MONTE CARLO SAMPLING

o Goal: estimate E'f(X) where X ~ P(-).
olf f(X) = 5<X2 = Zl??;), then Ef(X) = P(XVZ = Zlf7)
e Draw M samples 2" ~ P, then compute

M

EfX) ~ 22 3 f™)
m=1

LECTURE 19:

MONTE CARLO METHODS
(KOLLER & FRIEDMAN CH 9)

e Key problem: drawing samples from P().
Kevin Murphy

e For a Bayes net, we can easily sample from the prior P(.X) following
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topological order.

e To sample from posterior, P(X|e), we can sample from P(X) and
reject samples inconsistent with the evidence, but this is inefficient.

UNNORMALIZED IMPORTANCE SAMPLING NORMALIZED IMPORTANCE SAMPLING

e Suppose sampling from P() is hard. e Suppose we can only evaluate P/(x) = aP(x) (eg for an MRF).

e Suppose we can sample from a proposal distribution (Q)(x) instead. o w(z) = g((q;)) o EQw(X) s Q<x)g’<(x)) =Y Pla)=a
. . x)’ x T T :
o If ) dominates P (i.e., Q(x) > 0 whenever P(z) > 0), we can o We have to slightly modify the estimator:
sample from () and reweight:
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NORMALIZED VS UNNORMALIZED IMPORTANCE SAMPLING

e Unormalized importance sampling is unbiased:
EQf(X)w(X) = EQf(X)P(X)/Q(X) = Epf(X)
e Normalized importance sampling is biased, eg for M = 1:

flatw(a?) 1

——=Epf(x

e However, the variance of the normalized importance sampler is usu-
ally lower in practice.
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e Also, it is common that we can evaluate P’(z) but not P(z), e.g.
P(zle) = P'(x,e)/P(e) for Bayes net, or P(z) = P'(x)/Z for
MRF.

LIKELHOOD WEIGHTING ALGORITHM

LIKELHOOD WEIGHTING

e We now apply normalized importance sampling to a Bayes net.

e The proposal () is gotten from the mutilated BN where we clamp
evidence nodes, and cut their incoming arcs. Call this Pp;.
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e The unnormalized posterior is P'(x) = P(z,e).
e So for f(X;) = 6(X; = x;), we get P(X; = z;le) =
where wy,, = P'(z™, )/ Py (a™).

EFFICIENCY OF LIKELIHOOD WEIGHTING

[1.,, w] = function LW(CPDs, G, E)
let X1,..., X, be a topological ordering of G
w=1
z=(0,...,0)
fori=1:n
let u; = z(Pay;)
fX; ¢ F
then sample x; from P(X;|u;)
else
z; = e(X;)
w = w x P(x;lu;)

e The efficiency of importance sampling depends on how close the
proposal () is to the target P.

e Suppose all the evidence is at the roots. Then @) = P(X]e), and all
samples have weight 1.

e Suppose all the evidence is at the leaves. Then () is the prior, so
many samples might get small weight if the evidence is unlikely.

e We can use arc reversal to make some of the evidence nodes be
roots instead of leaves, but the resulting network can be much more
densely connected.



RAO-BLACKWELLISED SAMPLING

e Sampling in high dimensional spaces causes high variance in the es-
timate.

e RB idea: sample some variables x;, and conditional on that, compute
expected value of rest X ; analytically:

Ep(xjef(X) = > Plap,xqle) f(xp, xq)

Tp,Tq

= Z P(xzple) Z P(xglap, e)f(rp, zq)
Zp Zq

= Y Plaple)Ep(xjuy.e)f (@p Xa)

Tp
e This has lower variance, because of the identity:
Var[7(Xp, Xg)] = Var[E(1(X g, Xp)| Xp)] + E[Var(1(X g, Xp)| Xp)]

e Hence Var[E(1(Xy4, X;)|Xp)] < Var[r(Xy, Xp)], so 7/(Xy, Xp) =
E(1(X4, Xp)|Xp) is a lower variance estimator.

PARTICLE FILTERING (SEQUENTIAL MONTE CARLO)

e PF is sequential importance sampling with resampling (SISR).

e Goal is to estimate P(x1.¢|y1.+) recursively (online) for a state-space
model for which Kalman filter/ HMM filter is inapplicable.
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RAO-BLACKWELLISED IMPORTANCE SAMPLING

e Each sample is a setting z;" and a distribution over X; conditioned

on ng and the evidence e.

e The simplest case is to sample from an upwardly closed subset of
nodes in the BN (roots and some of their children).

e The estimate is
Zm meP(Xd|x$7,e)f<lev Xq)

Ep(x|e)f(X) = S

where w(xp) = ]D&%{;’;)]))P(edmp, ep).

e The term P&Z’ef’) is computed using likelihood weighting on X,
P

e The second term P(eg|xp, ep) is computed using exact inference.

SEQUENTIAL IMPORTANCE SAMPLING

e Suppose the target density is P(x1.¢|y1.¢) and the proposal is q(x1.¢|y1.¢),
so wy o< P(x4|y1:4)/ Q@ .4|y1:1).

e The probability of a sample path can be computed recursively using
Bayes' rule:

P(?/t’flié)P(fUi\x%_QP(xi;tﬂ’?Jl:t—l)
Q(lﬂx%;tipyl:t)@(xli;tfﬂyl:t—l)
 Plyle}) P(aflz} )
Qlaflly— 1 1)
= wiwi_
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e For online problems, we typically use Q(azﬂxﬁ:t_l, Y1) = Q(:L’t\xg_l, Y1)

so we don't have to store the entire history. Hence
si = PPy
Q(Zlfﬂl'%il, yl:t)




SEQUENTIAL IMPORTANCE SAMPLING WITH RESAMPLING

e As time increases, one sample path will turn out to be exponentially
more likely than any other, so all the weights except one go to 0.

e This is called sample impoverishment.

o Whenever the effective number of samples N.;r = 1/ Zl(w§)2
drops below a threshold, we resample with replacement.

e The resampled weights are set to 1/N, since the past weights are
reflected in the empirical frequency.

e There are various ways to do the resampling in O(N) time.

SIMPLEST PROPOSAL DISTRIBUTION FOR PF

e The simplest proposal is to sample from the prior Q(mt’x%—l’ Yit) =
P(X¢lal_ ).
e This is like likelihood weighting, where the evidence is at the leaves.
e In vision, this is called the condensation algorithm.
e Recall that the incremental weight is
si _ PPty
Q(ilzy_y, y1:0)

e So for condensation, wy = P(y|z}).

PSEUDO CODE FOR PARTICLE FILTER

function [{x%,w%}zj\iﬂ = PF({JJéfl,w%fl}i]\ipyt)
fori=1:N
Sample z} ~ Q('|$%_1,y1:t) 4
Plytlz) Plailri ;)
Q(l'ﬂfi,pyl:t)

Compute u?% =
wi = u?i X w;‘;_l
Compute wy = Zf\il w%
Normalize wy := wy/wy
Compute Nyp =1/ S i(wh?.
if Nepr < threshold‘
T = resample({w%}ij\il)
Ty =x]
wi = 1/N

OPTIMAL PROPOSAL DISTRIBUTION FOR PF

e It is better to look at the evidence before proposing:

. ] P(y|we) Pyl )
ol ) = Platleir.u) = [ day P(yg|ee) P2t _,)
t—1

e This is optimal in the sense that in minimizes the variance of the
weights.

e In this case, the incremental weight is the denominator u?i = P(yﬂ:ci_l).

e This requires integrating out ¢, which may be hard.



UNSCENTED PARTICLE FILTERING

e Often it is too hard to compute the optimal proposal P(Xﬂx%fl, Y1:t)
exactly.

e But sometimes we can approximate this.

e Consider a nonlinear system with Gaussian process noise and linear-
Gaussian observations:

P(X¢lz}_1) = N(Xg: fila)_1), Q)
P(Yi|Xy) = Ny Ce Xy, Ry)

e Then we can compute Q(Xﬂxi_l,yl:t) using an EKF/UKF
(with a delta function prior on z}_,), and sample from this.

RBPF ror SLAM (“FASTSLAM?”)

e Key idea: if you always know the robot's location, the posterior over
landmarks factorizes, so KF takes O(Np) time instead of O(N%).

e So sample R4, and for each particle/ trajectory, run a Kalman filter.

RBPF ror swiTcHING LDS
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e Recall that the belief state has O(2) Gaussian modes:

e Key idea: if you knew the discrete states, you can apply the right
Kalman filter at each time step.

e So for each old particle m, sample S ~ P(St[s{" ) from the

prior, apply the KF (using parameters for S{"") to the old belief state

(jgn—l\t—l’ Pﬁlufl) to get an approximation to P(X¢|y1.¢, s7%).

e Useful for fault diagnosis.

MARKOV CHAIN MONTE CARLO (MCMC)

e Importance sampling does not scale well to high dimensions.
e Rao-Blackwellisation not always possible.
e MCMC is an alternative.

e Construct a Markov chain whose stationary distribution is the target
density m = P(X|e).

e Run for 7" samples (burn-in time) until the chain converges/ mixes/
reaches stationary distribution.

e Then collect M (correlated) samples ™" ~ 7.

o Key issues:

— Designing proposals so that the chain mixes rapidly.
— Diagnosing convergence.



MARKOV CHAINS: DEFINITIONS

e 7(x) is a stationary distribution if w(2') = > 7(x)T(z — 2'), i.e.,
7 is a left eigenvector of the transition matrix 7l = 7T A
0.25 0 0.75
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GIBBS SAMPLING

e Gibbs sampling is an MCMC algorithm that is especially appropriate
for inference in graphical models.

e The transition matrix updates each node one at a time: T'((u;, x;) —
(s, 7)) = Plxilug).

e This is efficient since P(x;|u;) = P'(x;,u;)/ P’ (u;) only depends on
the values in X;'s Markov blanket

function [{xgnn}%:l] = Gibbs(Potentials, T")
sample 2V from P(X|e)
fort=1:T
{L’t — .CL’t_l
for each X;
u; = values of M B(X;) in z
Sample z! ~ P(-|u;)

MARKOV CHAINS: DEFINITIONS

e An MC is periodic if it cycles through the state space without con-
verging.

e An MC is reducible if the stationary distribution reached depends on
the starting state (different one-way traps).

e An MC is ergodic (regular) if you can get from state z to 2’ in a
finite number of steps.

e Thm: a finite state MC has a unique stationary distribution iff it is
regular.

GIBBS SAMPLING

e Gibbs sampling can fail if there are deterministic constraints, eg X —
Z <Y where Z is xor. Suppose we observe Z = 1. The posterior
has 2 modes: P(X =1,Y =0/Z =1)and P(X =0,Y =1|Z =
1). However, if we start in mode 1, P(X|y = 0,z = 1) leaves
X =1, so we can't move (Reducible Markov chain).

o If all states have non-zero probability, the MC is guaranteed to be
regular.

e Sampling blocks of variables at a time can help improve mixing.



METROPOLIS HASTINGS

e Gibbs sampling is only applicable when we can sample one variable
given all the others.

e MH is more general.
e |t constructs a reversible MC.

e Defn: An MC is reversible if
i st. w(x)T(xz — 2') = w(2")T(2' — x) (detailed balance).
e Thm: if the MC is regular and satisfies detailed balance, then 7 is

the unique stationary distribution.
e MH will construct 7T'.

GIBBS SAMPLING IS A SPECIAL CASE OF METROPOLIS
HASTINGS

e Suppose we use the proposal Q((u;, ;) — (u;, 2})) = P(a}|u;)

e Then the acceptance ratio is

A((ug, ;) — (ul,wm = min(1,

METROPOLIS HASTINGS

e MH proposes moves according to Q(z — ') and accepts them with
probability A(z — 2).

e The induced transition matirx is
T(x— 1) = Qx — 2)A(x — 2)if v # o'
T(x—x) = Qx—x) ) Q—a)(1—Alz—1)
z'#x
e Detailed balance means
1(2)Q(x — 2 A(x — 2') = (2" Q2" — x)A(z’ — 1)
e Hence the acceptance ratio is

Alz — a') = min (1’ jé?g((f /: ;f)))

MIXING TIME

e The € mixing time T is the minimal number of steps (from any start-
ing distribution) until Dvar(P(T), 7) < €, where Dy, is variational
distance.

e Chains with low bandwidth (conductance) regions of space take a
long time to mix.

e This arises for GMs with deterministic or highly skewed potentials.




CONVERGENCE DIAGNOSIS (CODA)

e How can we tell when burn-in is over?

e Run multiple chains from different starting conditions, wait until they
start “behaving similarly”.

e Various heuristics have been proposed.
e See the CODA package in R.



