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1 ROC curves
We frequently design systems to detect events of interest, such as diseases in patients, faces in images, spam in an
email queue, etc. We often want to compare the performance ofsuch systems. One way to do this is to use aROC
(receiver operating characteristic) curve. This is a way ofevaluating expected loss using a range of possible loss
functions, where we vary the ratio of costs of false positives and false negatives. Below we summarize the main ideas.
See [Faw03] and [MRS08, ch8] for details.

Let Si be the score assigned to objectxi, where the score is proportional to our belief (confidence) that xi is
a positive instance (e.g.,xi has the disease/ is a face/ is spam), which we denote byyi = 1. If xi is not positive,
it is negative, denoted byyi = 0. Note thatSi does not have to be the probabilityp(yi = 1|xi), but should be
monotonically related to it. For any given thresholdθ, we can convertSi into an estimated label (best guess), by
settingŷi = 1 (positive) ifSi > θ, otherwisêyi = 0 (negative). Letyi be the true label. By comparinĝyi to yi we can
evaluate the quality of the system in terms of the number of errors it makes. If we use a low threshold, we will detect
lots of events, but many will be wrong (false alarms); conversely if we use a high threshold, we may not detect many
true events.

This is illustrated in Table 1. We see that the model is very confident that examples 1–3 are positive, and examples
7–9 are negative. It is not very sure about examples 4–6 (since the probabilities are all near 0.5), but nevertheless it is
possible to find a threshold (namelyθ = 0.5) that perfectly separate the classes into positive and negative. Obviously
if θ = 0, all the examples are classified as positive, and conversely, if θ = 1, all the examples are classified as negative.

In Table 2, we see the output of another estimate ofp(yi|xi), perhaps using a different model. Its behavior is
similar to the previous model, except it gets examples 5 and 6wrong, i.e., it assigns too little probability to the event
y5 = 1 and too much toy6 = 1. Consequently it makes some errors when using a threshold ofθ = 0.5. In fact, it is
easy to see that there is no threshold that will perfectly reproduce the vector of true labels,y = (y1, . . . , yn).

For any thresholdθ, we can compute how many entities we correctly and incorrectly classify. This gives rise to
four numbers. TP is the number of true positives, i.e., how many entities are “called” as positive which actually are

i yi p(yi = 1|xi) ŷi(θ = 0) ŷi(θ = 0.5) ŷi(θ = 1)
1 1 0.9 1 1 0
2 1 0.8 1 1 0
3 1 0.7 1 1 0
4 1 0.6 1 1 0
5 1 0.5 1 1 0
6 0 0.4 1 0 0
7 0 0.3 1 0 0
8 0 0.2 1 0 0
9 0 0.1 1 0 0

Table 1: Example output from classifier 1.
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i yi p(yi = 1|xi) ŷi(θ = 0) ŷi(θ = 0.5) ŷi(θ = 1)
1 1 0.9 1 1 0
2 1 0.8 1 1 0
3 1 0.7 1 1 0
4 1 0.6 1 1 0
5 1 0.2 1 0 0
6 0 0.6 1 1 0
7 0 0.3 1 0 0
8 0 0.2 1 0 0
9 0 0.1 1 0 0

Table 2: Example output from classifier 2. The differences from classifier 1 are in boldface.

Truth
1 0 Σ

Estimate
1 TP FP P̂ = TP + FP

0 FN TN N̂ = FN + TN
Σ P = TP + FN N = FP + TN

Table 3: Summary of definitions used for evaluating binary classification systems.

positive:

TP =

n∑

i=1

I(ŷi = 1 ∧ yi = 1) (1)

Similarly we can define TN as the number of true negatives, FP as the number of false positives and FN as the number
of false negatives. Also, let̂P = TP +FP be the number of called positives, andP = TP +FN be the true number
of positives; similarly, definêN = FN + TN as the number of called negatives, andN = FP + TN be the true
number of negatives. See Table 3 for a summary of these definitions; this is called aconfusion matrix. We have that
TP + FP + FN + TN = n, the total number of test points. Thus by normalizing thiscontingency tableof counts,
we can approximate the following conditional probabilities:

p(ŷ = 1, y = 1) = TP/n (2)

p(ŷ = 0, y = 0) = TN/n (3)

p(ŷ = 1, y = 0) = FP/n (4)

p(ŷ = 0, y = 1) = FN/n (5)

Thetrue positive rate, also calledsensitivity or recall or hit rate , is defined as

TPR =
TP

P
=

TP

TP + FN
=

p(ŷ = 1, y = 1)

p(y = 1)
= p(ŷ = 1|y = 1) (6)

Thefalse positive rate, also called thefalse acceptance rateor type I error rate , is defined as

FPR =
FP

N
=

FP

FP + TN
=

p(ŷ = 1, y = 0)

p(y = 0)
= p(ŷ = 1|y = 0) (7)

A ROC (receiver operating characteristic) curve is a plot of TPR vs FPR for different thresholdsθ. See Figure 1 for
an example. Any system can achieve the point on the bottom left, (FPR = 0, TPR = 0), by settingθ = 1 and thus
classifying everything as negative; similarly any system can achieve the point on the top right,(FPR = 1, TPR = 1),
by settingθ = 0 and thus classifying everything as positive. A system that setsp(yi|xi) = 0.5 can achieve any point
on the diagonal lineTPR = FPR by choosing an appropriate threshold; thus this representschance performance.
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Figure 1: ROC curves for two classification systems. We plot the true positive rate (TPR) vs the false positive rate (FPR) as we
vary the thresholdθ. The red curve corresponds to the system in Table 1. The bottom left point corresponds toθ = 1, which has
a TPR of0/5 = 0 and an FPR of0/0 = 0; the top left point corresponds toθ = 0.5, which has a TPR of5/5 = 1 and an FPR
of 0/4 = 0; the top right point corresponds toθ = 0, which has a TPR of5/5 = 1 and an FPR of4/4 = 1. The green curve
corresponds to the system in Table 2. Here the top left point corresponds toθ = 0.5, which has a TPR of4/5 = 0.8 and an FPR of
1/4 = 0.25. Clearly the red curve is better than the green curve.

A system that perfectly separates the positives from negatives has a threshold that can achieve the top left corner,
(FPR = 0, TPR = 1); by varying the threshold such a system will “hug” the left axis and then the top axis, as
shown in Figure 1.

The quality of a ROC curve is often summarized using thearea under the curve(AUC). Higher AUC scores are
better; the maximum is obviously 1. Another summary statistic that is used is theequal error rate, also called the
cross over rate, defined as the value which satisfiesFPR = FNR; lower EER scores are better, the minimum is
obviously 0. Here FNR is thefalse negative rate, also called thefalse rejection rate, or type II error rate , and is
defined as

FNR =
FN

P
=

FN

FN + TP
= 1 − TPR =

p(ŷ = 0, y = 1)

p(y = 1)
= p(ŷ = 0|y = 1) (8)

The EER corresponds to the point where the lineFPR = 1 − TPR intersects the ROC curve: see Figure 2.
For completeness, we also define the quantity calledspecificityas

spec =
TN

N
=

TN

FP + TN
= 1 − FPR =

p(ŷ = 0, y = 0)

p(y = 0)
= p(ŷ = 0|y = 0) (9)

Also, the overallaccuracyis defined as

acc =
TP + TN

TP + FP + FN + TN
=

TP + TN

n
= p(ŷ = 1, y = 1) + p(ŷ = 0, y = 0) (10)

2 Precision recall curves
When the number of negatives is very large, such as when trying to detect arare event (such as retrieving a relevant
document or finding a face in an image), comparingTP/P = p(ŷ = 1|y = 1) to FP/N = p(ŷ = 1|y = 0) is
not very meaningful. Instead, we can compareTP/P (the recall or TPR) toTP/P̂ , which is called theprecision or
positive predictive value(PPV):

prec =
TP

P̂
=

TP

TP + FP
= p(y = 1|ŷ = 1) (11)

Precision measures what fraction of the entities that we called are actually positive, and recall measures what fraction
of the true positives we called. Aprecision recall (PR) curve is a plot of precision vs recall as we vary the thresholdθ.
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Figure 2: ROC curve, with the AUC and EER indicated.

See Figure 3. Hugging the top right is the best one can do. Thiscurve can be summarized using themean precision
(averaging over recall values), which approximates the area under the curve. Alternatively, one can quote the precision
for a fixed recall level (say, the first 10 entities in a retrieval system).

Precision and recall are often combined into a single statistic called theF score. This is theharmonic meanof
precision and recall:

F =
2

1/P + 1/R
=

2PR

R + P
(12)

In general, we can change the weightings on precision and recall:

Fα =
1

α 1

P
+ (1 − α) 1

R

(13)

with the usual measure corresponding toα = 1/2. Note that0 ≤ Fα ≤ 1. This is commonly used to rankinformation
retrieval systems, that return a fixed set of documents. We use the harmonic meaninstead of the arithmetic mean
because an arithmetic mean can always trivially achieve a score of 0.5, by settingR = 1 (recalling all the entities). In
contrast, if we assume thatp(y = 1) = 10−4, the harmonic mean of this strategy is 0.2%:

F =
2PR

P + R
=

2 × 10−4 × 1

1 + 10−4
= 0.00019998 (14)

F-scores can be used to evaluate the output of a classifier with a fixed probability threshold, or, in the context of
information retrieval, a system that returns a fixed set of documents. If the system returns a probabilistic output, or a
ranked set of documents, one should use a PR curve.

3 Using mutual information to compare classifiers
The following section, which is based on [Wal06], shows thatusing accuracy, precision, recall or F-scores to rank hard
(i.e., non-probabilistic) binary classifiers can yield counterintuitive results, whereas computing themutual informa-
tion between the predicted label,ŷ, and the true label,y, yields sensible results.

Suppose the true distribution is thatp(y = 1) = 0.9 andp(y = 0) = 0.1. Consider classifier A, which always
classifies everything as positive (e.g., because it uses a threshold ofθ = 0): see Figure 4(left). ClearlyA contains no
useful information, yet its accuracy is 0.9, its precision is 0.9 and its recall is 1.0 (see Table 5).

Now consider classifier B, which classifies 80% of instances as positive and 20% as negative. It correctly classifies
all negative instances, but also misclassifies some positive instances as negative. See Figure 4(middle). If classifierB
claimsŷ = 1, then we know that in facty = 1 (it makes no false positives), since

p(y = 1|ŷ = 1) =
p(y = 1, ŷ = 1)

p(y = 1)
=

0.8

0.8 + 0
= 1 (15)
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Figure 3: Precision-recall curve.

A . B . C .
1 0 1 0 1 0

1 0.9 0.1 0.8 0 0.78 0
0 0 0 0.1 0.1 0.12 0.1

Table 4: Normalized confusion matrix for three different classifiers. Rows are the true labels, columns are the estimated labelsfor
different models.

If classifierB claims thatŷ = 0, then we may be 50% sure that it really is negative, which is much higher than the
overall class prior ofp(y = 0) = 0.1.

Finally consider classifier C, which classifies 78% of instances as positive and 22% as negative. It correctly clas-
sifies all negative instances, but also misclassifies some positive instances as negative. See Figure 4(right). Intuitively
this is not as good as classifier B since it puts more probability mass on the off-diagonal terms.

In Table 5, we evaluate all 3 classifiers according to variousmetrics. Intuitively, we would like the ranking
B ≥ C ≥ A, but the only metric that gives this order is the mutual information, defined as

I(Ŷ , Y ) =

1∑

ŷ=0

1∑

y=0

p(ŷ, y) log
p(ŷ, y)

p(ŷ)p(y)
(16)

This argues against using such measures as precision, recall and F-scores to compare binary classifiers.
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