LECTURE 11:

BAYESIAN PARAMETER LEARNING

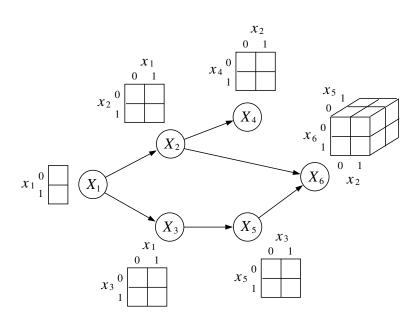
Kevin Murphy

October 25, 2004

MLE FOR GENERAL BAYES NETS

 If we assume the parameters for each CPD are globally independent, and all nodes are fully observed, then the log-likelihood function decomposes into a sum of local terms, one per node:

$$\log p(\mathcal{D}|\theta) = \log \prod_{m} \prod_{i} p(\mathbf{x}_{i}^{m}|\mathbf{x}_{\pi_{i}}, \theta_{i}) = \sum_{i} \sum_{m} \log p(\mathbf{x}_{i}^{m}|\mathbf{x}_{\pi_{i}}, \theta_{i})$$

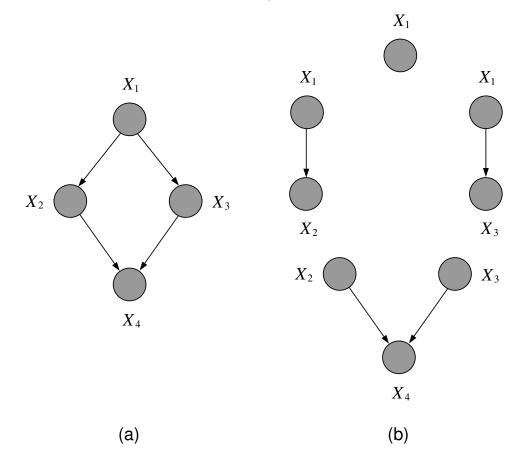


Example: A Directed Model

Consider the distribution defined by the DAGM:

$$p(\mathbf{x}|\theta) = p(\mathbf{x}_1|\theta_1)p(\mathbf{x}_2|\mathbf{x}_1,\theta_2)p(\mathbf{x}_3|\mathbf{x}_1,\theta_3)p(\mathbf{x}_4|\mathbf{x}_2,\mathbf{x}_3,\theta_4)$$

• This is exactly like learning four separate small DAGMs, each of which consists of a node and its parents.



MLE FOR BAYES NETS WITH TABULAR CPDS

Assume each CPD is represented as a table (multinomial) where

$$\theta_{ijk} \stackrel{\text{def}}{=} P(X_i = j | X_{\pi_i} = k)$$

• The sufficient statistics are just counts of family configurations

$$N_{ijk} \stackrel{\text{def}}{=} \sum_{m} I(X_i^m = j, X_{\pi_i}^m = k)$$

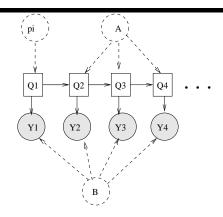
• The log-likelihood is

$$\ell = \log \prod_{m} \prod_{ijk} \theta_{ijk}^{N_{ijk}}$$
$$= \sum_{m} \sum_{ijk} N_{ijk} \log \theta_{ijk}$$

ullet Using a Lagrange multiplier to enforce so $\sum_j heta_{ijk} = 1$ we get

$$\hat{\theta}_{ijk}^{ML} = \frac{N_{ijk}}{\sum_{j'} N_{ij'k}}$$

TIED PARAMETERS

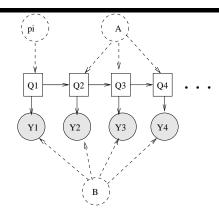


- Consider a time-invariant hidden Markov model (HMM)
 - -State transition matrix $A(i,j) \stackrel{\text{def}}{=} P(X_t = j | X_{t-1} = i)$,
 - Discrete observation matrix $B(i,j) \stackrel{\mathrm{def}}{=} P(Y_t = j | X_t = i)$
 - -State prior $\pi(i) \stackrel{\text{def}}{=} P(X_1 = i)$.

The joint is

$$P(X_{1:T}, Y_{1:T}|\theta) = P(X_1|\pi) \prod_{t=2}^{T} P(X_t|X_{t-1}, A) \prod_{t=1}^{T} P(Y_t|X_t; B)$$

Learning a fully observed HMM



The log-likelihood is

$$\ell(\theta; D) = \sum_{m} \log P(X_1 = x_1^m | \pi)$$

$$+ \sum_{t=2}^{T} P(X_t = x_t^m | X_{t-1} = x_{t-1}^m, A) + \sum_{t=1}^{T} P(Y_t = y_t^m | X_t = x_t^m, B)$$

 \bullet We can optimize each parameter (A, B, π) separately.

Learning a Markov Chain transition matrix

- Define $A(i, j) = P(X_t = j | X_{t-1} = i)$.
- ullet A is a stochastic matrix: $\sum_{j} A(i,j) = 1$
- Each row of A is multinomial distribution.
- ullet So MLE is the fraction of transitions from i to j

$$\hat{A}_{ML}(i,j) = \frac{\#i \to j}{\sum_{k} \#i \to k} = \frac{\sum_{m} \sum_{t=2}^{T} I(X_{t-1}^{m} = i, X_{t}^{m} = j)}{\sum_{m} \sum_{t=2}^{T} I(X_{t-1}^{m} = i)}$$

- If the states X_t represent words, this is called a *bigram language* model.
- Note that $\hat{A}_{ML}(i,j)=0$ if the particular i,j pair did not occur in the training data; this is called the *sparse data problem*.
- We will solve this using a prior.

DIRICHLET PRIORS

• Let $X \in \{1, \dots, K\}$ have a multinomial distribution

$$P(X|\theta) = \theta_1^{I(X=1)} \theta_2^{I(X=2)} \cdots \theta_K^{I(X=k)}$$

- For a set of data X^1, \ldots, X^N , the sufficient statistics are the counts $N_i = \sum_n I(X_n = i)$.
- ullet Consider a Dirichlet prior with hyperparameters α

$$p(\theta|\alpha) = \mathcal{D}(\theta|\alpha) = \frac{1}{Z(\alpha)} \cdot \theta_1^{\alpha_1 - 1} \cdot \theta_2^{\alpha_2 - 1} \cdots \theta_K^{\alpha_K - 1}$$

where $Z(\alpha)$ is the normalizing constant

- The Dirichlet prior is *conjugate* to (has the same form as) the multinomial likelihood.
- ullet The $lpha_k$ act like pseudo (virtual) counts.

NORMALIZATION CONSTANT

 $\bullet Z(\alpha)$ is the normalizing constant

$$Z(\alpha) = \int \cdots \int \theta_1^{\alpha_1 - 1} \cdots \theta_K^{\alpha_K - 1} d\theta_1 \cdots d\theta_K$$
$$= \frac{\Gamma(\sum_{i=1}^K \alpha_i)}{\prod_{i=1}^K \Gamma(\alpha_i)}$$

• $\Gamma(\alpha)$ is the gamma function:

$$\Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-t} dt$$

 \bullet For integers, $\Gamma(n+1)=n!$

DIRICHLET POSTERIOR

Likelihood, prior, posterior:

$$P(\vec{N}|\vec{\theta}) = \prod_{i=1}^{K} \theta_i^{N_i}$$

$$p(\theta|\alpha) = \mathcal{D}(\theta|\alpha) = \frac{1}{Z(\alpha)} \cdot \theta_1^{\alpha_1 - 1} \cdot \theta_2^{\alpha_2 - 1} \cdots \theta_K^{\alpha_K - 1}$$

$$p(\theta|\vec{N}, \vec{\alpha}) = \frac{1}{Z(\alpha)p(\vec{N}|\alpha)} \theta_1^{\alpha_1 + N_1} \cdots \theta_K^{\alpha_K + N_k}$$

$$= \mathcal{D}(\alpha_1 + N_1, \dots, \alpha_K + N_K)$$

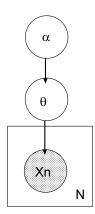
Marginal likelihood (evidence):

$$P(\vec{N}|\vec{\alpha}) = \int p(\vec{N}|\vec{\alpha})p(\vec{\theta}|\vec{\alpha})d^{K}\theta = \frac{Z(\vec{N} + \vec{\alpha})}{Z(\vec{\alpha})}$$

HIERARCHICAL BAYESIAN MODELS

- ullet heta are the parameters for the likelihood p(X| heta)
- ullet α are the parameters for the prior $p(\theta|\alpha)$.
- We can have hyper-hyper-parameters, etc.
- We stop when the choice of hyper n -parameters makes no difference to the marginal likelihood; typically make hyper-parameters constants.
- Type-II maximum likelihood (empirical Bayes) = computing point estimates of α :

$$\hat{\alpha}_{ML} = \arg\max_{\alpha} p(\vec{\alpha}|\vec{N}) = \arg\max_{\alpha} p(\vec{N}|\vec{\alpha})p(\vec{\alpha})$$



Beta Priors

- Consider a coin toss $X \in \{h, t\}$.
- The Dirichlet distribution becomes the beta distribution:

$$p(\theta) = \frac{1}{Z(\alpha)} \theta^{\alpha_h - 1} (1 - \theta)^{\alpha_t - 1}$$

- If $\alpha_h = \alpha_t = 1$, we have a uniform (Laplace) prior.
- The posterior mean (predicted probability of heads) is

$$P(X = h | \alpha_h, \alpha_t) = \int_0^1 d\theta \ P(X = 1 | \theta) p(\theta)$$
$$= \int_0^1 d\theta \ \theta p(\theta) = \frac{\alpha_h}{\alpha_h + \alpha_t}$$

- Hence α_h is the number of virtual heads we have seen in our prior "database"; similarly for α_t .
- The strength of the prior is measured by the equivalent sample size $\alpha_h + \alpha_t$.

SEQUENTIAL BAYESIAN UPDATING

- Start with beta prior $p(\theta|\alpha_h, \alpha_t) = \mathcal{B}(\theta; \alpha_h, \alpha_t)$.
- Observe N trials with N_h heads and N_t tails. Posterior becomes $p(\theta | \alpha_h, \alpha_t, N_h, N_t) = \mathcal{B}(\theta; \alpha_h + N_h, \alpha_t + N_t) = \mathcal{B}(\theta; \alpha_h', \alpha_t')$
- ullet Observe another N' trials with N'_h heads and N'_t tails. Posterior becomes

$$p(\theta|\alpha'_h, \alpha'_t, N'_h, N'_t) = \mathcal{B}(\theta; \alpha'_h + N'_h, \alpha'_t + N'_t)$$

= $\mathcal{B}(\theta; \alpha_h + N_h + N'_h, \alpha_t + N_t + N'_t)$

 So sequentially absorbing data in any order is equivalent to batch update.

Effect of prior strength

- Let $N = N_h + N_t$ be number of samples (observations).
- ullet Let N' be the number of pseudo observations (strength of prior) and define the prior means

$$\alpha_h = N'\alpha_h', \quad \alpha_t = N'\alpha_t', \quad \alpha_h' + \alpha_t' = 1$$

 Then posterior mean is a convex combination of the prior mean and the MLE:

$$P(X = h | \alpha_h, \alpha_t, N_h, N_t) = \frac{\alpha_h + N_h}{\alpha_h + N_h + \alpha_t + N_t}$$

$$= \frac{N'\alpha'_h + N_h}{N + N'}$$

$$= \frac{N'}{N + N'}\alpha'_h + \frac{N}{N + N'}\frac{N_h}{N}$$

$$= \lambda \alpha'_h + (1 - \lambda)\frac{N_h}{N}$$

where $\lambda = N'/(N+N')$.

Effect of prior strength

- Suppose we have a uniform prior $\alpha'_h = \alpha'_t = 0.5$, and we observe $N_h = 3$, $N_t = 7$.
- Weak prior N' = 2. Posterior prediction:

$$P(X = h | \alpha_h = 1, \alpha_t = 1, N_h = 3, N_t = 7) = \frac{3+1}{3+1+7+1} = \frac{1}{3} \approx 0.33$$

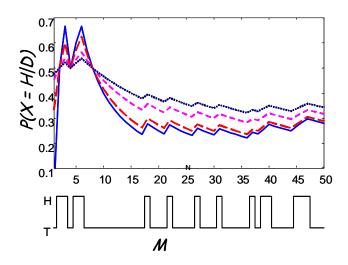
• Strong prior N' = 20. Posterior prediction:

$$\frac{3+10}{3+10+7+10} = \frac{13}{30} \approx 0.43$$

• However, if we have enough data, it washes away the prior. e.g., $N_h=300$, $N_t=700$. Estimates are $\frac{300+1}{1000+2}$ and $\frac{300+10}{1000+20}$, both of which are close to 0.3

PRIOR SMOOTHS PARAMETER ESTIMATES

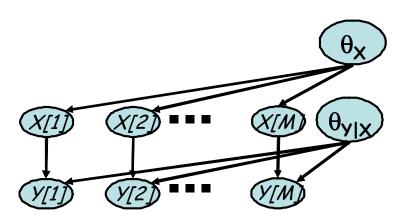
- The MLE can change dramatically with small sample sizes.
- The MAP estimate changes much more smoothly (depending on the strength of the prior).
- This is called regularization.
- Lower blue=MLE, red = beta(1,1), pink = beta(5,5), upper blue = beta(10,10)



Bayesian parameter estimation for general BNs

- Defn 13.4.1: global parameter independence means $p(\theta) = \prod_i p(\theta_i)$, where θ_i are the parameters for CPD for X_i .
- If we assume global parameter independence, and have fully observed data, then the parameter posterior decomposes into a sum of local terms, one per node:

$$\log p(\theta|\mathcal{D}) = \sum_{i} \sum_{m} \log p(\mathbf{x}_{i}^{m}|\mathbf{x}_{\pi_{i}}, \theta_{i}) + \log p(\theta_{i})$$

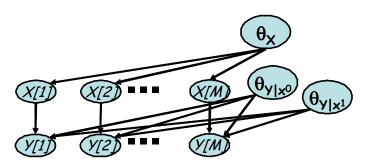


BAYESIAN PARAMETER ESTIMATION FOR BNS WITH TABULAR CPDS

- Defn 13.4.4: local parameter independence means $p(\theta_i) = \prod_k p(\theta_{i,\cdot,k})$, where $\theta_{i,j,k} = P(X_i = j | X_{\pi_i} = k)$ is the row of the CPT corresponding to conditioning case k.
- If we assume global and local parameter independence, and have fully observed data, then the parameter posteriors are

$$P(\theta_{i,\cdot,k}|D) = \mathcal{D}(\alpha_{i,1,k} + N_{i,1,k}, \dots, \alpha_{i,S,k} + N_{i,S,k})$$

ullet Posterior for $heta_{y|x^0}$ and $heta_{y|x^1}$ is factorized despite v-structure on y_m because CPT acts like a multiplexer.



Where do the priors come from?

- We can define $\alpha'_{ijk} = N'P'(X_i = j|X_{\pi_i} = k)$, where N' is the strength of our prior and P' is some Bayes net that summarizes our virtual database of pseudo counts.
- This is called the BDe (Bayesian-Dirichlet likelihood equivalent) prior.
- Type-II ML = learning P' from data.

Example of Bayesian parameter learning

- Suppose we draw $X_{1:37}^{1:N} \sim P(X_{1:37}|\theta^*)$ from the ICU-Alarm BN.
- Then we estimate

$$\hat{\theta} = \arg\max_{\theta} P(X^{1:N}|\theta)P(\theta|\alpha', N')$$

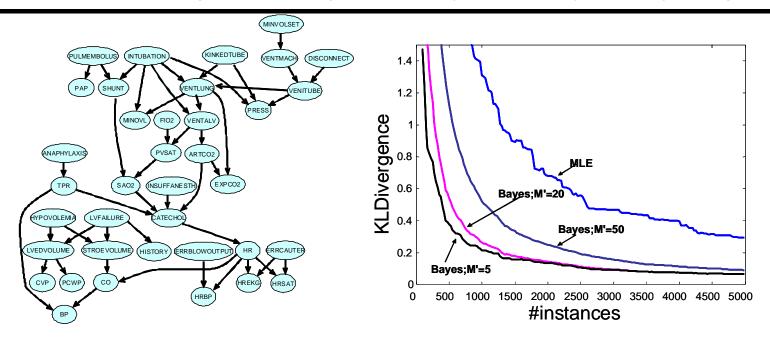
for different sample sizes N and prior strengths N' (with uniform prior $\alpha'_{ijk} = 1/|X_i|$).

We compare answers using the Kullback-Leibler divergence

$$KL\left(P(X|\theta^*)||P(X|\hat{\theta})\right) = \sum_{x} P(x|\theta^*) \log \frac{P(x|\theta^*)}{P(x|\hat{\theta})}$$

where $KL(P||Q) \ge 0$ measures the "distance" of the approximation Q from truth P.

Example of Bayesian parameter learning



• If $N_{ijk}=0$ in training but $P(X_i=j|X_\pi=k,\theta^*)>0$, then $KL(P^*||\hat{P})=\infty$, since

$$KL\left(P(X|\theta^*)||P(X|\hat{\theta})\right) = \sum_{x} P(x|\theta^*) \log \frac{P(x|\theta^*)}{P(x|\hat{\theta})}$$

- Dirichlet smoothing helps a lot!
- Optimal prior strength = 5.

APPLICATION: LANGUAGE MODELING

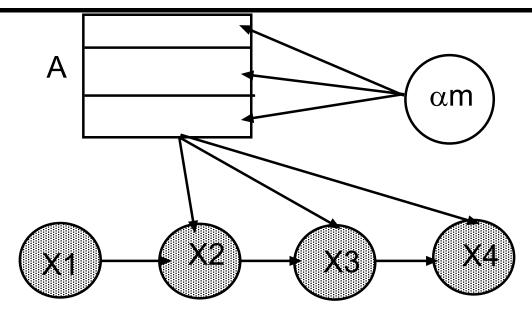
- A bigram model predicts $P(X_t = j | X_{t-1} = i, \theta) = \theta_{ij}$.
- ullet Often the data is sparse so $N_{ij}=0$ so $\theta_{ij}=0$.
- A standard hack is to use backoff smoothing or deleted interpolation:

$$\hat{P}(X_t|X_{t-1}) = \lambda f_{x_t} + (1 - \lambda) f_{x_t|x_{t-1}}$$

where λ is set by cross valdiation and f_i and $f_{j|i}$ are empirical frequencies.

• A similar effect can be gotten using a hierarchical prior.

APPLICATION: LANGUAGE MODELING



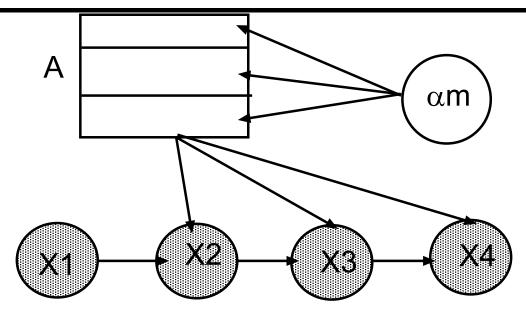
- ullet Assign the same Dirichlet prior $lpha m_i$ to each row of the transition matrix.
- So the prediction is

$$P(i|j,D,\alpha m) = \frac{f_{i|j} + \alpha m_i}{\sum_{i'} f_{i'|j} + \alpha m_{i'}} = \lambda_j m_i + (1-\lambda_j) f_{i|j}$$
 where $\lambda_j = \frac{\alpha}{f_j + \alpha}$.

 $J = J_j + \alpha$

• This is like adaptive deleted interpolation.

APPLICATION: LANGUAGE MODELING



 We can optimize the hyperparameters using numerical methods (e.g., conjugate gradient), which is faster than cross validation.

$$(\alpha m)^{MAP} = \arg\max P(D|\alpha m)$$

• We could consider more realistic priors, e.g., mixtures of Dirichlets to account for types of words (adjectives, verbs, etc.)

CPDs for continuous nodes

- ullet So far we have considered the case where $p(y|x,\theta)$ can be represented as a multinomial (table).
- Now we consider the case where some nodes may be continuous.

X	Y	p(Y X)
\mathbb{R}^n	\mathbb{R}^m	regression
${\mathbb R}^n$	$\{0, 1\}$	binary classification
$\{0,1\}^n$	$\{0, 1\}$	binary classification
${ m I\!R}^n$	$\{1,\ldots,K\}$	multiclass classification
$\{1,\ldots,K\}$	\mathbb{R}^n	conditional density modeling

EXPONENTIAL FAMILY

ullet For a numeric random variable ${f x}$

$$p(\mathbf{x}|\eta) = h(\mathbf{x}) \exp\{\eta^{\top} T(\mathbf{x}) - A(\eta)\}$$
$$= \frac{1}{Z(\eta)} h(\mathbf{x}) \exp\{\eta^{\top} T(\mathbf{x})\}$$

is an exponential family distribution with natural (canonical) parameter η .

- Function $T(\mathbf{x})$ is a sufficient statistic.
- Function $A(\eta) = \log Z(\eta)$ is the log normalizer.
- Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...
- ullet A distribution p(x) has finite sufficient statistics (independent of number of data cases) iff it is in the exponential family.

• For iid data, the log-likelihood is

$$\ell(\eta; \mathcal{D}) = \log \prod_{m} h(x^{m}) \exp \left(\eta^{T} T(x^{m}) - A(\eta)\right)$$
$$= \left(\sum_{m} \log h(\mathbf{x}^{m})\right) - MA(\eta) + \left(\eta^{T} \sum_{m} T(\mathbf{x}^{m})\right)$$

Take derivatives and set to zero:

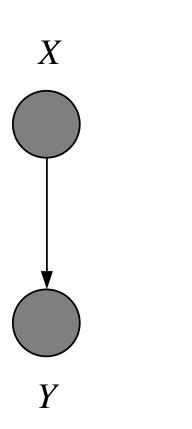
$$\frac{\partial \ell}{\partial \eta} = \sum_{m} T(\mathbf{x}^{m}) - M \frac{\partial A(\eta)}{\partial \eta} = 0$$

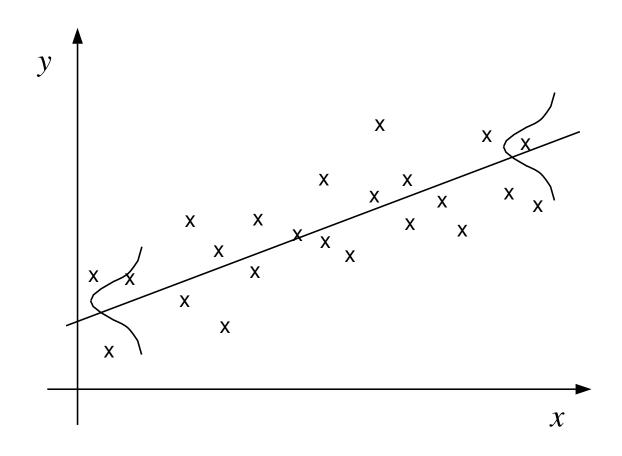
$$\Rightarrow \frac{\partial A(\eta)}{\partial \eta} = \frac{1}{M} \sum_{m} T(\mathbf{x}^{m})$$

$$\hat{\mu}_{\text{ML}} = \frac{1}{M} \sum_{m} T(\mathbf{x}^{m})$$

- This amounts to moment matching.
- ullet We can infer the canonical parameters using $\hat{\eta}_{ML}=\psi(\hat{\mu}_{ML})$

LINEAR REGRESSION





Multivariate Linear Regression

• Consider vector-valued input $X \in R^k$ going to vector-valued output $Y \in R^d$ via regression matrix $A \in R^{k \times d}$:

$$p(y|x) = (2\pi)^{-d/2} |\Sigma|^{-\frac{1}{2}} \exp\left[-\frac{1}{2}(y - Ax)^T \Sigma^{-1}(y - Ax)\right]$$

Log-likelihood

$$\ell = -\frac{1}{2} \sum_{m} \log |\Sigma| - \frac{1}{2} \sum_{m} (y_m - Ax_m)^T \Sigma^{-1} (y_m - Ax_m)$$

• To take derivatives wrt a matrix, we use the following identity

$$\frac{\partial ((Ma+b)^T C(Ma+b))}{\partial M} = (C+C^T)(Ma+b)a^T$$

where A=M, $a=-x_m$ and $b=y_m$.

Multivariate Linear Regression

Log-likelihood:

$$\ell = -\frac{1}{2} \sum_{m} \log |\Sigma| - \frac{1}{2} \sum_{m} (y_m - Ax_m)^T \Sigma^{-1} (y_m - Ax_m)$$

Using

$$\frac{\partial ((Ma+b)^T C(Ma+b))}{\partial M} = (C+C^T)(Ma+b)a^T$$

we have

$$\frac{\partial \ell}{\partial A} = -\frac{1}{2} \sum_{m} 2\Sigma^{-1} (y_m - Ax_m) x_m^T$$

$$= -\Sigma^{-1} \sum_{m} y_m x_m^T - A \sum_{m} x_m x_m^T$$

$$\stackrel{\text{def}}{=} -\Sigma^{-1} S_{YX'} - AS_{XX'} = 0$$

where $S_{YX'}$ and $S_{XX'}$ are the sufficient statistics. Hence

$$A = S_{YX'} S_{XX'}^{-1}$$

1D LINEAR REGRESSION

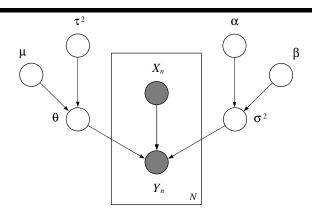
• For the vector case,

$$A = S_{YX'} S_{XX'}^{-1}$$
 where $S_{YX'} = \sum_m y_m x_m^T$ and $S_{XX'} = \sum_m x_m x_m^T$.

ullet In the special case of scalar outputs, let $A= heta^T$, and the design matrix $X=[x_m^T]$ stacked as rows and $Y=[y_m]$ a column vector. Then we get the normal equations

$$\theta = (X^T X)^{-1} X^T Y$$

BAYESIAN 1D LINEAR REGRESSION



• For scalar (1D) output

$$p(y_n|x_n, \theta, \sigma^2)p(\theta|\mu, \tau^2)p(\sigma^2|\alpha, \beta)$$

Gaussian × Gaussian × Gamma

• For vector output

$$p(y_n|x_n, A, \Sigma)p(A|\mu, \tau^2)p(\Sigma|\alpha, \beta)$$

 $Gaussian \times matrix-Gaussian \times Wishart$

MLE FOR GENERALIZED LINEAR MODELS

ullet GLIM with scale parameter ϕ and canonical parameter $\eta = \theta^T x$:

$$p(y|x, \theta, \phi) = h(y, \phi) \exp\left(\frac{\eta^T y - A(\eta)}{\phi}\right)$$

Log-likelihood

$$\ell = \sum_{n} \log h(y_n) + \frac{1}{\phi} \sum_{n} \left(\theta^T x_n y_n - A(\eta_n) \right)$$

Derivative of Log-likelihood

$$\frac{d\ell}{d\theta} = \frac{1}{\phi} \sum_{n} \left(x_n y_n - \frac{dA(\eta_n)}{d\eta_n} \frac{d\eta_n}{d\theta} \right)$$

$$= \frac{1}{\phi} \sum_{n} (y_n - \mu_n) x_n$$

$$= \frac{1}{\phi} X^T (y - \mu)$$

Online Learning for Canonical GLIMs

Derivative of Log-likelihood

$$\frac{d\ell}{d\theta} = \frac{1}{\phi} \sum_{n} (y_n - \mu_n) x_n$$

• Stochastic gradient ascent = least mean squares (LMS) algorithm:

$$\theta^{t+1} = \theta^t + \rho(y_n - \mu_n^t) x_n$$

where $\mu_n^t = \theta^{(t)T} x_n$ and ρ is a step size.

BATCH LEARNING FOR CANONICAL GLIMS

Hessian

$$H = \frac{d^2\ell}{d\theta d\theta^T} = \frac{d}{d\theta^T} \frac{1}{\phi} \sum_n x_n (y_n - \mu_n) = -\frac{1}{\phi} \sum_n x_n \frac{d\mu_n}{d\theta^T}$$

$$= -\frac{1}{\phi} \sum_n x_n \frac{d\mu_n}{d\eta_n} \frac{d\eta_n}{d\theta^T}$$

$$= -\frac{1}{\phi} \sum_n x_n \frac{d\mu_n}{d\eta_n} x_n^T \text{ since } \eta_n = \theta^T x_n$$

$$= -\frac{1}{\phi} X^T W X$$

where $X = [x_n^T]$ is the design matrix and

$$W = \operatorname{diag}(\frac{d\mu_1}{d\eta_1}, \dots, \frac{d\mu_N}{d\eta_N})$$

Iteratively Reweighted Least Squares (IRLS)

$$\nabla_{\theta} \ell = \frac{1}{\phi} X^{T} (y - \mu)$$

$$H = -\frac{1}{\phi} X^{T} W x$$

$$\theta^{t+1} = \theta^{T} + H^{-1} \nabla_{\theta} \ell$$

$$= (X^{T} W^{t} X)^{-1} \left[X^{T} W^{t} X \theta^{t} + X^{T} (y - \mu^{t}) \right]$$

$$= (X^{T} W^{t} X)^{-1} X^{T} W^{t} z^{t}$$

where the adjusted response is

$$z^{t} = X\theta^{t} + (W^{t})^{-1}(y - \mu^{t})$$

We iteratively reoptimize

$$\theta^{t+1} = \arg\min_{\theta} (z - X\theta)^T W (z - X\theta)$$

This Newton-Raphson procedure will (usually) find the global optimum starting from $\theta = 0$.

IRLS FOR LOGISTIC REGRESSION (SIGMOID CLASSIFIER)

$$\mu = \sigma(\eta) = \frac{1}{1 + e^{-\eta}} = \sigma(\theta^T x) = p(y = 1 | x, \theta)$$

$$\frac{d\mu}{d\eta} = \mu(1 - \mu)$$

$$W = \begin{pmatrix} \mu_1(1 - \mu_1) \\ & \ddots \\ & & \mu_n(1 - \mu_n) \end{pmatrix}$$

LOGISTIC REGRESSION: PRACTICAL ISSUES

• It is very common to use penalized maximum likelihood.

$$p(y = \pm 1|x, \theta) = \sigma(y\theta^T x) = \frac{1}{1 + exp(-y\theta^T x)}$$
$$p(\theta) \sim \mathcal{N}(0, \lambda^{-1} I)$$
$$\ell(\theta) = \sum_{n} \log \sigma(y_n \theta^T x_n) - \frac{\lambda}{2} \theta^T \theta$$

- ullet IRLS takes $O(Nd^2)$ per iteration, where N= number of training cases and d= size of input x.
- Quasi-Newton methods, that approximate the Hessian, work faster.
- ullet Conjugate gradient takes O(Nd) per iteration, and usually works best in practice.
- ullet Stochastic gradient descent can also be used if N is large c.f. perceptron rule:

$$\nabla_{\theta} \ell(\theta) = (1 - \sigma(y_n \theta^T x_n)) y_n x_n - \lambda \theta$$