
Lecture 20:

Variational Methods

Kevin Murphy
29 November 2004

Inference

• Inference means computing P (hi|v), where h are the hidden
variables v are the visible variables.

• For discrete (eg binary) hidden nodes, exact inference takes O(2w)
time, where w is the induced width of the graph.

• For continuous hidden nodes, exact (closed-form) inference is only
possible in rare circumstances eg. jointly Gaussian models (Kalman
filters, etc.).

•We will first consider various approximations for approximate
inference for discrete variables.

• For continuous or mixed discrete/cts variables

– Extend ADF/ PF from online inference in chains to offline
inference in general graphs: (ADF → EP, PF → NBP)

– Or use MCMC (eg Gibbs)

Variational inference

• Let us try to find an approximation Q(h) which is as close as
possible to P (h|v).

•We usually measure closeness using Kullback Leibler divergence:

D(Q,P)
def
=

∫

h
Q(h) log

Q(h)

P (h|v)
= EH∼Q log

Q(H)

P (H|v)

• This is different than minimizing D(P,Q) = EH∼P log
Q(H)
P (H|v)

which is intractable.
D(q, p)

D(p, q)

•We will endow Q with free (variational) parameters, and minimize
minξD(Q(h, ξ), P (h|v)).

Variational Free Energy

•Minimizing D(Q,P)
def
=

∫

hQ(h) log
Q(h)
P (h|v)

is hard, since P (h|v) is

intractable. But for a Bayes net, P (h, v) is easy (product of CPDs).

• So we minimize the free energy:

F (Q,P)
def
= D(Q,P) − logP (v)

=

∫

h
Q(h) log

Q(h)

P (h|v)
−

∫

h
Q(h) logP (v) =

∫

h
Q(h) log

Q(h)

P (h, v)

• Since D(Q,P) ≥ 0, we have F (Q,P) ≥ − logP (v), so
minimizing F is maximizing an upper bound on the log likelihood.

• Alternative derivation: use Jensen’s inequality:

logP (v) = log

∫

h
P (h, v) = log

∫

h
Q(h)

P (h, v)

Q(h)

≥

∫

h
Q(h) log

P (h, v)

Q(h)
= −F (Q,P)

Exact inference

• Let us minimize F (Q,P) subject only to the constraint that
∑

hQ(H) = 1:

J =
∑

h

Q(h) logQ(h) −
∑

h

Q(h) logP (h|v) + λ(
∑

h

Q(h) − 1)

•Derivative:

∂J

∂Q(h′)
= logQ(h′) +

Q(h′)

Q(h′)
− logP (h′|v) + λ

• Solving ∂J
∂Q(h′)

= 0 yields Q(h) = P (h|v).

Pairwise MRFs

• For ease of explanation, I will often assume the model can be
written as an MRF with pairwise potentials (one per edge):

P (x|y) =
1

Z

∏

<ij>

ψij(xi, xj)
∏

i

ψii(xi)

• Any Bayes net/ Markov net/ factor graph can be converted into
this form, by creating extra “meganodes”.

Viterbi approximation

• The Viterbi approximation is to assume that all the posterior
probability mass is assigned to a single (MAP) assignment ĥ:

Q(h) = δ(h, ĥ).

• i.e., we associate every hidden variable with a single value.

• For GMs with low treewidth, we can find ĥ efficiently.

• In general, we can use iterative techniques.

Iterative Conditional Modes (ICM)

• ICM assigns each variable to its MAP estimate, holding all the
others constant:

hi := arg max
hi

P (hi|h \ hi, v) = arg max
hi

ψii(hi)
∏

j∈Ni

ψij(hi, hj)

where the hj’s are in i’s Markov blanket.

• K-means clustering is an example of ICM, where h are the
assignment variables for each data point to a cluster, and the value
of the cluster centers (means).

• ICM is very greedy and often gets stuck in local optima.

Gibbs sampling

• Gibbs sampling is a stochastic version of ICM, where instead of
picking the best state, we sample a state:

hi ∼ P (hi|h \ hi, v) =
F (hi)

∑

hi
F (hi)

where
F (hi) = ψii(hi)

∏

j∈Ni

ψij(hi, hj)

• This is less greedy than ICM, but can be much slower.

Mean field method

• The mean field method is like a deterministic version of Gibbs
sampling, where we replace samples with expected values.

•We make a fully factorized approximation: Q(x) =
∏

i bi(xi). So
the mean field free energy is

FMF ({bi}) = −
∑

<ij>

∑

xi,xj

bi(xi)bj(xj) logψij(xi, xj)

+
∑

i

∑

xi

bi(xi)[log bi(xi) − logψii(xi)]

•We want to minimize FMF (bi) subject to
∑

xi
bi(xi) = 1.

• Hence we iteratively update

bi(xi) ∝ ψii(xi) exp





∑

j∈Ni

∑

xj

bj(xj) logψij(xi, xj)





Mean field Boltzmann machines

• The Boltzmann machine (stochastic Hopfield network) is a pairwise
MRF where nodes are binary (either Si ∈ {0, 1} or
hi ∈ {−1,+1}), and potentials have the restricted form
ψij(Si, Sj) = exp θijSiSj and φii(Si) = exp θi0Si:

P (s) =
1

Z
exp





∑

i<j

θijSiSj +
∑

i

θi0Si





• The mean field approximation is Q(h|v) =
∏

i µ
Si
i (1 − µi)

1−Si,
where µi = E(Si) = P (Si = 1|v).

•Minimizing D(P,Q) yields the mean field update equations:

µi = σ(
∑

j

θijµj + θi0)

Structured variational approximations

•Meanfield assumes Q is fully factorized.

•We can model correlations by exploiting tractable substructure.

• e.g., decompose factorial HMM into product of chains

Q(X1:N
1:T) =

N
∏

i=1

Q(Xi
1:N)

X
(1)
1 X

(1)
2 X

(1)
3

X
(2)
1 X

(2)
2 X

(2)
3

X
(3)
1 X

(3)
2 X

(3)
3

Y1 Y2 Y3

Loopy belief propagation

• Structured variational approximations remove some edges from the
graph and replace their effect with variational parameters.

• An alternative is to leave all the original edges intact, but only
capture their effect locally.

• Recall that the free energy is

F =
∑

h

Q(h) logQ(h) −
∑

k

∑

hCk

Q(hCk) logψk(hCk, vCk)

• The second term is the expected value of a local factor, and is easy
to compute for any Q(h).

• But the entropy term is intractable for general Q(h).

•We will show how loopy belief propagation can minimize an
approximation to this.

Bethe free energy

• The Bethe approximation is

Q(h) ≈

∏

<ij> bij(hi, hj)
∏

i bi(hi)
di−1

where di is the degree of hi (ie., number of factors it appears in).

• So the Bethe free energy is

FMF ({bi, bij}) = −
∑

<ij>

∑

xi,xj

bij(xi, xj)[log bij(xi, xj) − log φij(

−
∑

i

(di − 1)
∑

xi

bi(xi)[log bi(xi) − logψi(xi)]

where φij(xi, xj) = ψij(xi, xj)ψii(xi)ψjj(xj).

• Loopy belief propagation is a way to minimize this subject to the
constraints

∑

xi
bij(xi, xj) = bj(xj) and

∑

xi
bi(xi) = 1.

Loopy belief propagation minimizes Bethe free
energy

• In LBP, we iteratively update our beliefs by message passing

mij(xj) ∝
∑

xi

ψij(xi, xj)ψii(xi)
∏

k∈Ni\j

mki(xi)

bi(xi) ∝ ψii(xi)
∏

k∈Ni

mki(xi)

• The messages mij are exp(λij), where λij is the Lagrange
multiplier enforcing the marginalization constraint while minimizing
Fbethe.

• LBP sometimes called “sum-product algorithm”.

Discrete Message passing/ belief propagation

• Consider an MRF with one potential per edge

P (X) =
1

Z

∏

<ij>

ψij(Xi, Xj)
∏

i

φi(Xi)

•We can generalize the forwards-backwards algorithm as follows:

mij(xj) =
∑

xi

φi(xi)ψij(xi, xj)
∏

k∈Ni\{j}

mji(xi)

bi(xi) ∝ φi(xi)
∏

j∈Ni

mji(xi)

• If all potentials, messages and beliefs are discrete:

mij = ψTijφi. ∗
∏

k

mki, bi ∝ φi. ∗
∏

j∈Ni

mji

Complexity of discrete BP

• If all potentials, messages and beliefs are discrete:

mij = ψTijφi. ∗
∏

k

mki, bi ∝ φi. ∗
∏

j∈Ni

mji

• If there are K states, each message takes O(K2) time to compute.

• For certain kinds of potentials (e.g., ψij(i, j) = exp(||ui − uj||
2)

where ui, uj ∈ IR), the messages can be computed in O(K logK)
or even O(K) time.

• For general potentials, once can use multipole methods and fancy
data structures (like kd-trees) to do this in O(K) or O(K logK)
time. See Nando’s NIPS workshop on “fast methods”.

Loopy belief propagation

• The BP equations are exact if the graph is a chain or a tree (assuming
we can implement sum and product operators analytically).

•What happens if BP is applied to graphs with loops?

• If may not convergence, and even if it does, it may be wrong.

• However, in practice, it often works well (e.g., error correcting codes).

Msg Type Algo Correct if conv? Suff cond for conv?
Discrete

∑ ∏

No No
Discrete max

∏

Strong local opt. No
Gaussian

∑ ∏

Means - yes, covs - no Yes
General

∑ ∏

? ?

Summary so far

• For discrete state spaces, we have the following ranking of algorithms
from best to worst (in terms of accuracy/ speed):

– Loopy belief propagation

– Mean field

– Iterative conditional modes

– Gibbs sampling

•What about continuous state spaces?

Message passing for general state spaces

• Filtering on chains is equivalent to message passing in a left-to-right
fashion.

X1 X4

Y3 Y4

X2 X3

Y1 Y2

• Smoothing on chains involves a forward and a backwards pass.

• Inference on trees involves an upwards and a downwards pass.

• Inference on loopy graphs involves parallel message passing.

H1 H4

O3 O4

H2 H3

O1 O2

x x

x

x

x

x

1,n 3,n

2,n

4,n

6,n

5,n

Gaussian Message passing/ belief propagation

• Consider an MRF with one potential per edge

P (X) =
1

Z

∏

<ij>

ψij(Xi, Xj)
∏

i

φi(Xi)

where ψij = exp(XT
i VijXj) and φi = exp(1

σi
(Xi − µi)

2).

• The BP equations are as before:

mij(xj) =
∑

xi

φi(xi)ψij(xi, xj)
∏

k∈Ni\{j}

mji(xi)

bi(xi) ∝ φi(xi)
∏

j∈Ni

mji(xi)

• Since a Gaussian times a Gaussian is a Gaussian, and the marginal of
a Gaussian is another Gaussian, we can implement these equations
in closed form (generalization of the Kalman filter).

General Message passing/ belief propagation

• In general, how can we implement these equations?

mij(xj) =
∑

xi

φi(xi)ψij(xi, xj)
∏

k∈Ni\{j}

mji(xi)

bi(xi) ∝ φi(xi)
∏

j∈Ni

mji(xi)

• This depends on the form of the potentials ψ and φ, and the form
of the beliefs b (from which the form of the messages m can be
inferred), just as in filtering for state-space models.

Expectation Propagation (EP)

• Cross between ADF (assumed density filtering) and BP.

• Suppose potentials/ beliefs are mixtures of K Gaussians. Number
of mixture components of posterior belief is Kd for a node with d
neighbors; need to project back to K Gaussians (moment matching).

• The tractable messages are inferred by dividing the new belief by the
old belief.

• EP is iterated ADF.

• Advantages of iterating:

– Errors made earlier in the sequence can be recovered from.

– Less dependence on the order in which data arrives.

•Multiple forward-backwards passes are necessary, even for chains/
trees, because the message computations are not exact.

Non-parametric belief propagation (NPBP)

• Cross between particle filtering and BP.

EM

• If all the hidden variables are discrete, and all the parameters are
continuous, we can use the approximation Q(h, θ) = Q(h)δ(θ, θ̂),
where Q(h) is a general posterior on h and a delta function on the
parameters.

• The EM algorithm consists of minimizing F (Q,Pθ) using
coordinate ascent.

• E-step: minimize wrt Q(h) = computing P (h|v, θ̂).

•M-step: minimize wrt δ(θ, θ̂).

EM variants

• Standard EM: Q(h, θ) = P (h|v, θ̂)δ(θ, θ̂).

• Variational EM: use a variational approximation (eg mean field) in
the E-step.

• Stochastic EM: use Monte Carlo in the E-step.

• Incremental EM: update parameters after each training case
(online) instead of after all data (batch).

• “Generalized EM”: do a partial M-step (eg. gradient step).

• Variational Bayes EM (ensemble learning): replace point estimates
of parameters with distributions in the M-step.

• CG-EM: alternate between conjugate gradient and EM.

Comparison of methods

• “A comparison of algorithms for inference and learning in PGMs”,
Frey and Jojic, PAMI 2004 to appear

Layered model of foreground + background

Multiple layers plus continuous deformations Comparison of EM: exact, mean field, ICM, BP

Comparison of EM: exact, mean field, ICM, BP

