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MLE FOR GENERAL BAYES NETS

e If we assume the parameters for each CPD are globally independent,
and all nodes are fully observed, then the log-likelihood function
decomposes into a sum of local terms, one per node:

log p(D|6) = 1OgHHp X} %, 0;) = Y Y log p(x]"|xn;, 0;)
om




ExaAMPLE: A DIRECTED MODEL

e Consider the distribution defined by the DAGM:
p(x]0) = p(x1]61)p(x2|x1, 02)p(x3]x1, 03)p(x4|x2, X3, 04)

e This is exactly like learning four separate small DAGMs, each of

which consists of a node and its parents.
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MLE FOR BAYES NETS WITH TABULAR CPDs

e Assume each CPD is represented as a table (multinomial) where

def |
Oij = P(X;=j|Xr, = k)

e T he sufficient statistics are just counts of family configurations
det
zyk — E :[ — k)

e The log-likelihood is

¢=1logIT]] ew;g‘f

m a5k
= D> Nijilogtij,
m ik
e Using a Lagrange multiplier to enforce so Z] ijk =1 we get
Nijk
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TIED PARAMETERS
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e Consider a time-invariant hidden Markov model (HMM)

_ State transition matrix A(4, 7) < P(X; = j|X,_1 = 9),
— Discrete observation matrix B(z, j) A P(Y: = j| Xy =1)
— State prior 7(i) & P(X; = i),
The joint is

T T

P(X1.7, Yierl0) = P(X1|m) | | (Xl Xe—1, A) | | P(ViI X4 B)
t=2 t=1



LEARNING A FULLY OBSERVED HMM

e The log-likelihood is
0(6; D) =" log P(X) = a{"|m)
m

T T
+3 P(Xy=a"| X1 = a1, A) + Y P(Y; = y}"|X; = 2", B)
t=2 t=1

e We can optimize each parameter (A, B, m) separately.



LEARNING A MARKOV CHAIN TRANSITION MATRIX

e Define A(i,5) = P(Xy = j| X1 =1).
e Ais a stochastic matrix: »_; A(i, j) =1
e Each row of A is multinomial distribution.
e So MLE is the fraction of transitions from 7 to j
: : 1
Al f) = _ Zom 2 MAE =6 A =)
ik S S IX = i)

o If the states X} represent words, this is called a bigram language
model.

o Note that A7 (i, 7) = 0 if the particular i, j pair did not occur in
the training data; this is called the sparse data problem.

e \We will solve this using a prior.



DIRICHLET PRIORS

elet X € {1,..., K} have a multinomial distribution
P(X|0) = of X =DglX=2) L gl Y=
e For a set of data X1, . .. ,XN, the sufficient statistics are the counts

N; = Zn]<Xn — )
e Consider a Dirichlet prior with hyperparameters o

1 a1—1 ao—1 arp—1
p(@‘&) :D<(9‘04) :m.gll .(922 QKK

where Z(«) is the normalizing constant

e The Dirichlet prior is conjugate to (has the same form as) the multi-
nomial likelihood.

e The . act like pseudo (virtual) counts.



NORMALIZATION CONSTANT

e /() is the normalizing constant
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o ['(a) is the gamma function:

O
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e For integers, ['(n + 1) = n!

O



DIRICHLET POSTERIOR

e Likelihood, prior, posterior'

P(N|F) = He

1 —1 ~1 —1
p(0la) = D(|a) = m : 9{1341 .932 ...9?{}(
= 1 a1+N ag+N
6N, ) = S
PO ) = ap i) K

= D(ay+ Ny, ...,ax + Ng)
e Marginal likelihood (evidence):

P(¥|) = / p(N|@)p(dla)d’o =




HIERARCHICAL BAYESIAN MODELS

e 0 are the parameters for the likelihood p(X|0)
e (v are the parameters for the prior p(f|a).
e \We can have hyper-hyper-parameters, etc.

e We stop when the choice of hyper’’-parameters makes no difference
to the marginal likelihood; typically make hyper-parameters con-
stants.

e Type-lIl maximum likelihood (empirical Bayes) = computing point
estimates of a:

—

ayrp = arg max p(@|N) = arg max p(N|@)p(&)
(87 (87

Xn




BETA PRIORS

e Consider a coin toss X € {h,t}.

e [ he Dirichlet distribution becomes the beta distribution:
1
(9 — _90%—1 1 L 9 Ozt—l
o If aj, = ay = 1, we have a uniform (Laplace) prior.

e The posterior mean (predicted probability of heads) is
1
P(X = Hlaj.a1) = [ 49 P(X = 18)p(6)
0

/1d6¢9(6) Dh
B 0 b _Ozh—I—Ozt

e Hence oy, is the number of virtual heads we have seen in our prior
“database”; similarly for o4.

e The strength of the prior is measured by the equivalent sample size
ap, + Q.



SEQUENTIAL BAYESIAN UPDATING

e Start with beta prior p(0|ay,, ar) = B(0; oy, ap).
e Observe N trials with NV}, heads and NV; tails. Posterior becomes
p(0lag, at, Ny, Ni) = B(0; e + Ny, ap + Ny) = B(0; o, )

e Observe another N/ trials with N;L heads and Nt/ tails. Posterior
becomes

p(0lg,, oy, Np, Ny) = B(0;aj + N, o) + Nj)
= B(0;ap, + Nj, + Ny, o + Ni + Ny)

e So sequentially absorbing data in any order is equivalent to batch
update.



EFFECT OF PRIOR STRENGTH

o Let N = Nj, + Nt be number of samples (observations).

o Let N’ be the number of pseudo observations (strength of prior) and
define the prior means

ozh—N’cvh, o = N’ozt, cvthcvt—l

e Then posterior mean is a convex combination of the prior mean and

the MLE:

O‘h"’Nh

P(X = hlay, ar, N, N¢) =

( hs ey Ni, Nt) ap + Ny + as + Ny

N/Oé;L—FNh

N + N/

N’ " N N,

N+N’ N+N’N
Np,

= daj + (1 = N)=2
ap + (1= A)—

where A = N'/(N + N').



EFFECT OF PRIOR STRENGTH

e Suppose we have a uniform prior 04;2 = oz;f = (.5, and we observe
Ny, =3, Nt =1T.

e Weak prior N’ = 2. Posterior prediction:

341
P(X =hlay =1, ar=1,N) =3, Ny =T) = —

1
— =~ 0.33
3+1+7+1 3

e Strong prior N’ = 20. Posterior prediction:

341 1
10 :—3%0.43
3+10+7+10 30

e However, if we have enough data, it washes away the prior. e.g.,
_ _ - 300+1 300410
N; = 300, Ny = 700. Estimates are 100053 and 1000520 both of
which are close to 0.3




PRIOR SMOOTHS PARAMETER ESTIMATES

e The MLE can change dramatically with small sample sizes.

e The MAP estimate changes much more smoothly (depending on the
strength of the prior).

e This is called regularization.

e Lower blue=MLE, red = beta(1,1), pink = beta(5,5), upper blue =
beta(10,10)
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BAYESIAN PARAMETER ESTIMATION FOR GENERAL BNS

e Defn 13.4.1: global parameter independence means
p(0) =11, p(0;), where 6; are the parameters for CPD for X;.

e If we assume global parameter independence, and have fully
observed data, then the parameter posterior decomposes into a sum
of local terms, one per node:

log p(0|D) = ZZlogp X, | X7, 0;) + log p(6;)




BAYESIAN PARAMETER ESTIMATION FOR BNS
WITH TABULAR CPDs

e Defn 13.4.4: local parameter independence means
p(0;) = [ 1 p(0; . 1), where 0; ; ;. = P(X; = j| X7, = k) is the row
of the CPT corresponding to conditioning case k.

e If we assume global and local parameter independence, and have
fully observed data, then the parameter posteriors are

PO;. kD) =Dl 15+ Nitk -9k + Nisk)

e Posterior for @y‘x() and 9y|x1 is factorized despite v-structure on yy,
because CPT acts like a multiplexer.




WHERE DO THE PRIORS COME FROM?

e We can define o ik = = N'P/(X; = j|Xr, = k), where N’ is the

strength of our prior and P’ is some Bayes net that summarizes our
virtual database of pseudo counts.

e This is called the BDe (Bayesian-Dirichlet likelihood equivalent) prior.
e Type-Il ML = learning P’ from data.



EXAMPLE OF BAYESIAN PARAMETER LEARNING

e Suppose we draw X1 v ~ P(X1.37/0%) from the ICU-Alarm BN.

e T hen we estimate
f = arg mgxp(xliN 6)P(6|o/, N")
for different sample sizes N and prior strengths N’ (with uniform
prior O‘vl;jk = 1/|1X;]).
e \We compare answers using the Kullback-Leibler divergence
P(x]67)
P(x]6)

where K L(P||Q)) > 0 measures the ' dlstance of the approximation
() from truth P.

KL( (X|6)]|P(X|6) ) ZP (2]6%) log



EXAMPLE OF BAYESIAN PARAMETER LEARNING
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o If Nijr = 0 in training but P(X; = j| Xz = k,0%) > 0, then
K L(P*||P) = oo, since
g s P(z|6”)
KL( (X16%)|| P( X\@) ZP 7]6%) log

P(x|6)

e Dirichlet smoothing helps a lot!
e Optimal prior strength = 5.



APPLICATION: LANGUAGE MODELING

e A bigram model predicts P(X; = j|X;_1 =14,0) = 0;;.

e Often the data is sparse so IV;; = 0 so 6;; = 0.

e A standard hack is to use backoff smoothing or deleted interpolation:
P(Xt|X—1) = My + (1= N)

where A is set by cross valdiation and f; and fj|7; are empirical fre-
quencies.

ffEt\fEt—l

e A similar effect can be gotten using a hierarchical prior.



APPLICATION: LANGUAGE MODELING

A (o)

e Assign the same Dirichlet prior am; to each row of the transition
matrix.

e So the prediction is

where )\ — f]+a

e This is like adaptive deleted interpolation.



APPLICATION: LANGUAGE MODELING

A (o)

e We can optimize the hyperparameters using numerical methods (e.g.,
conjugate gradient), which is faster than cross validation.

MAP

(am) = arg max P(D|am)

e We could consider more realistic priors, e.g., mixtures of Dirichlets
to account for types of words (adjectives, verbs, etc.)



CPDs FOR CONTINUOUS NODES

e So far we have considered the case where p(y|x, 8) can be
represented as a multinomial (table).

e Now we consider the case where some nodes may be continuous.

X Y p(Y|X)
R" R regression
R" {0,1} binary classification
{0,1}" {0,1} binary classification
R" {1,..., K}| multiclass classification
{1,..., K} R" conditional density modeling



EXPONENTIAL FAMILY

e For a numeric random variable x

p(x|n) = h(i() exp{n' T(x) — A(n)}
= %h(x) exp{n' T(x)}

is an exponential family distribution with
natural (canonical) parameter 7).

e Function T'(x) is a sufficient statistic.
e Function A(n) =log Z(n) is the log normalizer.
e Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...

e A distribution p(x) has finite sufficient statistics (independent of
number of data cases) iff it is in the exponential family.



MLE FOR EXPONENTIAL FAMILY

e For iid data, the log-likelihood is

(n; D) = loth Jexp (" T(x™) — A(n))
- (Z log h(xm>> — MA(n) + (nTZT(Xm)>

e [ake derivatives and set to zero:

e [ his amounts to moment matching.

e We can infer the canonical parameters using 7377 = ¥(fipsr,)



LINEAR REGRESSION




MULTIVARIATE LINEAR REGRESSION

e Consider vector-valued input X € R¥ going to vector-valued
output Y € R via regression matrix A € RFxd.

plule) = (2m) gl Hexp |3y~ An) TSy ~ Ao

e Log-likelihood

1 1 Ty—1
l= _5%:10%‘2’ - 5%:(%1 — Azp)" X7 (ym — Az

e To take derivatives wrt a matrix, we use the following identity

O(Ma+b)L'C(Ma+1))

oM
where A = M, a = —xy, and b = y,.

= (C+ 1Y (Ma+b)a



MULTIVARIATE LINEAR REGRESSION

e Log-likelihood:
1 1 Tw—1
l = _5%:1()% | - 5%:(%2 — Azp)" X7 (ym — Az

e Using
O((Ma+0b)'C(Ma+b))

_ T T
BT, = (C+C")(Ma+b)a
we have
ol 1 _1 T
Y —5;22 (ym — Axm) ),
m m
def

£ 278y v — ASy i =0
where Sy v/ and Sy v/ are the sufficient statistics. Hence

A= Sy xSy



1D LINEAR REGRESSION

e For the vector case,
. —1

where Sy v/ = > ymal and Sy =3, wprl.

e In the special case of scalar outputs, let A = @T, and the design
matrix X = [z ] stacked as rows and Y = [y;,] a column vector.

Then we get the normal equations

= (X' xX)"x'y



BAYESIAN 1D LINEAR REGRESSION
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e For scalar (1D) output

p(yn!xn,«9,02)]9(9!#,72)]9(02\04,5)
Gaussian X Gaussian X Gamma

e For vector output

p(yn‘xna A7 Z)p(A‘:u? 72)])(2‘&7 ﬁ)
Gaussian X matrix-Gaussian X Wishart



MLE FOR GENERALIZED LINEAR MODELS

e GLIM with scale parameter ¢ and canonical parameter 1 = oL

T, _
p(ylz,0,9) = hly, ¢) exp <77 y A(??))

¢
e Log-likelihood

E—Zloghyn + — Z( xnyn—Ann))

e Derivative of Log ||ke||hood

dA(nn) dnn
d@ (p Z (’””y” 40 )

77n

L 1
= —XTy -
5 (y — p)



ONLINE LEARNING FOR CANONICAL GLIMS

e Derivative of Log-likelihood

ac 1
a0 52(%—%)%

n

e Stochastic gradient ascent = least mean squares (LMS) algorithm:
0" = 0" + plyn — 1) zn

where ,u% = €(t>Txn and p is a step size.



BATCH LEARNING FOR CANONICAL GLIMS

e Hessian

H:

where X =

¢ Zfﬁ _ Iy, G
d0doT d@Tgb "’ o=l
1 dfin, dnn
¢ ; o dnn dot
1 d .
—g Z xnﬁxg since 1y, = QT:z:n
1
—gXTWX

z!] is the design matrix and
d d
W = diag(ZEL, .. ZEN

dm’ T dny



[TERATIVELY REWEIGHTED LEAST SQUARES (IRLS)

1
Vgl = gXT(?/ — i)
H = —%XTW:E
0 =o' + H vyl

= (W) IXTWIX e xT(y - )]
_ (XTWtX)—lXTWtZt
where the adjusted response is
2= X0+ (W) Ty — i)
We iteratively reoptimize

o = arg mein(z — X0)'W(z — X6)

This Newton-Raphson procedure will (usually) find the global optimum
starting from 6 = 0.



IRLS FOR LOGISTIC REGRESSION (SIGMOID CLASSIFIER)

1

_ _ _gTo o
p=on)=1—= =00 z)=ply=1z0)
o
(1 =
i p(l — p)

pi(l — pr)
W = .

pn(l — pn)



LOGISTIC REGRESSION: PRACTICAL ISSUES

e |t is very common to use penalized maximum likelihood.

1
= 41|z, 0) = o(y0lx) =

p(0) ~ N(0,A"'1)
() = ;loga(ynQTxn) - geTe

o IRLS takes O(Nd?) per iteration, where N = number of training
cases and d = size of input .

e Quasi-Newton methods, that approximate the Hessian, work faster.

e Conjugate gradient takes O(Nd) per iteration, and usually works
best in practice.

e Stochastic gradient descent can also be used if V is large
c.f. perceptron rule:

Vol(0) = (1 — o(ynb' zn))ynzn — N0



