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MLE for general Bayes nets
(K+F 13.1–13.2, J 9.1–9.2)

• If we assume the parameters for each CPD are globally
independent, then the log-likelihood function decomposes into a
sum of local terms, one per node:

log p(D|θ) = log
∏

m

∏

i

p(xmi |xπi, θi) =
∑

i

∑

m

log p(xmi |xπi, θi)
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Example: A Directed Model

• Consider the distribution defined by the DAGM:

p(x|θ) = p(x1|θ1)p(x2|x1, θ2)p(x3|x1, θ3)p(x4|x2,x3, θ4)

• This is exactly like learning four separate small DAGMs, each of
which consists of a node and its parents.
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Example: Multinomial

•We observe M iid die rolls (K-sided): D=3,1,K,2,. . .

•Model: p(k) = θk
∑

k θk = 1

• Likelihood (for binary indicators [xm = k]):

`(θ;D) = log p(D|θ) =
∑

m

log
∏

k

θ
[xm=k]
k

=
∑

m

∑

k

[xm = k] log θk =
∑

k

Nk log θk

• The counts Nk are the sufficient statistics.

•We need to maximize this subject to the constraint
∑

k θk = 1, so
we use a Lagrange multiplier.



Lagrange multipliers

• Constrained cost function:

l̃ =
∑

k

Nk log θk + λ



1 −
∑

k

θk





• Take derivatives wrt θk:

∂l̃

∂θk
=
Nk
θk

− λ = 0

Nk = λθk
∑

k

Nk = M = λ
∑

k

θk = λ

θ̂k,ML =
Nk
M

• θ̂k,ML if the fraction of times k occurs.



MLE for Bayes nets with tabular CPDs

• Assume each CPD is represented as a table (multinomial) where

θijk
def
= P (Xi = j|Xπi = k)

• The sufficient statistics are just counts of family configurations

Nijk
def
=
∑

m

I(Xm
i = j,Xm

πi = k)

• The log-likelihood is

` = log
∏

m

∏

ijk

θ
Nijk
ijk

=
∑

m

∑

ijk

Nijk log θijk

• Using a Lagrange multiplier to enforce so
∑

j θijk = 1 we get

θ̂ML
ijk =

Nijk
∑

j′Nij′k



MLE for undirected graphical models (J 9.3)

• For directed graphical models, the log-likelihood decomposes into a
sum of terms, one per family (node plus parents).

• For undirected graphical models, the log-likelihood does not decom-
pose, because the normalization constant Z is a function of all the
parameters (c.f., EM)

P(X) =
1

Z

∏

cliques c

ψc(xc) Z =
∑

X

∏

cliques c

ψc(xc)

• In general, we will need to do inference to learn params for undirected
model, even in the fully observed case.



Log Likelihood for undirected model with tabular
clique potentials

• In terms of the counts, the log likelihood is given by:

p(D|θ) =
∏

n

∏

x

p(x|θ)δ(x,x
n)

log p(D|θ) =
∑

n

∑

x

δ(x,xn) log p(x|θ)

` =
∑

x

n(x) log

(

1

Z

∏

c

ψc(xc)

)

=
∑

c

∑

xc

n(xc) logψc(xc) −N logZ

• So the clique counts n(xc) are the sufficient statistics for our
undirected model.

• But now there is a nasty logZ in the likelihood.



Derivative of log Likelihood

• Log-likelihood: ` =
∑

c
∑

xc
n(xc) logψc(xc) −N logZ

• First term. ∂`1
∂ψc(xc)

= n(xc)/ψc(xc)

• Second term:

∂ logZ

∂ψc(xc)
=

1

Z

∂

∂ψc(xc)





∑

x̃

∏

d

ψd(x̃d)





=
1

Z

∑

x̃

δ(x̃c, xc)
∂

∂ψc(xc)





∏

d

ψd(x̃d)





=
∑

x̃

δ(x̃c, xc)
1

ψc(x̃c)

1

Z

∏

d

ψd(x̃d)

=
1

ψc(x̃c)

∑

x̃

δ(x̃c, xc)p(x̃) =
p(xc)

ψc(xc)



Conditions on Clique Marginals

•Derivative of log-likelihood

∂`

∂ψc(xc)
=
n(xc)

ψc(xc)
−N

p(xc)

ψc(xc)

• Hence, for the maximum likelihood parameters, we know that:

p∗ML(xc) =
n(xc)

N
def
= q(xc)

def
= p̃(xc)

In other words, at the maximum likelihood setting of the
parameters, for each clique, the model marginals must be equal to

the observed marginals (empirical counts).

• This doesn’t tell us how to get the ML parameters, it just gives us
a condition that must be satisfied when we have them.



MLE for undirected graphical models

• Is the graph decomposable (triangulated)?

• Are all the clique potentials defined on maximal cliques (not sub-
cliques)? e.g., ψ123, ψ234 not ψ12, ψ23, . . ..

X1 X2

X3 X4

X1 X2

X3 X4

• Are the clique potentials full tables (or Gaussians), or parameterized
more compactly, e.g., ψc(xc) = exp(

∑

k wkfk(xc))?

Decomposable? Max. Cliques Tabular Method
Yes Yes Yes Direct
- - Yes IPF
- - - Gradient ascent
- - - Iterative scaling



MLE for decomposable undirected models

• Consider a chain X1 −X2 −X3. The cliques are (X1, X2) and
(X2, X3); the separator is X2.

• The empirical marginals must equal the model marginals.

• Let us guess that p̂ML(x1, x2, x3) =
p̃(x1,x2)p̃(x2,x3)

p̃(x2)

•We can verify this satisfies the conditions:

p̂(x1, x2) =
∑

x3

p̂(x1, x2, x3) = p̃(x1|x2)
∑

x3

p̃(x2, x3) = p̃(x1, x2)

and similarly p̂(x2, x3) = p̃(x2, x3).

• To compute the clique potentials, just equate them to the empirical
marginals. Also, the separator must be divided into one of its
neighbors. Then Z = 1.

ψ̂ML
12 (x1, x2) = p̃(x1, x2), ψ̂ML

23 (x2, x3) =
p̃(x2, x3)

p̃(x2)
= p̃(x3|x2)



MLE for decomposable undirected models

X1 X2

X3 X4

p̂(x1:4) =
p̃(x1, x2, x3)p̃(x2, x3, x3)

p̃(x2, x3)

ψ̂123 =
p̃(x1, x2, x3)

p̃(x2, x3)

ψ̂234 = p̃(x2, x3, x4)

If the potentials were defined on non-maximal cliques (e.g., ψ12, ψ34),
we could not equate empirical marginals on max-cliques with model
parameters.



Iterative Proportional Fitting (IPF)

• Let’s go back to the derivative of the likelihood:
∂`

∂ψc(xc)
=
n(xc)

ψc(xc)
−N

p(xc)

ψc(xc)

• From this we can derive another relationship:
q(xc)

ψc(xc)
=
p(xc|θ)

ψc(xc)

in which ψc appears implicitly in the model marginal p(xc|θ).

• To solve for ψc is hard, because it appears on both sides of this
implicit nonlinear equation.

• The idea of IPF is to hold ψc fixed on the right hand side (both in
the numberator and denominator) and solve for it on the left hand
side. We cycle through all cliques, then iterate:

ψ
(t+1)
c (xc) = ψ

(t)
c (xc)

q(xc)

p(t)(xc)



IPF for pairwise MRFs

while not converged
for each node i

for each neighbor j ∈ Ni
mt
ij = P (Xi, Xj|θ

t) (inference)

cij = normalize(empirical counts(Xi, Xj))

ψt+1
ij = ψtij ×

cij
mt
ij

θt+1 = θt \ ψtij ∪ ψ
t+1
ij

If the graph is decomposable, we will converge after updating each
potential once.



Properties of IPF Updates

• IPF iterates a set of fixed-point equations.

• However, we can prove it is also a coordinate ascent algorithm
(coordinates = parameters of clique potentials).

• Hence at each step, it will increase the log-likelihood, and it will
converge to a global maximum.



KL Divergence View

• IPF can also be seen to be coordinate ascent in the likelihood using
the way of expressing likelihoods using KL divergences.

• First, we observe that maximizing the log likelihood is equivalent to
minimizing the KL divergence (cross entropy) from the observed
distribution to the model distribution:

max `⇔ minKL[q(x)‖p(x|θ)] =
∑

x

q(x) log
q(x)

p(x|θ)

• Next, we use a property of KL divergence based on the conditional
chain rule: p(x) = p(xa)p(xb|xa):

KL[q(xa,xb)‖p(xa,xb)] = KL[q(xa)‖p(xa)]+
∑

xa

q(xa)KL[q(xb|xa)‖p(xb|xa)]



IPF minimizes KL divergence

• Putting these two together, we see that:

KL[q(x)‖p(x|θ)] = KL[q(xc)‖p(xc|θ)]+
∑

xc

q(xc)KL[q(xc̃|xc)‖p(xc̃|xc, θ)]

But changing the clique potential has no effect on the conditional
distribution, so the second term in unaffected. To minimize the first
term, we set the marginal to the observed marginal, just as in IPF.

• In fact, we can interpret IPF updates as retaining the “old”
conditional probabilities p(t)(xc̃|xc) while replacing the “old”

marginal probability p(t)(xc) with the observed marginal q(xc).



MLE for undirected graphical models

• Is the graph decomposable (triangulated)?

• Are all the clique potentials defined on maximal cliques (not sub-
cliques)? e.g., ψ123, ψ234 not ψ12, ψ23, . . ..

X1 X2

X3 X4

X1 X2

X3 X4

• Are the clique potentials full tables (or Gaussians), or parameterized
more compactly, e.g., ψc(xc) = exp(

∑

k wkfk(xc))?

Decomposable? Max. Cliques Tabular Method
Yes Yes Yes Direct
- - Yes IPF
- - - Gradient ascent
- - - Iterative scaling



Constrained Clique Potentials (J ch 19)

• So far we have discussed the most general form of a graphical
model in which maximal cliques are parametrized by general
potential functions ψC(xC).

• But for large cliques these general potentials are exponentially
costly for inference and have exponential numbers of parameters
that we must learn from limited data.

•One solution: change the graphical model to make cliques smaller.
But this changes the dependencies, and may force us to make more
independence assumptions than we would like.

• Another solution: keep the same graphical model, but use a less
general parameterization of the clique potentials.

• This is the idea behind feature-based models.
It is also the same idea behind factor graphs which we already saw.



Features

• Consider a clique xC of random variables in a graphical model,
e.g. three consecutive characters c1c2c3 in a string of English text.

• How would we build a model of p(c1c2c3)?

• The full joint clique potential would be huge: 263 − 1 parameters.

• However, we often know that some particular joint settings of the
variables in a clique are quite likely or quite unlikely.
e.g. ing, ate, ion, ?ed, qu?, jkx, zzz,...

• A “feature” is a function which is uniform over all joint settings
except a few particulat ones on which it is high or low.

• For example, we might have fing(c1c2c3) which is 1 if the string is
’ing’ and 0 otherwise, and similar features for ’?ed’, etc.

•We can also define features when the inputs are continuous.
Then the idea of a cell on which it is active disappears, but we
might still have a compact parameterization of the feature.



Features as Micropotentials

• By exponentiating them, each feature function can be made into a
“micropotential”. We can multiply these micropotentials together
to get a clique potential.

• Example: a clique potential ψ(c1, c2, c3) could be expressed as

ψ(c1, c2, c3) = eθingfingeθ?edf?ed . . .

= exp





K
∑

i=1

θifi(c1, c2, c3)





• This is still a potential over 263 possible settings, but only uses K
parameters if there are K features.

• By having one indicator function per combination of xC, we
recover the standard tabular potential.



Combining Features

• Each feature has a weight which tells us how important it is and
whether it increases or decreases the probability of the clique.

• This is a generalized exponential family distribution:

p(c1c2c3) ∝ exp{ θingfing(c1c2c3) + θ?edf?ed(c1c2c3)+

θqu?fqu?(c1c2c3) + θzzzfzzz(c1c2c3) + . . .}

• In general, the features may be overlapping, unconstrained
indicators of any function of the clique variables:

ψc(xc) ≡
∏

i∈IC

exp{θifi(xCi)}

= exp







∑

i∈IC

θifi(xCi)







• How can we combine feature into a probability model?



Feature Based Model

•We can multiply these clique potentials as usual:

p(x|θ) =
1

Z(θ)

∏

C

ψC(xC)

=
1

Z(θ)

∏

C

exp







∑

i∈IC

θifi(xCi)







=
1

Z(θ)
exp







∑

C

∑

i∈IC

θifi(xCi)







• However, in general we can forget about associating features with
cliques and just use a simplified form:

p(x|θ) =
1

Z(θ)
exp

{

∑

i

θifi(xCi)

}

• This is just our friend the exponential model, with the features as
sufficient statistics! We don’t really need the graphical model at all.



Review: Maximum Likelihood for exponential family

`(θ;D) =
∑

x

n(x) log p(x|θ)

=
∑

x

n(x)

(

∑

i

θifi(x) − logZ(θ)

)

=
∑

x

n(x)
∑

i

θifi(x) −N logZ(θ)

∂`

∂θi
=
∑

x

n(x)fi(x) −N
∂

∂θi
logZ(θ)

=
∑

x

n(x)fi(x) −N
∑

x

p(x|θ)fi(x) (∗)

⇒
∑

x

p(x|θ)fi(x) =
∑

x

n(x)

N
fi(x) =

∑

x

p̄(x)fi(x)

i.e., At ML estimate, model expectations match empirical feature counts.

(*) ∂ logZ
∂θi

= Efi(X) (Jordan eqn 8.40).



Maximum Entropy

•We can approach the modeling problem from an entirely different
point of view. Begin with some fixed feature expectations:

∑

x

p(x)fi(x) = αi

• Assuming expectations are consistent, there may exist many
distributions which satisfy them. Which one should we select?
The most uncertain or flexible one:
i.e. the one with maximum entropy.

• This yields a new optimization problem:

max H[p(x)] = −
∑

x

p(x) log p(x)

subject to
∑

x

p(x)fi(x) = αi
∑

x

p(x) = 1



Solution to the MaxEnt Problem

• To solve the maxent problem, we use Lagrange multipliers:

L = −
∑

x

p(x) log p(x) −
∑

i

θi

(

∑

x

p(x)fi(x) − αi

)

− µ

(

∑

x

p(x) − 1

)

∂L

∂p(x)
= 1 + log p(x) −

∑

i

θifi(x) − µ

p∗(x) = eµ−1 exp

{

∑

i

θifi(x)

}

Z(θ)
def
= e1−µ =

∑

x

exp

{

∑

i

θifi(x)

}

since
∑

x p
∗(x) = 1

p(x|θ) =
1

Z(θ)
exp

{

∑

i

θifi(x)

}

• So feature constraints + maxent implies exponential family.

• Problem is convex, so solution is unique.



Constraints from Data

•Where do the constraints αi come from?

• Just as before, measure the empirical counts on the training data:

αi =
∑

x

n(x)

N
fi(x) =

∑

x

p̄(x)fi(x)

• This also ensures consistency automatically.

• Known as the “method of moments”. (c.f. law of large numbers)

•We have seen a case of convex duality:
In one case, we assume exponential family and show that ML
implies feature expectations match observed counts.
In the other case, we assume model expectations must match
empirical feature counts and show that maxent implies exponential
family distribution.



Conditional MaxEnt Models

• So far we have focussed on maxent models for density estimation
(unsupervised learning).

•We can also formulate such models for classification and regression
(conditional density estimation).

• For classification, the simplest model is:

p(c|x) =
exp
∑

i θcifi(x)
∑

c′ exp
∑

i θc′ifi(x)

where each class gets its own set of weights θci over the features
and we do the classification using softmax.

• If we use the “identity features” fi(x) = xi then this is exactly
equivalent to the logistic regression model we saw before.

• The model above is like doing logistic regression on the features.
Now features can be very complex, nonlinear functions of the data.



Maximum entropy Markov model (MEMM)

•We can combine local probabilistic classifiers together into a
Markov chain, to get a maximum entropy markov model.

1

1 T3

2

2

3 Ts s s s

f f f f

• A MEMM encodes a conditional density:

p(hT1 |o
T
1 ) =

∏

t

p(ht|ht−1, ft(o
T
1 ))

whereas an HMM encodes a joint density

p(hT1 , o
T
1 ) =

∏

t

p(ht|ht−1)p(ot|ht)



Generative vs discriminative models

• An HMM is a model of how to generate observations ot from
hidden states ht.

• Hence an HMM defines a joint distribution over hidden and

observed variables, p(o1:t|h1:t)p(h1:t).

• An MEMM is a conditional model of hidden states given

observations, p(h1:t|o1:t).

• Advantages of conditional models:

– Do not need to waste parameters modeling observed inputs o1:t.

– Can incorporate arbitrary, nonlocal features of the input, without
increasing complexity.

H1 H4

O3 O4

H2 H3

O1 O2

H1 H2 H3 H4


