
CS532c Fall 2004: Homework 6
Out Nov 1, Due Nov 10

In this problem, we will use Markov and Hidden Markov models to identify the language of written sentences. For
simplicity our representation of text will include only 27 symbols— the 26 letters of the Latin alphabet, and the space
symbol. Any accented letter is represented as a non-accented letter, none-Latin letters are converted to their closest
Latin letters, and punctuation is removed. This representation naturally looses quite a bit of information compared
to the original ASCII text. This ’handicap’ is in part intentional so that the classification task would be a bit more
challenging. Most of the MATLAB code you will need here will be given. You will find the following routines useful
(here and perhaps in some of your projects as well):

readlines.m Reads a named text le, returning a cell array of the lines in the le. To get line i of cell-array lines returned
from, e.g.,lines = readlines(’cnn.eng’), uselinesfig{i}.

text2stream.m Converts a string (a line of text) into a row vector of numbersin the range{1, . . . , 27}, according
to the representation discussed above. So, for example,numberline = text2stream(lines1) would
convert the first line of text from lines into a row vector of numbers. The conversion of the full output of
readlines would have to be done line by line.

count.m Given text in a row vector representation and a width k, the function computes the count of all k-grams
in the array. In other words, the function returns a kdimensional array representing the number of times each
configuration of k successive letters occurs in the text.

totalcount.m This function allows you to compute the accumulated counts from each of the lines of text returned by
readlines. Use this function to find the training counts for the different languages.

The data is stored in HW6public/Data. You may find theaddpath command helpful.

1 Language identification using Markov models

[10 points per question, total = 70.]
Here we will construct a language classifier by using Markov models as class-conditional distributions. In other

words, we will separately train a Markov model to represent each of the chosen languages: English, Spanish, Italian
and German. The training data is given in the filescnn.eng, cnn.spa, cnn.ita, cnn.ger, which contain
several news articles (same articles in different languages), one article per line. We will first try a simple independent
(zeroth-order Markov) model. Under this model, each successive symbol in text is chosen independently of other
symbols. The language is in this case identified based only onits letter frequencies.

1. Write a functionnaiveLL(stream,count1)which takes a 1-count (frequency of letters returned by count.m)
and evaluates the log-likelihood of the text stream (row vector of numbers) under the independent (zeroth-order
Markov) model.

Extract the total 1-counts from the language training sets described above. Before proceeding, let’s quickly
check your functionnaiveLL. If you evaluate the log-likelihood of ’This is an example sentence’ using the
English 1-counts fromcnn.eng, you’ll get -76.5690, while the Spanish log-likelihood of the same sentence is
-77.2706.

1

2. Write a short functionnaiveCwhich takes a stream, and several 1-counts corresponding todifierent languages,
and finds the maximum-likelihood language for the stream. You could assume, e.g., that the 1-counts are stored
in an array, where each column corresponds to a specific language. The format of the labels should be in
correspondence with thetest labels described below.

The filessong.eng, song.spa, song.ita, song.ger contain additional text in the four languages.
We will use these as the test set:

test_sentences = [readlines(’song.eng’) ; ...
readlines(’song.ger’) ; ...
readlines(’song.spa’) ; ...
readlines(’song.ita’)] ;

test_labels = [ones(17,1) ; ones(17,1)*2 ; ones(17,1)*3 ; ones(17,1)*4]

In order to study the performance of the classifier as a function of the length of test strings, we will classify
all prefixes of the lines in the test files. The provided routine testC.m calculates the success probability of
the classification, for each prefix length, over all the streams or strings in a given cell-array. You can call this
function, as follows

successprobs = testC(test_sentences,test_labels,’naiveC’,count1s);

wherecount1s provides the array of training counts that your functionnaiveC should accept as an input.

3. Plot the success probability as a function of the length ofthe string. What is the approximate number of symbols
that we need to correctly assign new piece of text to one of thefour languages?

In order to incorporate second order statistics, we will nowmove on to modeling the languages with first-order
Markov models.

4. Write a functionmarkovLL(stream,count2) which returns the log-likelihood of a stream under a first-
order Markov model of the language with the specifed 2-count. For the initial state probabilities, you can use
1-counts calculated from the 2-counts.

Quick check: The English log-likelihood of ’This is an example sentence’ is -63.0643, while its Spanish log-
likelihood is -65.4878. We are again assuming that you are using the training sets described above to extract the
2-counts for the di erent languages.

Write a corresponding functionmarkovC.m that classifies a stream based on Markov models for various lan-
guages, specifed by their 2-counts.

5. Try to classify the sentence ’Why is this an abnormal English sentence’. What is its likelihood under a Markov
model for each of the languages ? Which language does it get classified as ? Why does it not get classified as
English?

As we discussed in class, it is common to use a Dirichlet priorto regularize the counts. The resulting MAP
estimate is

θ̂i =
n̂i + αi∑m

j=1
(n̂j + αj)

(1)

which will be non-zero wheneverαi > 0 for all i = 1, . . . , m. Settingαi = 1/m would correspond to having a
single prior observation distributed uniformly among the possible elementsi ∈ {1, . . . , m}. Settingαi = 1, on
the other hand, would mean that we hadm prior observations, observing each elementi exactly once.

2

6. Add pseudocounts (one for each con guration) and reclassify the test sentence. What are the likelihoods now.
Which language does the sentence get classified as ?

7. UsetestC.m to test the performance of Markov-based classification (with the corrected counts) on the test set.
Plot the correct classification probability as a function ofthe text length. Compare the classification performance
to that ofnaiveC.m. (Turn in both plots).

2 Hidden Markov Models

(30 points) We will now turn to a slightly more interesting problem of language segmentation: given a mixed-language
text, we would like to identify the segments written in difierent languages. For simplicity, we will consider a single
sentence composed of just 2 languages, Spanish and German (as in homework 5).

1. (5 points) A simple approach would be to classify each character individually, based on its likelihood under each
class-conditional density (using naiveC). Why would we expect the resulting segmentation not to agree with the
true segmentation? What would the resulting segmentation look like? What is the critical piece of information
we are not using in this approach ?

2. (10 points) A better approach is to use an HMM, where the hidden state represents which of the languages
we are currently in. The goal of this part is to train an HMM using EM applied to the gerspa sentence used in
homework 5 (contained insegment.mat). You can use the provided functiondhmm em (d stands for discrete)
for this, as follows:

transmat0 = xxx % your initial guess of the transition matrix
obsmat0 = xxx % your initial guess of the observation matrix
prior0 = [0;1]; % always start in state 2
maxIter = 30; % max num. iterations you want to wait
[LLtrace, prior, transmat, obsmat] = dhmm_em(data.gerspa, ...

prior0, transmat0, obsmat0, ...
’adj_prior’, 0, ’max_iter’, maxIter);

Here, transmat(i,j) =P (Xt = j|Xt−1 = i), and obsmat(i,o) =P (Yt = o|Xt = i). We clamp the prior state
distribution toP (X1 = 2) = 1.0, since we cannot learn this from only one training sequence (so the optional
argument ’adjust prior’ is set to 0). Since the sentence starts out with German, and we define the initial state to
be 2, we are effectively defining state 2 to be German (thus breaking the symmetry in the hidden label space).
The output of the function are the new parameters, and the trace of log-likelihood vs iteration.

Your goal is to choose a good set of initial parameters, transmat0 and obsmat0, so that EM converges to a good
local optimum. You can determine the quality of your solution by plugging the parameters into the Viterbi
algorithm, and using it to decode the sentence from homework5. You should be able to get as low as 64
classification errors. Hint: use your 1-counts from question 1 to initialise obsmat, and use a self-transition
probability that reflects sentence length to initialise transmat. (Do not cheat by using the parameters from
homework 5 as your initial guess! You must show your initial parameter guesses, and justify why they are
sensible.)

3. (10 points). Use the provided functionfwdback.m to calculate the per character posterior probabilities over
the states. These are theγt(i) = P (Xt = i|y1:T) probabilities described in lectures (t gives the character
position in text andi specifies the state). Plot these probabilities as a functionof the character position in the
text sequence and turn in the plot. You might want to re-scalethe axis usingaxis[0 3000 0 1.1].

4. (5 points). Find the sequence of most probable states, i.e., for each time pointt, find arg maxi P (Xt = i|y1:T).
Compare this sequence with the most probable sequence of states, as computed usingviterbiPath. Are
they different? If so, in which positions?

3

