CS532c Fall 2004: Homework 5
Out Fri Oct 22, Due Mon Nov 1

1 Viterbi algorithm

[40 points]

Implement the viterbi algorithm for HMMs for finding the mgstobable path. (If you do not understand this
sentence, you should read the tutorial on HMMs by Rabinehercburse web page.) The algorithm should have the
following interface:

function path = viterbi(prior, transmat, obsmat, data)

where prior(i) =P(X; = ) is the initial state probability distribution, transmg)(F P(X; = j|X;—1 = i) is the state
transition matrix, obsmat(i,0) £(Y; = o|X; = i) is the observation matrix, and data (a vector) is the obsierva
sequence. (Assume that data(t) is a symbol numbgred . ., O, whereO is the size of the alphabet). The output
should be a vector where path(t) is the most probable stdirmat.

We will now test your algorithm by applying it to the problerhsegmenting a sentence which is a mixture of
German and Spanish. Load the file 'segment.mat’ as follows:

data = | oad(’ segnent. mat’);
This has two fieldsdat a. ger spa is a vector of integers representing letters. To view thiset
st r eant ext (dat a. ger spa)

The second field islat a. ger spa- | ang, which is a vector of 1s and 2s, representing the true segent(2 =
german, 1 = spanish). Load a pre-trained HMM:

| oad(’ hhrm mat ’ ) ;

This has fieldhimm pri or, hmm t r ansmat andhnm obsnat . Apply this HMM and your Viterbi algorithm to
dat a. ger spa and plot the estimated segmentation versus the true segtisentHow many classification errors do
you make?

2 Max likelihood estimation for 1D Gaussians

[4 points per question except Q6 which gets 9 points, so ivth.]
Recall that a univariate Gaussian (or normal) random vkjakith meany and variancer?, is given by the
following probability density function:
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1. Write down the likelihood.(x1, . .., x,; i, o) of a sample drawn independently from a normal distributi@th w

(unknown) mean and variance.



The maximum likelihood estimat@r(x, . . ., 2, ), is the value of« that maximizes the likelihood L:

ﬂ('rlv s ,In) = argmﬁlxmng(Xl, s 7XH;N50)

Instead of searching for the maximum lofwe will search for the maximum of log. This is fine since the
logarithm is a monotonically increasing function. To finé timaximum, we would like to solve the equation:

NogL(x1, .. ., X 1,0)

ou =0

. CalculateZleelLtrxnin?) and solve the above equation, in order to find the maximunitied estimatogi.

Show that the solution does not dependson

In general, we might have needed to find the values wfhich maximizel together withu. This is luckily
unnecessary, since as you showed,max,, L(x, o) is independent of.

Note thatj is a function of the sampled values, and thusan itself be viewed as a random variable. An
estimator such ag is said to be unbiased if the expected value of this randoralvaris equal to the "true”
value being estimated, thatisifx ... x,, v (w0 [2(X1,. .., Xn)] = pforall i, 0. The expectation here is over
the possible choices of the random samples assuming theyftam a Gaussian with meanand variance 2.

. CalculateE x+, . x, ~N(u,0) (X1, ..., Xy)]. Isfunbiased? Hint: the expectation of a sum is equal to the sum
of the expectations.

We now proceed to calculate the maximum likelihood estimfatoo:

(x1, ... xn) = argmgxmng(xl, ey Xni 4, 0)

We do so in a similar way, by taking the derivativerofix,, log L(z1, ..., zn; u, o), with respect tar . Note
that in taking this derivative, we assume thais set to its maximum likelihood value. However, we already
know the value of: that maximized.(u, o) and so can just plug itin.

. Does it matter if we take the derivative with respect towhgances2, or its square roci?
. Calculates (z1, . . ., z,) by maximizing the log-likelihood.

~2
..... ,0) [U (Xla e aXn)
to do so. Hint: note thak, ..., X,, are independent, and use the fact that the expectation afdugtrof in-
dependent random variables is the product of the expectatidlso, recall that for any random variatitewe
havevar|R] = E[E?] — (E[R])%.

. Suggest an unbiased estima#d(z1, ..., z,) for o2, based on the the maximum likelihood estimator above,
and show tha&? is in fact unbiased. Hint: scale the maximum likelihoodrestior so that it will be unbiased.

. Consider a sampley, . . ., z,, drawn from a Gaussian distributio¥f(y, o), where the true meamis known,
but the variance is not. What is the maximum likelihood eation for the variance in this case ? Is it unbiased ?

We now return to the case in which neither the mean nor thawegi are known.



9. An estimator being unbiased does not necessarily maked.g-or example, consider the following estimator
for the mean of a Gaussian random varialiéz, ..., z,) = z1. Show that this is an unbiased estimatop.of

One reason that is not a very good estimator, is that no matter how many saswpiehave, it will notimprove.
It will never converge to the true value pf An estimatord is (mean squareapnsistent if it converges td in

the following senseEx, anN(#,a)[(é(Xl, ..., Xp) — 0)?] — 0asn — oco. In other words, the more data

points we get, the less likely it is that the estimé@Xl, ..., X,,) deviates much from.
10. Show thajf: (the maximum likelihood estimate of the mean) is a consiststimator ofu.

11. (Optional - no points). Do you think? is a consistent estimator e? What abou2?

3 MAP estimation for 1D Gaussians

[5 points per question]
The maximum a-posteriori (MAP) estimator is defined as theevaf the parameteiésthat maximize

Oriap = arg mgxp(9|data) = argmgxp(dataW)p(b‘)

Consider samplesl, . . ., z,, from a Gaussian random variable with known variam¢@nd unknown meap. We
further assume a prior distribution (also Gaussian) oventeany, ~ N (m, s?), with fixed meann and variance?.

1. Calculate the MAP estimafey; 4 » . Hint: as we did before, set the derivative of the logaritiorzero.

2. Show that as the number of samples increase, the priorlkdge becomes insignificant. That is, all MAP
estimates assuming as a prior prany Gaussian distribution with non-zero variance, will wenge to each
other. What is the common estimator that all such MAP estinsatonverge to ? (Further note: This actually
holds with rather mild assumptions about the prior— it needae Gaussian).

3. What does the MAP estimator converge to if we increase iloe yariances??



