PROBABILISTIC GRAPHICAL MODELS
CPSC 532¢ (Torics IN Al)
STAT 521A (TOPICS IN MULTIVARIATE ANALYSIS)

LECTURE 2

Kevin Murphy

Wednesday 15 September, 2004

REVIEW: PROBABILISTIC INFERENCE (STATE ESTIMATION)

ADMINISTRIVIA

o Class web page http://www.cs.ubc.ca/~murphyk
/Teaching/CS532c FallO4/index.html

e Send email to 'majordormo@cs.ubc.ca’ with the contents
'subscribe cpsc535c’ to join class list.
(Note: email address does not correspond to correct class number!)

e Homework due in class on Monday 20th.

e Monday'’s class starts at 9.30am as usual.

NAIVE INFERENCE

e Inference is about estimating hidden (query) variables H from
observed (visible) measurements v, which we can do as follows:

)
O P

e Examples:
— Medical diagnosis: H diseases, v = findings/ symptoms,
— Speech recognition: H = spoken words, v = acoustic waveform
— Genetic pedigree analysis: H = genotype, v = phenotype

e Represent joint prob. distribution P(C, S, R, W) as a 4D table
of 2% = 32 numbers.

e We observe the grass is wet and want to know how likely it was that
the sprinkler caused this event.

e Query/hidden vars = {S}, visible vars = {IW},

nuisance vars = {C, R}.



NAIVE INFERENCE (GRAPHICAL MODELS

e |t is easy to marginalize a joint probability distribution when it is e Problems with representing joint as a big table
represented as a table

ecg, P(X,Y)=Y,P(X,Y,Z)

— Representation: big table of numbers is hard to understand.
— Inference: computing a marginal P(X;) takes O(2V) time.
— Learning: there are O(2"V) free parameters to estimate.

p(xy)
AV e Graphical models solve all 3 problems by providing a structured
; representation for joint probability distributions.
o y e Graphs encode conditional independence properties and represent

families of probability distributions that satisfy these properties.

e Today we will study the relationship between graphs and

’ * independence properties.
INDEPENDENCE PROPERTIES OF DISTRIBUTIONS (LOCAL) INDEPENDENCE PROPERTIES OF DAGS
e Defn: let I(P) be the set of independence properties of the form e Defn: let [;(G) be the set of local independence properties encoded
X 1 Y|Z that hold in distribution P. by DAG G, namely:
X Y|P(X)Y) {X; L NonDescendants(X;)|Parents(X;)}
8 (1) 822 e i.e., a node is conditionally independent of its non-descendants
10 0'12 given its parents.
11! 048 e Ancestors(X;) C NonDescendants(X;)
P(X=1) = 048+0.12=0.6
PY=1) = 0.3240.48=0.8
P(X=1Y=1) = 048=0.6x0.8
P(X =zY =y) = P(X=x)P(Y =y)Vz,y

= (X LY)el(P)
oo PE(XLY)



EXAMPLE OF [;(G)

I-MAPS

HONO

Cx—>y Cy->x
Li(Gp) = {(X LY)}
L(Gxy) = 0
L(Gy_x) =10

FROM I-MAP TO FACTORIZATION

e Defn: P factorizes according to G if P can be written as
P(X1,..., Xy) = | [ P(XilPag(X)))

1

e Thm 3.2.6: If G is an I-map of P, then P factorizes according to G.

e Proof:

P(XlzN) =

i)

(XDP(XQ‘XDP(X?)‘XL XQ) ... chain rule

P(X;|X1.i-1)

I
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P(X;|Pa(Xj;), Ancestors(X;) \ Pa(Xj;))

Il
‘:2

N
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P(X;|Pa(Xj;)) since G is I-map of P

Il
\'SZ

N
|
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e Defn: A DAG G is an I-map (independence-map) of P
if I;(G) C I(P).

e From previous example,

I)(Gp)
(GX—>Y)
)

I(Gy_x
I(P)={(X LY)}

(X LY)}

{
0
0

e Hence all three graphs are I-maps of P.

BAYES NETS PROVIDE COMPACT REPRESENTATION OF JOINT
PROBABILITY DISTRIBUTIONS

e Thm: If G is an |-map of P, then P factorizes according to G.

e Corollary: If G is an |I-map of P, then we can represent P using GG
and a set of conditional probability distributions (CPDs),
P(X;|Pa(Xj;)), one per node.

e Defn: A Bayesian network (aka belief network)
representing distribution P is an I-map of P and a set of CPDs.

e For binary random variables, the Bayes net takes O(N2/%)
parameters (K = max. num. parents), whereas full joint takes
O(2N) parameters.

e Factored representation is easier to understand, easier to learn and
supports more efficient inference (see later lectures).



WATER SPRINKLER

N

P(Xy.n) = [] P(XilPa(Xy)
i=1

o O

P(C,S,R,W) = P(C)P(S|C)P(R|C)P(W|S, R)

MINIMAL I-MAPS

e Let G be a fully connected DAG. Then I;(G) = () C I(P) for any
P.

e Hence the complete graph is an |I-map for any distribution.

e Defn: A DAG G is a minimal I-map for P if it is an |-map for
P, and if the removal of even a single edge from GG renders it not an
[-map.

e Construction: pick a node ordering, then let the parents of node X;
be the minimal subset of U C {X1,..., X;_1}
sit. X; L {Xl,...,XZ'— 1}\U‘U

e Defn (revised): A Bayesian network (aka belief network)
representing distribution P is a minimal I-map of P and a set of

CPDs.

FROM FACTORIZATION TO I-MAP

e Thm 3.2.8: If P factorizes according to &, then GG is an |-map of P.
e Proof: we must show X L W|U

P(X,W|U) = %
Yy P WLULY)
¢ === PU)
PW)PUW)PX|U) >y PY|X, W)

P(U)
_ P(W,U)
= TU)P(XW);P(HX, W)

— P(W|U)P(X|U)

GLOBAL MARKOV PROPERTIES OF DAGS

e By chaining together local independencies, we can infer more global
independencies.

e Defn: X is d-separated (directed-separated) from Y given Z if
along every undirected path between X and Y there is a node w
s.t. either

— W has converging arrows (— w <) and neither W nor its
descendants are in z; or
— W does not have converging arrows and W € 7.

e Defn: I(GG) = all independence properties that correspond to
d-separation:

HG) ={(X LY|Z):d—sepg(X;Y|Z)}



BAYES-BALL RULES

A is d-separated from B given C' if we cannot send a ball from any
node in A to any node in B according to the rules below, where shaded
nodes are in C'.
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COMPLETENESS OF D-SEPARATION - V1

SOUNDNESS OF D-SEPARATION

e Defn (Completeness) v1: For any distribution P that factorizes
over G, if (X LY|Z) € I(P), then dsep(X;Y|Z).

e Contrapositive rule: (A = B) < (B = —A).

e Defn (Completeness, contrapositive form) v1. If X and Y are not

d-separated given Z, then X and Y are dependent in all
distributions P that factorize over G.

e This definition of completeness is too strong since P may have
conditional independencies that are not evident from the graph.

e cg. Let G be the graph X — Y, where P(Y'|X) is

AlB=0B=1
0 04 06
1) 04 06

e GG is l-map of Psince [(G) =0 C I(P)={(X LY)}.
e But the CPD encodes X 1 Y which is not evident in the graph.

e Thm 3.3.3 (Soundness): If P factorizes according to G, then
I(G) C I(P).
e i.e., any independence claim made by the graph is satisfied by all

distributions P that factorize according to G (no false claims of
independence).

e Pf: see later (when we discuss undirected graphs).

COMPLETENESS OF D-SEPARATION - V2

e Defn (Completeness) v2: If (X L Y|Z) in all distributions P that
factorize over G, then dsepq(X;Y|Z).

e Defn (Completeness, contrapositive form) v2: If X and Y are not
d-separated given Z, then X and Y are dependent in some
distribution P that factorizes over G.

e Thm 3.3.5: d-separation is complete.
e Proof: See Koller & Friedman p90.

e Hence d-separation captures as many of the independencies as
possible (without reference to the particular CPDs) for all
distributions that factorize over some DAG.



P-MmAPS

UNDIRECTED GRAPHICAL MODELS

e Can we find a graph that captures all the independencies in an
arbitrary distribution (and no more)?

e Defn: A DAG G is a perfect map (P-map) for a distribution P

if I(P)=1(G).
e Thm: not every distribution has a perfect map.

e Pf by counterexample. Suppose we have a model where
A 1L CH{B,D}, and B L D|{A,C}. This cannot be represented
by any Bayes net.

o c.g., BN1 wrongly says B L D|A, BN2 wrongly says B L D.
O )
& GERONC

EXPRESSIVE POWER

e Graphs with one node per random variable and edges that connect
pairs of nodes, but now the edges are undirected.

e Defn: Let H be an undirected graph. Then sepy(A; C|B) iff all
paths between A and C' go through some nodes in B (simple graph
separation).

e Defn: the global Markov properties of a UG H are
I(H) = {(X LY|Z): sepp(X:Y|2)}

e UGs can model symmetric (non-causal) interactions that directed
models cannot.

e aka Markov Random Fields, Markov Networks.

CONDITIONAL PARAMETERIZATION?

e Can we always convert directed <+ undirected?

e No.
w
X Y X Q\ /Q Y
z z
@ (b)

No directed model
can represent these
and only these
independencies.
x Ly|{w, z}
wlz|{xy}

No undirected model
can represent these
and only these
independencies.
xly

e In directed models, we started with p(X) = [[; p(x;|xx,) and we
derived the d-separation semantics from that.

e Undirected models: have the semantics, need parametrization.
e What about this “conditional parameterization”?
p(X) = Hp(xi’Xneighbours(i))
)

e Good: product of local functions.
Good: each one has a simple conditional interpretation.
Bad: local functions cannot be arbitrary, but must agree properly in
order to define a valid distribution.



MARGINAL PARAMETERIZATION? CLIQUE POTENTIALS

o OK, What about th|s “marginal parameterization”? ® Whatever factorization we p|Ck, we knOW that Only Connected
nodes can be arguments of a single local function.
p(X) = Hp(xiv Xneighbours(i))

; e A clique is a fully connected subset of nodes.

e Good: product of local functions e Thus, consider using a product of clique potentials:

Good: each one has a simple marginal interpretation. P(X) = 1 H We(xe) 7 — Z H Ve(xe)
Bad: only very few pathalogical marginals on overalpping nodes can Z cliques ¢ X cliques c

be multiplied to give a valid joint. e Each clique potential ¥¢(x.) > 0 is an arbitrary positive function of

its arguments.

e The normalization term Z is called the partition function (a
function of the parameters 1) and ensures ), P(x) = 1.

e Without loss of generality we can restrict ourselves to maximal
cliques. (Why?)

e A distribution P that is representable by a UG H in this way is
called a Gibbs distribution over H.

EXAMPLES OF CLIQUE POTENTIALS INTERPRETATION OF CLIQUE POTENTIALS

X Y Z
Y
O—O—=0

e The model implies x L z |y
p(x,y,2z) = p(y)p(x|y)p(zly)

e We can write this as:

. X X p(x,y,z) = p(x,y)p(z|y) = Uxy(X, ¥)Uya(y, z)

—O—O—O— -+ p(x,y,2) = p(X[y)p(z,¥) = ¥xy(X, ¥)Uya(y, 2)

cannot have all potentials be marginals
cannot have all potentials be conditionals

Xi Xi+1
11 11 e The positive clique potentials can only be thought of as general
-1(15/02 -1|15/02

Xi1 Xi “compatibility”, “goodness” or “happiness’ functions over their
variables, but not as probability distributions.

(b)



