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STRUCTURE LEARNING: WHY?

e \We often want to learn the structure of the graphical model:

— Scientific discovery (data mining)
— Use a good model for prediction, compression, classification etc.

e Often there may be more than one good model

— Look for features that they all share

— Average predictions over models



LEARNING GENE REGULATORY PATHWAYS
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STRUCTURE LEARNING: HOW?

e Constraint-based approach:

— Assume some way of testing conditional independencies
X1 L Xo| X3
— Then construct model consistent with these results

e Search-and-score approach:

— Define a scoring function for measuring model quality (e.g., marginal
likelihood or penalized likelihood)

— Use a search algorithm to find a (local) maximum of the score



IDENTIFIABILITY

e DAGs are l-equivalent if they encode the same set of conditional
independencies, e.g., X — Y — Z and X < Y « Z are indistin-
guishable given just observational data.

e However, X — Y <« Z has a v-structure, which has a unique
statistical signature. Hence some arc directions can be inferred from
passive observation.

e The set of I-equivalent DAGs can be represented by a PDAG (partially
directed acyclic graph).

e Distinguishing between members of an equivalence class requires in-
terventions/ experiments.



CONSTRAINT-BASED APPROACH

e The build-PDAG algorithm from K&F chapter 3 can recover the true
DAG up to l-equivalence in O(N32%) time if we make the following

assumptions:
— The maximum fan-in (number of parents) of any node is d
— The independence test oracle can handle up to 2d + 2 variables

— The underlying distribution P* is faithful to G* i.e., there are no

spurious independencies that are not sanctioned by G* (G™ is a
P-map of P*).

e This is often called the IC or PC algorithm.



CONSTRAINT-BASED APPROACH

e Bad

— Faithfulness assumption rules out certain CPDs like noisy-OR.

— Hard to make a reliable independence test (especially given small
data sets) which does not make too many errors (either false pos-
itives or false negatives).

— One misleading independence test result can result in multiple er-
rors in the resulting PDAG, so overall the approach is not very
robust to noise.

e Good

— PC algorithm is less dumb than local search



INDEPENDENCE TESTS

e An independence test X | Y seeks to accept or reject the null
hypothesis H that P*(X,Y) = P*(X)P*(Y).

e We need a decision rule that maps data to accept/reject.

e We define a scalar measure of deviance d(D) from the null hypoth-
esis.

e [ he p-value of a threshold ¢ is the probability of falsely rejecting the
null hypothesis:

p(t) = P(D : d(D) > t}|Hy, N)
e Note that we need to know the size of the data set V (stopping rule)
ahead of time!

e We usually choose a threshold ¢ so that the probability of a false
rejection is below some significance level o = 0.05.



INDEPENDENCE TESTS

e For discrete data, a common deviance is the X2 statistic, which mea-
sures how far the counts are from what we would expect given inde-
pendence:

Ory— Ery)? = (N(z,y) — NP(2)P(y))?
D)= = = NpwP

LYY

e The p-value requires summing over all datasets of size /V:
p(t) = P({D : d(D) > t}|Ho, N)

e Since this is expensive in general, a standard approximation is to con-
sider the expected distribution of d(D) (under the null hypothesis)
as N — o0, and use this to define thresholds to achieve a given
significance.



EXAMPLE OF CLASSICAL HYPOTHESIS TESTING

e When spun on edge N = 250 times, a Belgian one-euro coin came
up heads Y = 140 times and tails 110.

e \We would like to distinguish two models, or hypotheses: H; means
the coin is unbiased (so p = 0.5); H| means the coin is biased (has

probability of heads p # 0.5).

e p-value is “less than 7%": p = P(Y > 140)+ P(Y < 110) = 0.066:
n=250; p = 0.5; y = 140;
p = (1-binocdf(y-1,n,p)) + binocdf(n-y,n,p)

o lf Y =141, we get p = 0.0497, so we can reject the null hypothesis
at significance level 0.05.

e But is the coin really biased?



BAYESIAN APPROACH

e \We want to compute the posterior ratio of the 2 hypotheses:
P(H\|D) _ P(D[H)P(H)

P(Ho|D)  P(D|Hy)P(Hy)
e Let us assume a uniform prior P(Hy) = P(Hp) = 0.5.

e Then we just focus on the ratio of the marginal likelihoods:
1
P(DIHy) = [ do P(DI6. H:)P(O|)
0

e For H, there is no free parameter, so
P(D|Hp) = 0.5

where N is the number of coin tosses in D.



PARAMETER PRIOR

e How to compute P(D|H)?

e L et us assume a beta prior on the coin bias 6

1
PBla, Hy) = B(0; — ooh—11 _ gyl
(bloc Hy) = Bl6: 0. 00) = 0% (10
where
1
_ 1 Tlap)'(oy)
ACTNE _/ do 911 — =1 =
( h t) 0 ( ) F(&h+@t)

e ['(n) = (n — 1)! for positive integers.
e Mean Ff = L

ap ot

o If we set aj, = ay = 1, we get a uniform prior (and Z = 1).



PARAMETER POSTERIOR

e Suppose we see Dy, heads and D; tails. The parameter posterior is
p(0|a)P(D|0, o)

P(D]a)

1 1
— e@h—l 1 L 9 Ozt—leDh 1 L (9 Dt
PDla) Z(ap ) OO0

= B(0; ap + Dp, ar + Dy)

PO|D,a) =




PARAMETER POSTERIOR - SMALL SAMPLE, UNIFORM PRIOR

prior,1.0, 1.0 likelihood, 1 heads, 0 tails posterior
2 1 2
1 0.5 1
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
prior,1.0, 1.0 likelihood, 1 heads, 1 tails posterior
2 0.4 2
1 0.2 1
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
prior,1.0, 1.0 likelihood, 10 heads, 1 tails posterior
2 0.04 5
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
prior,1.0, 1.0 likglgréod, 10 heads, 5 tails posterior
2 1 4
1 0.5 2
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
prior,1.0, 1.0 likeligdod, 10 heads, 10 tails posterior
2 1 4
1 0.5 /\ 2 /\
0 0 0

0 0.5 1 0 0.5 1 0 0.5 1



PARAMETER POSTERIOR - SMALL SAMPLE, STRONG PRIOR

prior,10.0, 10.0 likelihood, 1 heads, O tails posterior
4 1 4
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
prior,10.0, 10.0 likelihood, 1 heads, 1 tails posterior
4 0.4 4
2 /\ 02 2 /\
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
prior,10.0, 10.0 likelihood, 10 heads, 1 tails posterior
4 0.04 5
0 0
0 0.5 1 0 0.5 1 0 0.5 1
prior,10.0, 10.0 likelihged, 10 heads, 5 tails posterior
4 1 5
0 0
0O 05 1 0 0.5 1 0 0.5 1
prior,10.0, 10.0 likelihggdh 10 heads, 10 tails posterior
4 1 10
2 /\ 0.5 /\ 5
0 0.5 1 0 0.5 1 0 0.5 1



PARAMETER POSTERIOR - COIN DATA, UNIFORM PRIOR

prior,1.0, 1.0 likglihgo®, 140 heads, 110 tails posterior
2 4 15
15 3
10
1 2
5
0.5 1
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
prior,1.0, 1.0 likgliggott, 125 heads, 125 tails posterior
2 6 15
5
15
4 10
1 3
2 5
0.5
1 J
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1

thetas = 0:0.01:1;

alphaH = 1; alphaT = 1;

prior = betapdf (thetas, alphaH, alphaT);

1ik = thetas. Nh .* (1-thetas). Nt;

post = betapdf (thetas, alphaH+Nh, alphaT+Nt);



MODEL EVIDENCE

e Suppose we see Dy, heads and D; tails. The parameter posterior is
p(0|a)P(D|0, o)

P(D|a)

1 1

— e@h—l 1 L 9 Ozt—leDh 1 L (9 Dt
PDla) Z(ap ) OO0

= [(0;ap + Dp, ap + Dy)
where the marginal likelihood (evidence) is
Z(og + Np, ag + Ny)

Z<&h7 Cvt)
F(Oz) F(Ozh + Nh) F(Ozt + Nt)

Na+N) TI'(a+N) TI'(a+N)

PO|D,a) =

P(Dla) =




SEQUENTIALLY EVALUATING THE EVIDENCE

e By the chain rule of probability,
P(z1.y) = P(21)P(ag|z) Plaslei) - .

o Also, after N data cases, P(X|Dy.x) = Dir(@+ N), so
_ Nk+04k dngk-l—Ozk
e Suppose D = H, T\ T H,H, H. Then
P(D) = ap o4 .cvt+1.ah+1.ozh+2

a a+l a+2 a+3 a+4

_ oo+ 1)(ap + 2)] [ag(og + 1))
ala+1)---(a+4)
(o) -~ (o + Np — 1) [(o) - - - (g + Ny — 1))

P(X = K|Dy.y, d)

(@) -+ (@ + N)



MODEL EVIDENCE

e For integers,
(a)(a+1)---(a+ M —1)
~ (a+M-1)

- (a—1)

(a+M—-1)a+M—-2)---(a+M—-M)a+M—-M-—-1)--

e

(a—1)(a—2)---2-1
(a+M—-1)(a+M~—-2)---(a)(a—1)---2-1
(a—(a—2)---2-1

e For reals, we replace (a — 1)! with I'(a).

e Hence
P(D) _ [(O‘h) T (Oéh + ]ng)_l)gcgitiv) ’ (Ozt + Ny — 1)]
['(c) Moy, + Npy) Ty + Ny

Na+N) TI'(a+N) TI'(a+N)



RATIO OF EVIDENCES (BAYES FACTOR)

e We compute the ratio of marginal likelihoods (evidence):
P(H)|D) _ P(D|Hy) _ Z(ap+ Np,ap +Ny) 1

P(Ho|D)  P(D|Hy) Z(op, o) 0.5

F(14O -+ &)F(llo + Oé) v F(ZO[) v 2250
['(250 + 2«x) "))

e Must work in log domain!

alphas = [0.37 1 2.7 7.4 20 55 148 403 1096];

Nh = 140; Nt = 110; N = Nh+Nt;

numer = gammaln(Nh+alphas) + gammaln(Nt+alphas) + gammaln
denom = gammaln(N+2*alphas) + 2*gammaln(alphas);

r = exp(numer ./ denom);




SO, IS THE COIN BIASED OR NOT?

e We plot the likelihood ratio vs hyperparameter a:

2

1.8f,
1.6
1.4
1.2

1
0.89
06}

(]
0.4F

02 ‘ ‘ ‘ ‘ ‘
0 200 400 600 800 1000 1200

P(H,|D)
' P(Hy|D)

e For a uniform prior = (.48, (weakly) favoring the fair coin
hypothesis Hp!

e At best, for &« = 50, we can make the biased hypothesis twice as
likely.

e Not as dramatic as saying “we reject the null hypothesis (fair coin)
with significance 6.6%" .



FROM COINS TO DICE

e Likelihood: binomial — multinomial
P(D|6) = He

e Prior: beta — Dirichlet

aj—1
where H ( )
2= 5

e Posterior: beta — Dirichlet
P(A|D) = Dir(a@+ N)
e Evidence (marginal likelihood)

Z@+N) TLiT(+N) T, )

PO @ T T L) Ts,00+ 87



FROM DICE TO TABULAR BAYES NETS

e If we assume global parameter independence, the evidence decom-
poses into one term per node:

HP (X;, Xr.)

P(D|G) =

a;)

e If we also assume local parameter independence, each node term
decomposes into a product over rows (conditioning cases):

P(D|G) =

[T TI PO X, =k)ld )

i keVal(m)

=11 1l

i keVal(m;)

=11 11

i keVal(m)

Z(d; . )+ N; . k)

Z(d; . 1)

11

_J

[k + Nijr)

[ r)

F(Z]‘ O‘ijk)

(22 g + Nij)




EXAMPLE OF MODEL SELECTION

e Suppose we generate data from X — Y, where P(X = 0) =
P(X =1)=0.5and
PY=1X=0)=05—¢ P(Y =1[X =1) =05 +e.

e As we increase €, we increase the dependence of Y on X.

e Let us consider 3 hypotheses: Hy = X Y, HH = X — Y,
Hy =Y « X, and use uniform priors.

e We will plot model posteriors vs N for different € and different ran-
dom trials:

_ P(Dy.y|H;)P(H,)
P(H;|Dy.n) = > P(;)]IN’HJ)P(HJ)



EXAMPLE OF MODEL SELECTION

red = H( (independence), blue/green = H{/H> (dependence).
See BNT/examples/static/StructLearn/model-selectl.m.

e=0.05, seed=1 e=0.10, seed=1 e=0.15, seed=1 e=0.20, seed=1
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SCORE EQUIVALENCE

e X — Y and X « Y are l-equivalent (have the same likelihood).

e Suppose we use a uniform Dirichlet prior for each node in each graph,
with equivalent sample size o (K2-prior):

P(0x|H;) = Dir(a, ), P(0x)y—;|H2) = Dir(e, a)

e In H{, the equivalent sample size for X is 2a, but in Hy it is 4«
(since two conditioning contexts). Hence the posterior probabilities
are different.

e The BDe (Bayesian Dirichlet likelihood equivalent) prior is to use
weights x| = aP'(X;, X;.) where P’ could be represented by
4y [
e.g., a Bayes net.

e The BDeu (uniform) prior is P'(X;, Xr.) = |X-||1X T

e Using the BDeu prior, the curves for X — Y and X « Y are
indistinguishable. Using the K2 prior, they are not.




BAYESIAN OCCAM’S RAZOR

e Why is P(Hy|D) higher when then dependence on X and Y is weak
(small €)?

e It is not because the prior P(H;) explicitly favors simpler models
(although this is possible).

o |t because the evidence P(D) = [ dwP(D|w)P(w), automatically

penalizes complex models.

e Occam'’s razor says “If two models are equally predictive, prefer the
simpler one” .

e This is an automatic consequence of using Bayesian model selection.

e Maximum likelihood would always pick the most complex model,
since it has more parameters, and hence can fit the training data
better.

e Good test for a learning algorithm: feed it random noise, see if it
“discovers” structure!



LAPLACE APPROXIMATION TO THE EVIDENCE

e Consider a large sample approximation, where the parameter poste-
rior becomes peaked.

e Take a second order Taylor expansion around théta,Mp:
) 1 ) )
log P(6] D) ~ log P(0p|D) — 5(6 — 0 H(6 — )

where

def 0? logP(@‘D)
HY ’
00067 Orrp

is the Hessian.

e By properties of Gaussian integrals,
P(D) =~ / d9 P(D|6)P(G)e20-0) H(O-0)

— P(D|6)P(6)(2m) "2 H| 2



OCCAM FACTOR

e H is like the precision (inverse covariance) of a Gaussian.

1
e In the 1d case, |H| 2 = 09| D the width of the posterior.

e Consider a uniform prior with width oy.
A A 1 ~
Then P(D) ~ P(D|6)P(6)|H|72 ~ P(D|6) 09 p

e The ratio of posterior accessible volume of the parameter space to
the prior, O'Q‘D/O'g, is called the Occam factor, i.e., the factor by
which H;'s hypothesis space collapses when the data arrive.

' P(w|D,H;)
I”O-u)|D“\\
P(w|H;) \

Y
Wup S
|

Ow



BAYESIAN OCCAM’S RAZOR

e P(D|H) is smallest, since it is too simple a model.

e P(D|Hs3) is second smallest, since it is too complex, so it spreads
its probability mass more thinly over the (D, 6) space (fewer dots on
the horizontal line).

e We trust an expert who predicts a few specific (and correct!) things
more than an expert who predicts many things.

Y P(D|H)

¥7{13(Dl7-lz)
D

P(D|Hy) K .
E " P(w|D, M)

> S P(w | D, Hs)!

[

D P(W|H3).”

Ow



BAYESIAN IMAGE INTERPRETATION

e How many boxes behind the tree?

e The intrepretation that the tree is in front of one box is much more
probable than there being 2 boxes which happen to have the same
height and color (suspicious coincidence).

e This can be formalized by assuming (uniform) priors on the box
parameters, and computing the Occam factors.

1?

A 1 .




LEAVE ONE OUT CROSS VALIDATION (LOOCYV)

e [ he evidence can be evaluated sequentially
P(x1.y) = P(a1)P(ag|z) Plaslri) -
e LOOCV approximates P(X¢| X141, él:t—l) under different permu-
tations of the data.
e Advantages of LOOCV

— Simple (no need to integrate out parameters)
— Robust (works well even if “truth not in model class”)

e Advantages of LOOCV

— Slow (in general, must rerun training many times)

— Does not use all the data



MINIMUM DESCRIPTION LENGTH (MDL)

e Another way of thinking about Bayesian Occam'’s razor is in terms
of information theory.

e To losslessly send a message about an event z with probability P(x)
takes L(x) = — logy P(x) bits.

e Suppose instead of sending the raw data, you send a model and then
the residual errors (the parts of the data not predicted by the model).

e This takes (D, H) bits:
L(D,H)=—log P(H)—log(P(D|H)) = —log P(H|D) + const

e [ he best model is the one with the overall shortest message.



MINIMUM DESCRIPTION LENGTH (MDL)

#bits total
\/ #bits for model
#bits for data
best model
LH)|[ LW, | He) L(D |wiy, Ho)
L(H3) ( (3) | H3) L(D | W2<3)>H3)




BIC APPROXIMATION TO THE EVIDENCE

e | aplace approximation
P(D) ~ P(D|0)P(6)(2x)"2| H| 2

e Taking logs
log P(D) = log P(D|0) + log P(0) + glog@ﬂ) — %10@; |H |
e BIC (Bayesian Information Criterion): drop terms that are indepen-
dent of N, and approximate log |H| ~ dlog N. So
log P(D) ~ log P(D|0as1) — glogN
where d is the number of free parameters.

e AIC (Akaike Information Criterion): derived by minimizing KL diver-
gence independent of N, and approximate log |H| =~ dlog N. So

A d
log P(D) =~ log P(D|0,s1) — §logN



LOG-LIKELIHOOD IN INFORMATION THEORETIC TERMS

ol = —YYYNmklog@wk
=> > >J = k) log P(X; = j|Xr, = k)

P<XZ :jaXWZ' — )P<X’L :])

= P(X; = = k)l
Zk — " k) > P<X7Ti — )P(Xz' :]>
tJ

P<XZ :jaXWZ' :k)
" 22 P X = B B (Y, = )

7Ti_

_|_Y S‘P = W:k)ﬂOgP(Xi:j)

= Zf X@,Xm — H(X;)



BIC IN INFORMATION THEORETIC TERMS

scoregr(G|D) = £(0) — 4UG)

= N I(X;, Xr,) NZH ——1ogN

log N(D)

e The mutual information term grows ||near|y in NV, the complexity
penalty is logarithmic in V.

e So for large datasets, we pay more attention to fitting the data better.

e Also, the structural prior is independent of NV, so does not matter
very much.



DESIRABLE PROPERTIES OF A SCORING FUNCTION

e Consistency: i.e., if the data is generated by G*, then G* and all
l-equivalent models maximize the score.

e Decomposability:

score(G|D) = Z FamScore(D(X;, Xr,))

which makes it cheap to compare score of G and G’ if they only
differ in a small number of families.

e Bayesian score (evidence), likelihood and penalized likelihood (BIC)
are all decomposable and consistent.



MAXIMIZING THE SCORE

e Consider the family of DAGs GG; with maximum fan-in (number of
parents) equal to d.

e [heorem 14.4.3: It is NP-hard to find

G™ = arg max score(G, D)
GelGy

for any d > 2.

e In general, we need to use heuristic local search.



MAXIMIZING THE SCORE: TRACTABLE CASES

e For d <1 (i.e., trees), we can solve the problem in O(nz) time using
max spanning tree (next lecture).

e If we know the ordering of the nodes, we can solve the problem in

O(d @) time (see below).



KNOWN ORDER (K2 ALGORITHM)

e Suppose we a total ordering of the nodes X| < X5... < X, and
want to find a DAG consistent with this with maximum score.

e The choice of parents for X;, from Pa; C {X1,..., X;_1}, is inde-
pendent of the choice for X;: since we obey the ordering, we cannot
create a cycle.

e Hence we can pick the best set of parents for each node indepen-
dently.

e For X, we need to search all (Z ]

1) subsets of size up to d for the

set which maximizes FamScore.

e \We can use greedy techniques for this, c.f., learning a decision tree.



WHAT IF ORDER ISN'T KNOWN?

e Search in the space of DAGs.

e Search in the space of orderings, then conditioned on <, pick best
graph using K2 (Rao-Blackwellised sampling).

e Can also search in space of undirected graphs.

e Can also search in space of graphs of variable size, to allow creation
of hidden nodes (next lecture).



SEARCHING IN DAG SPACE

e Typical search operators:

— Add an edge
— Delete an edge
— Reverse an edge

e We can get from any graph to any other graph in at most O(n?)
moves (the diameter of the search space).

e Moves are reversable.
e Simplest search algorithm: greedy hill climbing.

e \We can only apply a search operator o to the current graph G if
the resulting graph o(G) satisfies the constraints, e.g., acyclicity,
indegree bound, induced treewidth bound (“thin junction trees”),
hard prior knowledge.



COST OF EVALUATING MOVES

e There are O(n?) operators we could apply at each step.
e For each operator, we need to check if o(G) is acylic.

e We can check acyclicity in O(e) time, where ¢ = O(nd) is the
number of edges.

e For local moves, we can check acyclicity in amortized O(1) time
using the ancestor matrix.

o If o(GG) is acyclic, we need to evaluate its quality. This requires
computing sufficient statistics for every family, which takes O(Mn)
time, for M training cases.

e Suppose there are K steps to convergence. (We expect K < n?,
since the diameter is n°.)

e Hence total time is O(K - n? - Mn).



EXPLOITING DECOMPOSABLE SCORE

e If the operator is valid, we need to evaluate its quality. Define
dc:(0) = score(o(G)|D) — score(G|D)

e If the score is decomposable, and we want to modify an edge involving
X and Y, we only need to look at the sufficient statistics for X and
Y's families.

ecg. ifo=add X —Y:
dcz(0) = FamScore(Y, Pa(Y, G)UX|D)—FamScore(Y, Pa(Y,G)|D)

e So we can evaluate quality in O(M) time by extracting sufficient
statistics for the columns related to X, Y and their parents.

e This reduces the time from O(Kn3M) to O(Kn’M).



EXPLOITING DECOMPOSABLE SCORE

o After eg adding X — Y, we only need to update (o) for the O(n)
operators that involve X or Y.

e Also, we can update a heap in O(nlogn) time and thereby find the
best 0 in O(1) time at each step.

e So total cost goes from O(Kn’M) to O(K(nM + nlogn)).

e For large M, we can use fancy data sructures (e.g., kd-trees) to
compute sufficient statistics in sub-linear time.



LOCAL MAXIMA

e Greedy hill climbing will stop when it reaches a local maximum or a
plateau (a set of neighboring networks that have the same score).

e Unfortunately, plateaux are common, since equivalence classes form
contiguous regions of search space (thm 14.4.4), and such classes
can be exponentially large.

e Solutions:

— Random restarts

— TABU search (prevent the algorithm from undoing an operator ap-
plied in the last L steps, thereby forcing it to explore new terrain).

— Data perturbation (dynamic local search): reweight the data and
take step.

— Simulated annealing: if 6(0) > 0, take move, else accept with
G .
probability e 7, where ¢ is the temperature. Slow!



SEARCHING IN SPACE OF EQUIVALENCE CLASSES

e The space of class PDAGs is smaller.
e \We avoid many of the plateux of l-equivalent DAGs.

e Operators are more complicated to implement and evaluate, but can
still be done locally (see paper by Max Chickering).

e Cannot exploit causal/ interventional data (which can distinguish
members of an equivalence class).

e Currently less common than searching in DAG space.



LEARNING THE ICU-ALARM NETWORK WITH TABU SEARCH

e Learned structures often simpler than “true” model (fewer edges),
but predict just as well.
e Can only recover structure up to Markov equivalence.

e 10 minutes to learn structure for 100 variables and 5000 cases.

2

15}

......... Parameter learning

Structure learning

KL Divergence
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