GENERATIVE VS DISCRIMINATIVE MODELS

e Generative model defines P(h,0) = P(h)P(o|h).
—HMM (hidden Markov model)

o) = [[ [ Plhelhe— )] [ plot|ho)]
¢ ¢

—MRF (Markov random field)
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e Conditional model defines P(h|o).
— CRF (conditional random fleld)
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ADVANTAGES OF CRFS FEATURE VECTORS FOR MRFs
e Do not need to waste parameters modeling observed inputs o. e An MRF is
e Can use supervised machine learning methods to learn local P(h) = 7 ch(hc)

evidence P(h;|o).
e Can incorporate arbitrary, nonlocal features of the input, without
increasing complexity of inference. Ye(he) = exp (ngc(hc)>

e The clique potentials are often defined in terms of feature vectors

e By using indicator features, we can recover tabular potentials:

fc(hc> = [5(hc; 1)7 S 75(}%7 K)]




FEATURE VECTORS FOR CRFS

e A CRF is
P(hlv) = H¢c (he,v)

e The (input-dependent) clique potentials are often defined in terms
of feature vectors

Yelhe,v) = exp (67 felhe,v) )

e Example: logistic regression. Hidden node H € {—1,+1}, cliques
= edges = {(H,v)}:

P(hlv) = H el

e Example application: entity extraction from text (logistic regression

with correlation amongst the hidden labels/ discriminative version
of an HMM)

ExXAMPLE: FEATURES USED

ENTITY EXTRACTION

Capitalized XXXXX Character n-gram classifier Hand-built FSM person-name

; says string is a person extractor says yes,
m:xgd Caps if)(();:)): name (80% accurate) (prec/recall ~ 30/95)

. aps In stopword list Conjunctions of all previous
Initial Cap X (the, of, their, etc) feature pairs, evaluated at
Contains Digit XxXx5 In honorific list the current time step.

All lowercase XXXX (Mr, Mrs, Dr, Sen, etc) Conjunctions of all previous
Initial X In person suffix list feature pairs, evaluated at

) (Jr, Sr, PhD, etc) current step and one step
Punctuation sal0.ete | hame particle list ahegd.
Period . (de, la, van, der, etc) All previous features, evaluated
Comma s In Census lastname list; 2 two .stepfs al:ead. luated

‘ segmented by P(name previous features, evaluate

Apostrophe 9 ) y (- . ) one step behind.
Dash R In Census firstname list;

segmented by P(name)
In locations lists
(states, cities, countries)

In company name list

(“J. C. Penny”) Total number of features = ~200k
In list of company suffixes

(Inc, & Associates, Foundation)

Preceded by HTML tag

Closed set
U.S. states

’ He was born in Alabama... ‘

| The big Wyoming sky... |

Complex pattern

U.S. postal addresses

University of Arkansas
P.O. Box 140

Hope, AR 71802

Headquarters:
1128 Main Street, 4th Floor
Cincinnati, Ohio 45210

EXAMPLE: PERSON N

Regular set

U.S. phone numbers
| Phone: (413) 545-1323 |

The CALD main office can be
reached at 412-268-1299

Ambiquous patterns,

needing context and
many sources of evidence

Person names

...was among the six houses
sold by Hope Feldman that year.

Pawel Opalinski, Software
Engineer at WhizBang Labs.

AME EXTRACTION

Person name Extraction

3 Press Release 1/18/99 - Microsoft Intemet Explorer prov

Fle  Edt es Toos Help

Mallet Software

[McCallum 2001,
unpublished]
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GEORGE E. BARRETT, CPA, AWARDED CERTIFICATE OF EDUCATIONAL
ACHIEVEMENT IN EMPLOYEE BENEFIT ADMINISTRATION

Alloy, Siverstein, Shapiro, Adams, Mulford & Co., Cherry Hill, IJ, the 17th largest accounting
firm with offices in the Philadelphia area, is pleased to announce that Associate Partner George
E.Barrett, CPA, a Cherry HIL NJ resident and 1983 gradhusic of Rutgers Univesiy, bas becn
awarded a certificate of edi emploee benefit ad from the

Tnstiute of Certified Public tants. The certificate was awarded in recogrition
of M. Barreit's completion of a program which includes a series of seminars and comprehensive
examinations.

Aloy, Siverstein, Shapiro, Adams, Mulford, & C'o., which celebrates ifs 40th anniversary in
1999, provides a wide range of services inclading accounting, auditing, tax, management
consuling, fnancial aad estate planning, business veluations, iigation support and information
technology

For more information contact:

Reynold P. Cicalese, CPA
Alloy, Sitverstein, Shapiro, Adams, Mufford & Clo
900 Kines Highway North
Cherry Hill, MJ 08034-1561
609 667 4100 extension 133
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CONDITIONAL MODELS ARE NOT GENERATIVE MODELS OF
THE DATA

PARAMETER LEARNING IN MRFs/CRF's

e MaxEnt models are a generalized version of exponential family
models, and so they can be thought of as generative models which
assign probability distribution to joint settings of the features f;(x).

e But they are not generative models of the original inputs x,
because the features may be very complicated, nonlinear functions.

e Futhermore, it may be possible to generate joint feature settings
which do not correspond to any possible input x.

e For example, what if our generative model of English spelling gives
fing(c1,co,c3) = T and foeqg(cy, c0,03) =17

DERIVATIVE OF LOG-PARTITION FUNCTION

Zyp = > exp (Z 9chc(hcw)>
h C
dlog Z, 1 0
e Ugaeczexp (ZQ felfet )
= Z —exp (Z 9?}%“%‘7”))
0,0 h c
= Zl Zoxp (Z echc(hcﬂJ)) felhe, v)

eh

= ZZP h hC|U 9 fc(hC> )

hc/ h/
= Ehcgf(}(h(lvv)

e A CRF is P(h|v) = %chc(hc, v)

e The (input-dependent) clique potentials are often defined in terms

of feature vectors ¥¢(h¢, v) = exp (9?fc(hc, U))
e Assume fully labeled data, (h"",v"") pairs. Log-likelihood is

0=> "log (k") ZZGTfC h' ™) —log Z(u™)

m

where Z(u") = 5, T, velher o™

e Derivative of log-likelihood is

or ' ,
g = D JelB ") = D7 Plhelv™) folhe, o™)
¢ m h

= counts — expected counts

PARAMETER TIEING

e Frequently we assumed tied parameters, to handle models of
variable-size e.g., sequences of varying length, images of different
size, web-data with multiple web-pages

belhe,v) = exp(07 fe(he,v))

e In this case, we just sum the (expected) features over all cliques
that share the same weight

2= 2 [Z A >] — 1353 Plhele™ felhesv™)
m c ¢ he

e We can associate a weight with each type (class) of clique, to
specify the tying pattern. This is called a relational Markov network.



REGULARIZATION

e We usually put a A/(6;0, 02[) prior on the weights to do “soft”
feature selection.

e The penalized log-likelihood is
6070
(= ZZeTfC (h',0™) = log Z(u™) = S5+ C
e Derivative of penalized log-likelihood is
ol 0
90, = %: fe(he',0™) — %: P(he|v™) fe(he,v™) — 2

2

e The prior variance o“ is usually set by cross-validation.

APPROXIMATE SOLUTION TO EXACT LOG-LIKELIHOOD

e If inference is intractable, we can approximate P(h.|v"").

e If we use loopy belief propagation, one can show (Wainwright,
Jaakkola, Willsky, AISTATS 03) that for pairwise tabular MRFs,
one possible local optimum is

P(Xs =j, X = k)
P(Xs = j)P(Xy = k)
so we can set the parameters from the empirical distribution P
without running BP.

05 =log P(Xs = j), Oy j =log

e If we run BP with these parameters, one possible fixed point is that
the model marginals will match the empirical marginals!

e However, this may not match the behavior of the true MLEs when
the local evidence changes.

e For more general models, one can use approximate inference to
compute an approximate gradient, but this may not converge.

GRADIENT ASCENT ON LOG-LIKELIHOOD

° Derivative of penalized log-likelihood is
0
7 T m m
ch rL? rL>_}ZP(hC‘U )f()(h(hvrb)_p
le

e This can be passed to any gradient-based optimizer, e.g., conjugate
gradient or BFGS. This will find the global optimum (since fully
observed, convex problem).

e There is an alternative method called iterative scaling, but it is
slower, more complex and less general.

e Learning requires computing P(h¢|v"") for every clique ¢, every
training case m, and every iteration of the gradient algorithm, so it
can be very slow.

EXACT SOLUTION TO APPROXIMATE LOG-LIKELIHOOD

e Instead of doing approximate inference, we can change the objective
function:

, 1
g(hm‘vm) = Z(Um) H¢7(hz m H ¢7] h?? h’gn
)
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PSEUDO-LIKELIHOOD APPROXIMATION

e Pseudo-likelihood learns to trust its hidden neighbors too much (since
they are assumed known during learning), hence leading to over-
smooth estimates at run time.

(W™ |0™) HP (W [P, ™)

e One hack is to regularize the pairwise interaction potential 1); ;.

FEATURE INDUCTION

o We assumed ¢¢(zc) = exp 01 fo(zc).
e Where do the features come from?

e McCallum (UAI 03) suggested a greedy feature induction scheme for
1D CRFs applied to text:

— At each iteration, consider (in parallel) adding new atomic features
(binary tests on the input) and conjunctions of existing features.

— Evaluate quality of proposed candidates using the change in pseudo-
likelihood.

— Having chosen a set of features, add them and refit the weights
using BFGS.

— It learned features like f;(v) = 6(v; =’ the/,v;41 = of).

e Dietterich et al (ICML 04) suggested using boosting to solve a similar
task.

APPLICATION: MAN-MADE BUILDING DETECTION

e “Discriminative Fields for Modeling Spatial Dependencies in Natural
Images”, Kumar & Herbert, NIPS 2003

e Goal: estimate h; € {—1,+1} at each pixel i.

e Local-evidence defined in terms of features f;(v):
0i(hi, viw) = loga(hiw" fi(v))

e Image-dependent smoothing between neighboring labels
bij(hi by, 0:0) = hihy0T g;(v)

e Inference= graph cuts, Learning= pseudo-likelihood

CRFS WITH HIDDEN VARIABLES

e Let v be visible, h be always hidden, and s be desired output state
(observed in training).

P(s"™ ™) ZP ,hlo™)

ém,hjvm)

B Z} e\I/ (8" h,u™) def Z(Sm,vm)
Zh ZS (8,0 Z(Um)

U(s, h,v) Ze felses by v)

where



LEARNING CRFS WITH HIDDEN VARIABLES

e Log-likelihood
log P(s"'|v"™) =1log Z (s, v"") — log Z(v"™)
o Derivative is
Olog P(s™v™)
00,

e Or we can use EM.

= Eth(‘STn? h’? Um) - EhESfC(Sv h7 U)

— E-step: compute expected sufficient statistics.

— M-step: maximize expected complete-data log-likelihood using stan-
dard techniques for fully observed MRFs (eg IPF or gradient).

BAYESIAN UPDATING IN DISCRETE HYPOTHESIS SPACE

We plot likelihood ¢(11, o) for o vs p.

Hwb: MLES FOR 1D GAUSSIANS

o Log-likelihood ¢(p,0) =), log P(an|p, o)

e MLE for mean: fiy/7, = %ann

e MLE for variance: 0A2ML = %S where S =5 (vy, — 7)

o 0%y is biased: Ex 00 ML(X1n) =

~2 _ 1
® So we use 0% _| = 79

e Unbiased is not enough, e.g EX1~n~N(M Ug)u(

e Also need consistency: E(0 — )2 — 0.

i, 6%\[ and (5%\,_1 are all consistent.

2
N_152
Xin) = EXy

eeg, for data below, N =5, 7 = 1.0, S = 1.0, oy = 1/,/(5)

0.45, oy_1 = 1/1/(4)
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Maybe this data would be better fit by
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PRIOR HYPOTHESIS SPACE FOR MOG2 POSTERIOR HYPOTHESIS SPACE FOR MOG?2

Top-half: 71 = 0.6, bottom half 71 = 0.8. We pIot 1L VS O. Top-half: m = 0 6 bottom half m; = 0.8. We plot 1 vs o.
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MODEL SELECTION

e Maximum likelihood always picks the most complex model.

e Instead we should pick the most probable model P(M|D) o< P(D|M),
where P(D|M) is the marginal likelihood:

P(D|M) = /H P(Dpt, 0, M)P (s, 0| M)

g

)

e The integral over parameters penalizes overly complex models (Bayesian
Occam's razor).

e This can be used for model selection (Bayesian version of hypothesis
testing).

e Examples of model selection: number of clusters in K-means, order
in K-th order Markov model, structure learning...



