribution

P?
e Pairwise method: add edges between all pairs X,Y s.t.
P#EX LY[VA{X,Y})
e Local method: add edges between X and all Y € M Bp(X),
where M Bp(X) is the minimal set of nodes U s.t.
P = (X LVA\{X}\UU)
e Thm 5.5.11/12: both methods induce the unique minimal I-map.

o If dx.P(x) = 0, then we can construct an example where either
method fails to induce an |-map.



PERFECT MAPS

e Defn: A Markov network H is a perfect map for P if for any
X.,Y, Z we have that

sepg(X;Y|Z) «<—= PE (X LY|Z)
e Thm: not every distribution has a perfect map.

e Pf by counterexample. No undirected network can capture all and
only the independencies encoded in a v-structure X — Z <« Y.



EXPRESSIVE POWER

e Can we always convert directed <~ undirected?

e No.

Lo s

No directed model
can represent these
and only these
independencies.
x Ly |{w,z}
wlLz|{x,y}

(@)

Z
(b)

No undirected model
can represent these
and only these
independencies.

X ly



CONVERTING BAYES NETS TO MARKOV NETS

e Defn: A Markov net H is an |-map for a Bayes net G if
I(H) C I(G).

e \We can construct a minimal |I-map for a BN by finding the minimal
Markov blanket for each node.

e \We need to block all active paths coming into node
X, from parents, children, and co-parents; so connect them all to X .




MORALIZATION

e Defn: the moral graph H(G) of a DAG is constructed by adding
undirected edges between any pair of disconnected ( “unmarried”)

nodes XY

that are parents of a child Z and then dropping all remaining arrows.

%ﬂ CXOgR
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MORALIZATION

e Thm 5.7.5: The moral graph H(G) is the minimal I-map for Bayes
net G.

e Pf: moralization loses conditional independence information, and
hence is conservative; hence H(G) is an I-map of GG. Moralization
only introduces where needed to make the semantics of simple
separation capture d-separation, hence minimal.



BAYES NET TO MARKOV NET

e We assign each CPD to one of the clique potentials that contains
it, e.g.

P(U, X, Y, Z) = —(U, X) x $(X,Y, Z)

PU)P (X\U>><P(Y)P<Z\X,Y)
X,U) x P(Z|X,Y)P(Y)
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ALTERNATIVE TO D-SEPARATION

e Thm 5.7.7. Let X,Y, Z be 3 disjoint sets of nodes in DAG G. Let
U=XUY UZ, let GT[U] be the induced DAG over
Ancestors(U), and let H' = moralize(GT[U]) be the moralized
ancestral subgraph. Then dsepq(X;Y|Z2) < sepy/(X;Y|Z).

e Example: dsepq(Z1;U|Y1)?
G
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