LECTURE 19:

MONTE CARLO METHODS
(KOLLER & FRIEDMAN CH 9)

Kevin Murphy
23 November 2004



MONTE CARLO SAMPLING

e Goal: estimate F f(X) where X ~ P(-).
o |f f(X) = 5(XZ = ZCZ'), then Ef(X) = P(XZ = ZEZ)

e Draw M samples z'"* ~ P, then compute
| M
Ef(X) = i Z fz™)
m=1

e Key problem: drawing samples from P().

e For a Bayes net, we can easily sample from the prior P(X) following
topological order.

e To sample from posterior, P(X|e), we can sample from P(X) and
reject samples inconsistent with the evidence, but this is inefficient.



UNNORMALIZED IMPORTANCE SAMPLING

e Suppose sampling from P() is hard.
e Suppose we can sample from a proposal distribution ()(x) instead.

o If () dominates P (i.e., Q(z) > 0 whenever P(x) > (), we can
sample from () and reweight:

2
[]=+
g
&
3
e,
&
3



NORMALIZED IMPORTANCE SAMPLING

e Suppose we can only evaluate P'(z) = aP(x) (eg for an MRF).

o w(x) = g((;))’ S50 EQw(X) =2 2 Q(x)g((j)) =2 2 P'(x) =
e \We have to slightly modify the estimator:
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NORMALIZED VS UNNORMALIZED IMPORTANCE SAMPLING

e Unormalized importance sampling is unbiased:
Eqf(X)w(X) = EQf(X)P(X)/Q(X) = Epf(X)
e Normalized importance sampling is biased, eg for M = 1.
flahw(z') 1
=F

e However, the variance of the normalized importance sampler is usu-
ally lower in practice.

1%,

e Also, it is common that we can evaluate P'(z) but not P(z), e.g.
P(xle) = P'(x,e)/P(e) for Bayes net, or P(x) = P'(x)/Z for
MREF.



LIKELHOOD WEIGHTING

e \We now apply normalized importance sampling to a Bayes net.

e The proposal () is gotten from the mutilated BN where we clamp

evidence nodes, and cut their incoming arcs. Call this Py;.
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e The unnormalized posterior is P/(x) = P(z,e).
_ 2 Wmd (' =1;)

e Sofor f(X;) = 6(X; = x;), we get P(X; = wife) = =25%=0
where W, = Pl(xm, e)/Pyr(z™).




LIKELHOOD WEIGHTING ALGORITHM

1., w] = function LW(CPDs, G, F)
let X{,...,X,, be a topological ordering of G
w =1
r=(0,...,0)
fori=1:n
let u; = x(Pa;)
it X, ¢ K
then sample x; from P(X;|u;)
else
i = e(X;)
w = w * P(:CZ’UZ)



EFFICIENCY OF LIKELIHOOD WEIGHTING

e The efficiency of importance sampling depends on how close the
proposal () is to the target P.

e Suppose all the evidence is at the roots. Then ) = P(X|e), and all
samples have weight 1.

e Suppose all the evidence is at the leaves. Then () is the prior, so
many samples might get small weight if the evidence is unlikely.

e We can use arc reversal to make some of the evidence nodes be
roots instead of leaves, but the resulting network can be much more
densely connected.



RAO-BLACKWELLISED SAMPLING

e Sampling in high dimensional spaces causes high variance in the es-
timate.

e RB idea: sample some variables z;, and conditional on that, compute
expected value of rest X ; analytically:

EP(X\e)f(X) — Z P(:Cp,xd]e)f(xp,xd)

x'pafd

_ Zp(xp\e)ZP(xd\aﬁp,e)f(Zprﬂfd)

= Y Plaple)Ep(x .0 f (@p, Xg)

Lp
e This has lower variance, because of the identity:
Var[T(va Xd)] — Var[E(T(de Xp) ’Xp)] T E[Var(T(de Xp) ‘Xp)]

e Hence Var|E(7(X 4, Xp)|Xp)] < Var[r(Xy, Xp)], so 7'(Xy4, Xp) =
E(T(Xg, Xp)|Xp) is a lower variance estimator.



RAO-BLACKWELLISED IMPORTANCE SAMPLING

e Each sample is a setting x;," and a distribution over X ; conditioned

on :Cpm and the evidence e.

e The simplest case is to sample from an upwardly closed subset of
nodes in the BN (roots and some of their children).

e [ he estimate is

Epx|e)f(X) ~

P(xy.e
where w(zp) = Cg(];p)p)P(ed\xp, ep).

o The term L12:p) i computed using likelihood weighting on X,
Q(xp)

Zm meP(Xd\xm,e)f(lev Xq)
2 m W™

e The second term P(eg|zp, ep) is computed using exact inference.



PARTICLE FILTERING (SEQUENTIAL MONTE CARLO)

e PF is sequential importance sampling with resampling (SISR).

e Goal is to estimate P(x1.t|y;.+) recursively (online) for a state-space
model for which Kalman filter/ HMM filter is inapplicable.

weighted prior ® ® ¢ PXx(t-1)ly(l:t-1))
proposal >< / P(x(t)Ix(t-1))
I o ° P(X(t) | Y(l t- 1))

unweighted

prediction
weighting P(y(t) | x(t))

weighted

posterior ¢ ® Px®Ily(l:t)
resample

unweighted . P(x(t) | y(1:t)

posterior



SEQUENTIAL IMPORTANCE SAMPLING

e Suppose the target density is P(x1.1|y1.4) and the proposal is ¢(21.¢|y1:¢),
so wy X P(x.4|y1:4)/Q(27.4|y1:0)-

e The probability of a sample path can be computed recursively using
Bayes' rule:

i P(yt\{C%)P(ffé\ﬂfiq)f’(iﬁ;t_l\ylzt—l)
Q(x%‘fﬂi;t_lj yl.:t)Q(Zﬂi;t_l y1:0—1)
_ PlylePlailei_y)
Qlaylaty yra)
= Wywy_;

e For online problems, we typically use Q(a:t]x’i:t_l, Y1) = Q(xt\aji_l, Y1:t)
so we don't have to store the entire history. Hence

P(yi|x}) P(wf|z} 1)
Q(x%‘x%_la yl:t)

Wy =



SEQUENTIAL IMPORTANCE SAMPLING WITH RESAMPLING

e As time increases, one sample path will turn out to be exponentially
more likely than any other, so all the weights except one go to 0.

e This is called sample impoverishment.

e Whenever the effective number of samples N.¢¢r = 1/ S (wh)?
drops below a threshold, we resample with replacement.

e The resampled weights are set to 1/N, since the past weights are
reflected in the empirical frequency.

e There are various ways to do the resampling in O(N) time.



PSEUDO CODE FOR PARTICLE FILTER

function [{CE’%, UJ%},{\LJ — PF({x%_la w%_l}@]\ila yt)
fori =1: N

Sample zj ~ Q(-|z;_1,y1:t)
P(ys| o) P(at|xy_ )

Compute 0! = -
t Q(xﬂx%_pyl:t)

wj =} X wy_

Compute wy = sz\il w!
Normalize w} := w!/w;
Compute N, rp =1/ S (wh)?,
it Norr < threshold

T = resample({w%}i]\il)

Tp = Ty

w! = 1/N



SIMPLEST PROPOSAL DISTRIBUTION FOR PF

e The simplest proposal is to sample from the prior Q(xt\x%_l, Y1) =
P(Xtlz;_q).
e This is like likelihood weighting, where the evidence is at the leaves.
e In vision, this is called the condensation algorithm.
e Recall that the incremental weight is
P(ytla}) Plaifai_))
Q(xﬂxi_p Y1:t)

i} =

e So for condensation, W} = P(y|x!).



OPTIMAL PROPOSAL DISTRIBUTION FOR PF

e It is better to look at the evidence before proposing:
P(yt|at) P(xi|z)_y)
J doe P(yt|wy) P(oe|zg_y)

e This is optimal in the sense that in minimizes the variance of the
weights.

q(xe|lzi_1,yt) = Poeloi_q,yt) =

e In this case, the incremental weight is the denominator 1} = P(yt]x%_l).

e T his requires integrating out x;, which may be hard.



UNSCENTED PARTICLE FILTERING

e Often it is too hard to compute the optimal proposal P(Xt\xf;_l, Y1:t)
exactly.

e But sometimes we can approximate this.

e Consider a nonlinear system with Gaussian process noise and linear-
Gaussian observations:

P(X¢|zh_q) = N(Xy; fr(@)_1), Q)
P(Yi| Xt) = N(y; Ce Xy, Ry)

e Then we can compute Q(Xt\a:i_l, y1.¢) using an EKF/UKF
(with a delta function prior on x;_;), and sample from this.



RBPF ror SWITCHING LDS
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o Recall that the belief state has O(2!) Gaussian modes:

e Key idea: if you knew the discrete states, you can apply the right
Kalman filter at each time step.

e So for each old particle m, sample S;" ~ P(S¢s" ;) from the
prior, apply the KF (using parameters for S;"") to the old belief state

o m L m
(" 1]t 1’Pt—1\t—1) to get an approximation to P(X¢|y1¢, s1%}).

e Useful for fault diagnosis.



RBPF rOrR SLAM (“FASTSLAM”)

e Key idea: if you always know the robot’s location, the posterior over
landmarks factorizes, so KF takes O(N} ) time instead of O(N%).

e So sample Ry., and for each particle/ trajectory, run a Kalman filter.




MARKOV CHAIN MONTE CARLO (MCMCQC)

e Importance sampling does not scale well to high dimensions.
e Rao-Blackwellisation not always possible.
e MCMC is an alternative.

e Construct a Markov chain whose stationary distribution is the target
density m = P(X|e).

e Run for T" samples (burn-in time) until the chain converges/ mixes/
reaches stationary distribution.

e Then collect M (correlated) samples =" ~ 7.
e Key issues:

— Designing proposals so that the chain mixes rapidly.

— Diagnosing convergence.



MARKOV CHAINS: DEFINITIONS

e w(z) is a stationary distribution if 7(z') = > _7(x)T(z — 2'), i.e.,
T is a left eigenvector of the transition matrix 71 = 7! A.
0.25 0 0.75

(02 0503)=(020503) 0 0.7 0.3
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MARKOV CHAINS: DEFINITIONS

e An MC is periodic if it cycles through the state space without con-
verging.

e An MC is reducible if the stationary distribution reached depends on
the starting state (different one-way traps).

e An MC is ergodic (regular) if you can get from state x to x’ in a
finite number of steps.

e Thm: a finite state MC has a unique stationary distribution iff it is
regular.




(FIBBS SAMPLING

e Gibbs sampling is an MCMC algorithm that is especially appropriate
for inference in graphical models.

e The transition matrix updates each node one at a time: T'((u;, x;) —
(wi, 7)) = Plai]u;).

e This is efficient since P(z;|u;) = P'(x;,u;)/P'(u;) only depends on
the values in X;'s Markov blanket

function [{CL‘l . M ;] = Gibbs(Potentials, T')

sample 2" from P(X\e)
fort=1:T
ot ot

for each X

= vaIues of MB(X;) in xt
Sample xt ~ P(-|uy)



(FIBBS SAMPLING

e Gibbs sampling can fail if there are deterministic constraints, eg X —
Z <Y where Z is xor. Suppose we observe Z = 1. The posterior
has 2 modes: P(X =1,Y =0|Z =1)and P(X =0,Y =1|Z =
1). However, if we start in mode 1, P(X|y = 0,z = 1) leaves
X =1, so we can’t move (Reducible Markov chain).

e If all states have non-zero probability, the MC is guaranteed to be
regular.

e Sampling blocks of variables at a time can help improve mixing.



METROPOLIS HASTINGS

e Gibbs sampling is only applicable when we can sample one variable
given all the others.

e MH is more general.

e It constructs a reversible MC.

e Defn: An MC is reversible i
7 st. w(x)T(x — 2') = w(2)T (2" — z) (detailed balance).

e Thm: if the MC is regular and satisfies detailed balance, then 7 is
the unique stationary distribution.

e MH will construct T'.



METROPOLIS HASTINGS

e MH proposes moves according to Q(x — ') and accepts them with
probability A(z — 2').

e [ he induced transition matirx is
Tx—2) = Qx — Az — 2)if v # o/
Tx—1)=Qx—ux) ) Q—1)1-Ar—a)
x/#x
e Detailed balance means

m(2)Q(x — 2 )A(x — 2) = 1(2Q(2' — 2)A(z" — 2)

e Hence the acceptance ratio is

Ale = o) = min 1, ()9l ~ 3 )

m(z)Q(x — o)



(FIBBS SAMPLING IS A SPECIAL CASE OF METROPOLIS
HASTINGS

e Suppose we use the proposal Q((u;, ;) — (u;, x})) = P(z}|u;)

e Then the acceptance ratio is

A((ug, ;) — (g, 7)) = min(1,




MIXING TIME

e The € mixing time T is the minimal number of steps (from any start-
ing distribution) until DWT(P(T>, ) < €, where Dy, is variational
distance.

e Chains with low bandwidth (conductance) regions of space take a
long time to mix.

e This arises for GMs with deterministic or highly skewed potentials.




CONVERGENCE DIAGNOSIS (CODA)

e How can we tell when burn-in is over?

e Run multiple chains from different starting conditions, wait until they
start “behaving similarly”.

e Various heuristics have been proposed.
e See the CODA package in R.



