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VARIATIONAL INFERENCE

INFERENCE

e Let us try to find an approximation (Q(h) which is as close as
possible to P(h|v).

e We usually measure closeness using Kullback Leibler divergence:

D(Q,P) /h Q(h) log% = Eyqlog pci%
(H)

e This is different than minimizing D(P, Q) = Eg. plog _pC%HW)

which is mtractable
D(p, 9)
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e We will endow () with free (variational) parameters, and minimize

ming D(Q(h,§), P(h|v)).

e Inference means computing P(h;|v), where h are the hidden
variables v are the visible variables.

e For discrete (eg binary) hidden nodes, exact inference takes O(2%)
time, where w is the induced width of the graph.

e For continuous hidden nodes, exact (closed-form) inference is only
possible in rare circumstances eg. jointly Gaussian models (Kalman
filters, etc.).

e We will first consider various approximations for approximate
inference for discrete variables.

e For continuous or mixed discrete/cts variables

— Extend ADF/ PF from online inference in chains to offline
inference in general graphs: (ADF — EP, PF — NBP)

— Or use MCMC (eg Gibbs)

VARIATIONAL FREE ENERGY

e Minimizing D(Q, P) dof [, Q(h)lo gp(<|L>) is hard, since P(h|v) is
intractable. But for a Bayes net, P(h,v) is easy (product of CPDs).

e So we minimize the free energy:
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e Since D(Q,P) > O, we have F(Q,P) > —log P(v), so
minimizing F' is maximizing an upper bound on the log Iikelihood.

e Alternative derivation: use Jensen's inequality:

log P(v) = log/ P(h,v) = log/hQ(h)P o

P(h,v) _
Qo — rio.p




EXACT INFERENCE

e Let us minimize F(Q, P) subject only to the constraint that

>nQH) =1

J = Q(h)log Q(h Z@ )log P(hlv) +A(>_ Q(h) -
h h

e Derivative:
0J no Q)
=log Q(h
aqun ~ U o)

e Solving % =0 yields Q(h) = P(h|v).

—log P(R'|v) + A

VITERBI APPROXIMATION

PAalrwise MRF's

e The Viterbi approximation is to assume that all the posterior

probability mass is assigned to a single (MAP) assignment h:

Q(h) = d(h, h).
e i.e., we associate every hidden variable with a single value.
e For GMs with low treewidth, we can find h efficiently.

e In general, we can use iterative techniques.

e For ease of explanation, | will often assume the model can be
written as an MRF with pairwise potentials (one per edge):

P(zly) = 7 H ww L, L H¢zz ;)
<ij>

e Any Bayes net/ Markov net/ factor graph can be converted into
this form, by creating extra “meganodes”.

ITERATIVE CONDITIONAL MODES (ICM)

e [CM assigns each variable to its MAP estimate, holding all the
others constant:

h; == argmaxP(h |h\ hj,v) = argmaxgbm H Vij(hi, hj)
JEN;
where the hj's are in ¢'s Markov blanket.

e K-means clustering is an example of ICM, where h are the
assignment variables for each data point to a cluster, and the value
of the cluster centers (means).

e ICM is very greedy and often gets stuck in local optima.



GIBBS SAMPLING

e Gibbs sampling is a stochastic version of ICM, where instead of

picking the best state, we sample a state:

_ F(h)
hi ~ P(h;|h \ h;,v) = !
' ' >, Flhi)

where

= Pyihi) T ij(hi, by)
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e This is less greedy than ICM, but can be much slower.

MEAN FIELD BOLTZMANN MACHINES

MEAN FIELD METHOD

e The Boltzmann machine (stochastic Hopfield network) is a pairwise
MRF where nodes are binary (either S; € {0,1} or
h; € {—1,41}), and potentials have the restricted form
V;j(S;,S5) = exp0;;S;5; and ¢;(.S;) = exp 0;0S;:

= —eXp > 0,85, + Z%S

1<J

e The mean field approximation is Q(h|v) = []; i(l — )5,
where p; = E(S;) = P(S; = 1|v).
e Minimizing D(P, () yields the mean field update equations:

U(Z 0;j1tj + ;o)

J

e The mean field method is like a deterministic version of Gibbs
sampling, where we replace samples with expected values.

o We make a fully factorized approximation: Q(z) = [; b;(x;). So
the mean field free energy is

Fyr({bi}) = Z Zb ;)b 37] 10g¢zj(xzvxj)

<1J> iy

+ Z Z bi(z;)[log b;(x;) — log ¥y (x;)]

e We want to minimize FMF(b ) subject to -, bi(z;) = 1.

e Hence we iteratively update

bia) o iy exp | Y Y bj(xj)log vyj(w;, )

JEN; Tj

STRUCTURED VARIATIONAL APPROXIMATIONS

e Meanfield assumes () is fully factorized.
e We can model correlations by exploiting tractable substructure.

e e.g., decompose factorial HMM into product of chains
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LOOPY BELIEF PROPAGATION

e Structured variational approximations remove some edges from the
graph and replace their effect with variational parameters.

e An alternative is to leave all the original edges intact, but only
capture their effect locally.

e Recall that the free energy is

F =Y QhogQh) = > > Qlhc,) logty(hey,vey,)
h

k hck

e The second term is the expected value of a local factor, and is easy
to compute for any Q(h).

e But the entropy term is intractable for general Q(h).

e We will show how loopy belief propagation can minimize an
approximation to this.

LOoOPY BELIEF PROPAGATION MINIMIZES BETHE FREE
ENERGY

e In LBP, we iteratively update our beliefs by message passing

myj 37] X Z¢17 Ly Tj Jii(x;) H My ()

kEN;\j
bi(x;) o %‘ i) [ muiles)
kEeN;
e The messages m;; are exp()\z-j), where )\;; is the Lagrange
multiplier enforcing the marginalization constraint while minimizing

Fpethe-
e L BP sometimes called “sum-product algorithm”.

BETHE FREE ENERGY

e The Bethe approximation is
[T<ij= bij(hi, )

) 7= [T, bi(hy)di—!

where d; is the degree of h; (ie., number of factors it appears in).

e So the Bethe free energy is

Farp({bi, bij}) =
<1J> TjHxj

_ Z(dl —1) Z bi(z;)[log b;(z;) — log 1 (x;)]
where ¢z’j($i7 :Cj) = %’j(xi? x])%z(xl)w??(x?)

e Loopy belief propagation is a way to minimize this subject to the
constraints 3. b;j(x;, x;) = bj(x;) and 3, bi(z;) = 1.

DISCRETE MESSAGE PASSING/ BELIEF PROPAGATION

e Consider an MRF With one potential per edge
H%%XH@
<Z]>

e We can generalize the forwards-backwards algorithm as follows:

My 37] Z¢z g ¢27 372737]) H m]l(xz)
keN\{j}
bi(z;) o< gilxi) ] myjiles)

JEN;

o If all potentials, messages and beliefs are discrete:

T
mij = )i * [T biocgix I mii
K

JEN;
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COMPLEXITY OF DISCRETE BP

o If all potentials, messages and beliefs are discrete:
T
mij = b5 % | [ e bioc gix [ myi
k JEN;
o If there are K states, each message takes O(K?) time to compute.
o For certain kinds of potentials (e.g., ¥;;(i,j) = exp(||u; — u;||*)
where u;,u; € R), the messages can be computed in O(K log K)
or even O(K) time.
e For general potentials, once can use multipole methods and fancy
data structures (like kd-trees) to do this in O(K) or O(K log K)
time. See Nando's NIPS workshop on “fast methods”.

SUMMARY SO FAR

e For discrete state spaces, we have the following ranking of algorithms
from best to worst (in terms of accuracy/ speed):

— Loopy belief propagation
— Mean field

— lterative conditional modes
— Gibbs sampling

e What about continuous state spaces?

LOOPY BELIEF PROPAGATION

e The BP equations are exact if the graph is a chain or a tree (assuming
we can implement sum and product operators analytically).

e What happens if BP is applied to graphs with loops?
e If may not convergence, and even if it does, it may be wrong.
e However, in practice, it often works well (e.g., error correcting codes).

Msg Type Algo  Correct if conv? Suff cond for conv?

Discrete > ][ No No
Discrete max ][ Strong local opt. No
Gaussian > [[ Means - yes, covs - no Yes

General > [ 7 ?

MESSAGE PASSING FOR GENERAL STATE SPACES

e Filtering on chains is equivalent to message passing in a left-to-right

fashion. .
CO—~D—()
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e Smoothing on chains involves a forward and a backwards pass.
e Inference on trees involves an upwards and a downwards pass.

e Inference on loopy graphs involves parallel message passing.
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GAUSSIAN MESSAGE PASSING,/ BELIEF PROPAGATION

e Consider an MRF with one potential per edge
1
P(X) = 7 H Vii(Xi, X5) H¢i(Xi)
<ij> i
where 1 = exp(X] Vi X;) and ¢; = exp(a-(X; — p)?).
e The BP equations are as before:
mijle;) = Y i),z [ myia)
Ti keN\{j}
bi(z;) o< ¢i(xi) ] myjiles)
JEN;
e Since a Gaussian times a Gaussian is a Gaussian, and the marginal of

a Gaussian is another Gaussian, we can implement these equations
in closed form (generalization of the Kalman filter).

EXPECTATION PROPAGATION (EP)

e Cross between ADF (assumed density filtering) and BP.

e Suppose potentials/ beliefs are mixtures of K Gaussians. Number
of mixture components of posterior belief is K for a node with d
neighbors; need to project back to /' Gaussians (moment matching).

e The tractable messages are inferred by dividing the new belief by the
old belief.

e EP is iterated ADF.
e Advantages of iterating:

— Errors made earlier in the sequence can be recovered from.
— Less dependence on the order in which data arrives.

e Multiple forward-backwards passes are necessary, even for chains/
trees, because the message computations are not exact.

GENERAL MESSAGE PASSING/ BELIEF PROPAGATION

e In general, how can we implement these equations?
mijz;) = Y i)l z) [ myia)
Ti keN\{j}
bi(z;) o< ¢i(xi) ] myjiles)
JEN;
e This depends on the form of the potentials 1) and ¢, and the form

of the beliefs b (from which the form of the messages m can be
inferred), just as in filtering for state-space models.

NON-PARAMETRIC BELIEF PROPAGATION (NPBP)

e Cross between particle filtering and BP.



EM

o If all the hidden variables are discrete, and all the parameters are
continuous, we can use the approximation Q(h,8) = Q(h)é(6, 6),
where QQ(h) is a general posterior on h and a delta function on the
parameters.

e The EM algorithm consists of minimizing F'(Q, Fp) using
coordinate ascent.

e E-step: minimize wrt Q(h) = computing P(h|v, é)
e M-step: minimize wrt §(6, é)

IS4

@)

QK

COMPARISON OF METHODS

EM VARIANTS

e Standard EM: Q(h,0) = P(h|v,6)5(0,6).

e Variational EM: use a variational approximation (eg mean field) in
the E-step.

e Stochastic EM: use Monte Carlo in the E-step.

e Incremental EM: update parameters after each training case
(online) instead of after all data (batch).

e "Generalized EM": do a partial M-step (eg. gradient step).

e Variational Bayes EM (ensemble learning): replace point estimates
of parameters with distributions in the M-step.

e CG-EM: alternate between conjugate gradient and EM.

LAYERED MODEL OF FOREGROUND + BACKGROUND

e “A comparison of algorithms for inference and learning in PGMs",
Frey and Jojic, PAMI 2004 to appear
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MULTIPLE LAYERS PLUS CONTINUOUS DEFORMATIONS

Learned means of appearance and mask images

Front layer Background layer
TP PN . S |
Bright 1 : Bright 3 i Bright 1 : Bright 1 :
i Deform & i Deform & ? : Deform 3 ! Deform  :
Position Pasition Position Paosition

7 Hidden appearances, masks,
v brightness variables, deformation

J = variables, and position variables
o combine to explain the input

COMPARISON OF EM: EXACT, MEAN FIELD, ICM, BP

COMPARISON OF EM: EXACT, MEAN FIELD, ICM, BP
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