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Monte Carlo sampling

• Goal: estimate Ef (X) where X ∼ P (·).

• If f (X) = δ(Xi = xi), then Ef (X) = P (Xi = xi).

•Draw M samples xm ∼ P , then compute

Ef (X) ≈
1

M

M
∑

m=1

f (xm)

• Key problem: drawing samples from P ().

• For a Bayes net, we can easily sample from the prior P (X) following
topological order.

• To sample from posterior, P (X|e), we can sample from P (X) and
reject samples inconsistent with the evidence, but this is inefficient.



Unnormalized importance sampling

• Suppose sampling from P () is hard.

• Suppose we can sample from a proposal distribution Q(x) instead.

• If Q dominates P (i.e., Q(x) > 0 whenever P (x) > 0), we can
sample from Q and reweight:
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EPf (X) =
∑

x

P (x)f (x)

=
∑

x

Q(x)f (x)
P (x)

Q(x)

≈
M
∑

m=1

f (xm)
P (xm)

Q(xm)

=

M
∑

m=1

f (xm)wm



Normalized importance sampling

• Suppose we can only evaluate P ′(x) = αP (x) (eg for an MRF).

•w(x) =
P ′(x)
Q(x)

, so EQw(X) =
∑

x Q(x)
P ′(x)
Q(x)

=
∑

x P ′(x) = α.

•We have to slightly modify the estimator:

EPf (X) =
∑

x

P (x)f (x) =
∑

x

Q(x)f (x)
P (x)

Q(x)

=
1

α

∑

x

Q(x)f (x)
P ′(x)

Q(x)

=
1

α
EQf (X)w(X)

=
EQf (X)w(X)

EQw(X)

=

∑

m wmf (xm)
∑

m wm



Normalized vs unnormalized importance sampling

• Unormalized importance sampling is unbiased:

EQf (X)w(X) = EQf (X)P (X)/Q(X) = EPf (X)

• Normalized importance sampling is biased, eg for M = 1:

EQ
f (x1)w(x1)

w(x1)
= EQf (x1)

• However, the variance of the normalized importance sampler is usu-
ally lower in practice.

• Also, it is common that we can evaluate P ′(x) but not P (x), e.g.
P (x|e) = P ′(x, e)/P (e) for Bayes net, or P (x) = P ′(x)/Z for
MRF.



Likelhood weighting

•We now apply normalized importance sampling to a Bayes net.

• The proposal Q is gotten from the mutilated BN where we clamp
evidence nodes, and cut their incoming arcs. Call this PM .
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• The unnormalized posterior is P ′(x) = P (x, e).

• So for f (Xi) = δ(Xi = xi), we get P̂ (Xi = xi|e) =
∑

m wmδ(xm
i =xi)

∑

m wm

where wm = P ′(xm, e)/PM (xm).



Likelhood weighting algorithm

[x1:n, w] = function LW(CPDs, G, E)
let X1, . . . , Xn be a topological ordering of G
w = 1
x = (0, . . . , 0)
for i = 1 : n

let ui = x(Pai)
if Xi 6∈ E
then sample xi from P (Xi|ui)
else

xi = e(Xi)
w = w ∗ P (xi|ui)



Efficiency of likelihood weighting

• The efficiency of importance sampling depends on how close the
proposal Q is to the target P .

• Suppose all the evidence is at the roots. Then Q = P (X|e), and all
samples have weight 1.

• Suppose all the evidence is at the leaves. Then Q is the prior, so
many samples might get small weight if the evidence is unlikely.

•We can use arc reversal to make some of the evidence nodes be
roots instead of leaves, but the resulting network can be much more
densely connected.



Rao-Blackwellised sampling

• Sampling in high dimensional spaces causes high variance in the es-
timate.

• RB idea: sample some variables xp, and conditional on that, compute
expected value of rest Xd analytically:

EP (X|e)f (X) =
∑

xp,xd

P (xp, xd|e)f (xp, xd)

=
∑

xp

P (xp|e)
∑

xd

P (xd|xp, e)f (xp, xd)

=
∑

xp

P (xp|e)EP (Xd|xp,e)f (xp, Xd)

• This has lower variance, because of the identity:

Var[τ (Xp, Xd)] = Var[E(τ (Xd, Xp)|Xp)] + E[Var(τ (Xd, Xp)|Xp)]

• Hence Var[E(τ (Xd, Xp)|Xp)] ≤ Var[τ (Xd, Xp)], so τ ′(Xd, Xp) =
E(τ (Xd, Xp)|Xp) is a lower variance estimator.



Rao-Blackwellised importance sampling

• Each sample is a setting xm
p and a distribution over Xd conditioned

on xm
p and the evidence e.

• The simplest case is to sample from an upwardly closed subset of
nodes in the BN (roots and some of their children).

• The estimate is

EP (X|e)f (X) ≈

∑

m wmEP (Xd|x
m
p ,e)f (xm

p , Xd)
∑

m wm

where w(xp) =
P (xp,ep)
Q(xp)

P (ed|xp, ep).

• The term
P (xp,ep)
Q(xp)

is computed using likelihood weighting on Xp.

• The second term P (ed|xp, ep) is computed using exact inference.



Particle filtering (sequential Monte Carlo)

• PF is sequential importance sampling with resampling (SISR).

• Goal is to estimate P (x1:t|y1:t) recursively (online) for a state-space
model for which Kalman filter/ HMM filter is inapplicable.

P(x(t-1) | y(1:t-1))

P(x(t) | y(1:t))

P(x(t) | y(1:t))

P(x(t) | y(1:t-1))

unweighted

posterior

unweighted

prediction

weighted prior

weighted

posterior

P(x(t)|x(t-1))

P(y(t) | x(t))

resample

weighting

proposal



Sequential importance sampling

• Suppose the target density is P (x1:t|y1:t) and the proposal is q(x1:t|y1:t),
so wi

t ∝ P (xi
1:t|y1:t)/Q(xi

1:t|y1:t).

• The probability of a sample path can be computed recursively using
Bayes’ rule:

wi
t ∝

P (yt|x
i
t)P (xi

t|x
i
t−1)P (xi

1:t−1|y1:t−1)

Q(xi
t|x

i
1:t−1, y1:t)Q(xi

1:t−1|y1:t−1)

=
P (yt|x

i
t)P (xi

t|x
i
t−1)

Q(xi
t|x

i
1:t−1, y1:t)

wi
t−1

= ŵi
tw

i
t−1

• For online problems, we typically use Q(xt|x
i
1:t−1, y1:t) = Q(xt|x

i
t−1, y1:t)

so we don’t have to store the entire history. Hence

ŵi
t =

P (yt|x
i
t)P (xi

t|x
i
t−1)

Q(xi
t|x

i
t−1, y1:t)



Sequential Importance sampling with resampling

• As time increases, one sample path will turn out to be exponentially
more likely than any other, so all the weights except one go to 0.

• This is called sample impoverishment.

•Whenever the effective number of samples Neff = 1/
∑

i(w
i
t)

2

drops below a threshold, we resample with replacement.

• The resampled weights are set to 1/N , since the past weights are
reflected in the empirical frequency.

• There are various ways to do the resampling in O(N ) time.



Pseudo code for particle filter

function [{xi
t, w

i
t}

N
i=1] = PF({xi

t−1, w
i
t−1}

N
i=1, yt)

for i = 1 : N

Sample xi
t ∼ Q(·|xi

t−1, y1:t)

Compute ŵi
t =

P (yt|x
i
t)P (xi

t|x
i
t−1)

Q(xi
t|x

i
t−1,y1:t)

wi
t = ŵi

t × wi
t−1

Compute wt =
∑N

i=1 wi
t

Normalize wi
t := wi

t/wt

Compute Neff = 1/
∑

i(w
i
t)

2.
if Neff < threshold

π = resample({wi
t}

N
i=1)

x·t = xπ
t

wi
t = 1/N



Simplest proposal distribution for PF

• The simplest proposal is to sample from the prior Q(xt|x
i
t−1, y1:t) =

P (Xt|x
i
t−1).

• This is like likelihood weighting, where the evidence is at the leaves.

• In vision, this is called the condensation algorithm.

• Recall that the incremental weight is

ŵi
t =

P (yt|x
i
t)P (xi

t|x
i
t−1)

Q(xi
t|x

i
t−1, y1:t)

• So for condensation, ŵi
t = P (yt|x

i
t).



Optimal proposal distribution for PF

• It is better to look at the evidence before proposing:

q(xt|x
i
t−1, yt) = P (xt|x

i
t−1, yt) =

P (yt|xt)P (xt|x
i
t−1)

∫

dxtP (yt|xt)P (xt|x
i
t−1)

• This is optimal in the sense that in minimizes the variance of the
weights.

• In this case, the incremental weight is the denominator ŵi
t = P (yt|x

i
t−1).

• This requires integrating out xt, which may be hard.



Unscented particle filtering

•Often it is too hard to compute the optimal proposal P (Xt|x
i
t−1, y1:t)

exactly.

• But sometimes we can approximate this.

• Consider a nonlinear system with Gaussian process noise and linear-
Gaussian observations:

P (Xt|x
i
t−1) = N (Xt; ft(x

i
t−1), Qt)

P (Yt|Xt) = N (yt; CtXt, Rt)

• Then we can compute Q(Xt|x
i
t−1, y1:t) using an EKF/UKF

(with a delta function prior on xi
t−1), and sample from this.



RBPF for switching LDS

S1 S2 S3

X1 X2 X3

Y1 Y2 Y3

• Recall that the belief state has O(2t) Gaussian modes:

• Key idea: if you knew the discrete states, you can apply the right
Kalman filter at each time step.

• So for each old particle m, sample Sm
t ∼ P (St|s

m
t−1) from the

prior, apply the KF (using parameters for Sm
t ) to the old belief state

(x̂m
t−1|t−1

, Pm
t−1|t−1

) to get an approximation to P (Xt|y1:t, s
m
1:t).

• Useful for fault diagnosis.



RBPF for SLAM (“FastSLAM”)

• Key idea: if you always know the robot’s location, the posterior over
landmarks factorizes, so KF takes O(NL) time instead of O(N2

L).

• So sample R1:t, and for each particle/ trajectory, run a Kalman filter.



Markov chain Monte Carlo (MCMC)

• Importance sampling does not scale well to high dimensions.

• Rao-Blackwellisation not always possible.

•MCMC is an alternative.

• Construct a Markov chain whose stationary distribution is the target
density π = P (X|e).

• Run for T samples (burn-in time) until the chain converges/ mixes/
reaches stationary distribution.

• Then collect M (correlated) samples xm ∼ π.

• Key issues:

– Designing proposals so that the chain mixes rapidly.

– Diagnosing convergence.



Markov chains: definitions

• π(x) is a stationary distribution if π(x′) =
∑

x π(x)T (x→ x′), i.e.,

π is a left eigenvector of the transition matrix πT = πTA.
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Markov chains: definitions

• An MC is periodic if it cycles through the state space without con-
verging.

• An MC is reducible if the stationary distribution reached depends on
the starting state (different one-way traps).

• An MC is ergodic (regular) if you can get from state x to x′ in a
finite number of steps.

• Thm: a finite state MC has a unique stationary distribution iff it is
regular.
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Gibbs sampling

• Gibbs sampling is an MCMC algorithm that is especially appropriate
for inference in graphical models.

• The transition matrix updates each node one at a time: T ((ui, xi)→
(ui, x

′
i)) = P (x′i|ui).

• This is efficient since P (xi|ui) = P ′(xi, ui)/P
′(ui) only depends on

the values in Xi’s Markov blanket

function [{xm
1:n}

M
m=1] = Gibbs(Potentials, T )

sample x0 from P (X|e)
for t = 1 : T

xt = xt−1

for each Xi
ui = values of MB(Xi) in xt

Sample xt
i ∼ P (·|ui)



Gibbs sampling

• Gibbs sampling can fail if there are deterministic constraints, eg X →
Z ← Y where Z is xor. Suppose we observe Z = 1. The posterior
has 2 modes: P (X = 1, Y = 0|Z = 1) and P (X = 0, Y = 1|Z =
1). However, if we start in mode 1, P (X|y = 0, z = 1) leaves
X = 1, so we can’t move (Reducible Markov chain).

• If all states have non-zero probability, the MC is guaranteed to be
regular.

• Sampling blocks of variables at a time can help improve mixing.



Metropolis Hastings

• Gibbs sampling is only applicable when we can sample one variable
given all the others.

•MH is more general.

• It constructs a reversible MC.

•Defn: An MC is reversible if
∃!π st. π(x)T (x→ x′) = π(x′)T (x′→ x) (detailed balance).

• Thm: if the MC is regular and satisfies detailed balance, then π is
the unique stationary distribution.

•MH will construct T .



Metropolis Hastings

•MH proposes moves according to Q(x→ x′) and accepts them with
probability A(x→ x′).

• The induced transition matirx is

T (x→ x′) = Q(x→ x′)A(x→ x′)if x 6= x′

T (x→ x) = Q(x→ x)
∑

x′ 6=x

Q(x→ x′)(1− A(x→ x′))

•Detailed balance means

π(x)Q(x→ x′)A(x→ x′) = π(x′)Q(x′ → x)A(x′→ x)

• Hence the acceptance ratio is

A(x→ x′) = min

(

1,
π(x′)Q(x′→ x)

π(x)Q(x→ x′)

)



Gibbs sampling is a special case of Metropolis
Hastings

• Suppose we use the proposal Q((ui, xi)→ (ui, x
′
i)) = P (x′i|ui)

• Then the acceptance ratio is

A((ui, xi)→ (ui, x
′
i)) = min(1,

P (x′i|ui)Q((ui, x
′
i)→ (ui, xi))

P (xi|ui)Q((ui, xi)→ (ui, x
′
i))

)

= min(1,
P (x′i|ui)P (xi|ui)

P (xi|ui)P (x′i|ui)
)

= min(1, 1)



Mixing time

• The ε mixing time Tε is the minimal number of steps (from any start-

ing distribution) until Dvar(P
(T ), π) ≤ ε, where Dvar is variational

distance.

• Chains with low bandwidth (conductance) regions of space take a
long time to mix.

• This arises for GMs with deterministic or highly skewed potentials.
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x4 x6
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x7



Convergence diagnosis (CODA)

• How can we tell when burn-in is over?

• Run multiple chains from different starting conditions, wait until they
start “behaving similarly”.

• Various heuristics have been proposed.

• See the CODA package in R.


