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1 Introduction

Whereas probability is concerned with describing the reddikelihoods of generating various kinds of data, staiss
is concerned with the opposite problem: inferring the caulkat generated the observed data. Indeed, statistics used
to be known agnverse probability.

As mentioned earlier, there are two interpretations of phility: the frequentist interpretation in terms of long
term frequencies of future events, and the Bayesian irg&fion, in terms of modeling (subjective) uncertaintyegiv
the current data. This in turn gives rise to two approachesattistics. Thdrequentist approach to statistics is the
most widely used, and hence is sometimes calleadttitedox approach or classical approach We will give a very
brief introduction here. For more details, consult one efittany excellent textbooks on this topic, such as [Ric95] or
[Was04].

2 Point estimation

Point estimationrefers to computing a single “best guess” of some quantitgtefest from data. The quantity could

be a parameter in a parametric model (such as the mean of ai@a) or a regression function, or a prediction
of a future value of some random variable. We assume therenie Strue” value for this quantity, which is fixed

but unknown, call itd. Our goal is to construct aastimator, which is some functiory that takes sample data,

D = (X4,...,Xy), and returns a point estimaflg :

Sincedy depends on the particular observed déta; 9(2)), it is a random variable. (Often we omit the subschpt
and just writed.)
An example of an estimator is tsample meanof the data:
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Another is thesample variance
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A third example is the empirical fraction of heads in a seqaesf heads (1s) and tails (0s):
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whereX,, ~ Be(0).
There are many possible estimators, so how do we know whicls@@ Below we describe some of the most
desirable properties of an estimator.
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Figure 1: Graphical illustration of whys3,; is biased: it underestimates the true variance becauseaiures spread around the
empirical meaniy, 1, instead of around the true mean. Source: [Bis06] Figure.1.15

2.1 Unbiased estimators
We define thévias of an estimator as A A
biagfy) = Ep,_,(0n —0) (5)

where the expectation is over data sBtsirawn from a distribution with parameter We say thaty is unbiasedif
Ey(On) = 0. Itis easy to see that is an unbiased estimator:
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However, one can show (exercise) that
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Therefore it is common to use the following unbiased estimat the variance:
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In Matlab,var ( X) returnss3,_; whereawar ( X, 1) returnss=.
One might ask: why ig'2,, biased? Intuitively, we “used up” one “degree of freedomégtimatingu,, 1., S0 we
underestimate. (If we usedu instead ofu,,;, when computingr2, ; , the result would be unbiased.) See Figure 1.

2.2 Bias-variance tradeoff

Being unbiased seems like a good thing, but it turns out thigtteabit of bias can be useful so long as it reduces the
variance of the estimator. In particular, suppose our got minimize thenean squared error(MSE)

MSE = Eg(0x — 0)? 9)
It turns out that when minimizing MSE, there idb&s-variance tradeoff
Theorem 2.1. The MSE can be written as

MSE = bias’(f) + Var 4(0) (10)



Proof. Letd = Ep_,(0(D)). Then

Ep(0(D)—6)* = Ep(d(D)—0+0—0) (11)

= Ep(O(D)—0)>+2(0 — 0)Ep(0(D) —0) + (0 — 0)? (12)

= Ep(0(D)-0)*+ (@~ 0)° (13)

= V() + bias(d) 14)

where we have used the fact th (9(D) — ) = 0 — 6 = 0. O

Later we will see that simple models are often biased (bec#usy cannot represent the truth) but have low
variance, whereas more complex models have lower bias ghehvarianceBaggingis a simple way to reduce the
variance of an estimator without increasing the bias: gyngdte weighted combinations of estimatros fit on different
subsets of the data, chosen randomly with replacement.

2.3 Consistent estimators

Having low MSE is good, but is not enough. We would also like estimator to converge to the true value as we
collect more data. We call such an estimatonsistent Formally,d is consistent i)y converges in probability t6
asN—o0. fi, 6% ands3;_; are all consistent.

3 The method of moments
The k’'th moment of a distribution is

e = E[X"] (15)
Thek’th sample momentis
N
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The method of momentsis simply to equate:, = /iy, for the first few moments (the minimum number necessary)
and then to solve faf. Although these estimators are not optimal (in a sense tebeat! later), they are consistent,
and are simple to compute, so they can be used to initializer shethods that require iterative numerical routines.
Below we give some examples.

3.1 Bernoulli

Sinceu; = E(X) =0, andjiy = £+ 3N | X,,, we have

1 N
N n=1
3.2 Univariate Gaussian
The first and second moments are
o= EX]=p (18)
po = E[X?%=p*+0? (19)

Soo? = uy — p?. The corresponding estimates from the sample moments are
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Figure 2: An empirical pdf of some rainfall data, with two Gamma distiions superimposes. Solid red line = method of moment.
dotted black line = MLE. Figure generated bgi nf al | Deno.

3.3 Gamma distribution
Let X ~ Ga(a,b). The first and second moments are

a
mo= o (22)
ala+1
M2 = % (23)
To apply the method of moments, we must expreasdb in terms ofu; andpu.. From the second equation
pa = p3 + % (24)
or
b=t (25)
M2 — Ky
Also
MQ
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As an example, let us consider a data set from the book by fRe®50]. The data records the average amount
of rain (in inches) in southern Illinois during each stormeothe years 1960 - 1964. If we plot its empirical pdf as
a histogram, we get the result in Figure 2. This is well fit by ar@®na distribution, as shown by the superimposed
lines. The solid line is the pdf with parameters estimatedhgymethod of moments, and the dotted line is the pdf
with parameteres estimated by maximum likelihood. Obuiptree fit is very similar, even though the parameters are
slightly different numerically:

amom = 0.3763, bmom = 1.6768, @mie = 0.4408, bynze = 1.9644 (28)

This was implemented usirrgai nf al | Deno.



4 Maximum likelihood estimates
A maximum likelihood estimate (MLE) is a setting of the parameteffghat makes the data as likely as possible:

Opmie = arg mgLXp(D|9) (29)
Since the dat® = {xy,...,x,} isiid, the likelihood factorizes
N
= [I»(xil6) (30)
=1

It is often more convenient to work with log probabilitiekig will not changewrg max L(6), since log is a monotonic
function. Hence we define theg likelihood as/(0) = log p(D|0). For iid data this becomes

N
= Z log p(x;|0) (31)
=1

The mle then maximize&6).

MLE enjoys various theoretical properties, such as beingsistent andisymptotically efficient, which means
that (roughly speaking) the MLE has the smallest variancallofvell-behaved estimators (see [Was04, p126] for
details). Therefore we will use this technique quite wid&lie consider several examples below that we will use later.

4.1 Univariate Gaussians
Let X; ~ N (p,0?). Then

I:]Z

p(Dlp,0%) = N(zn|p, 0° (32)
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To find the maximum, we set the partial derivatives to 0 andesdbtarting with the mean, we have
ol 2
—_— = _— n — = 4
o 552 n(x, w) =0 (34)
1 N
= Zw (35)
which is just the empirical mean. Similarly,
ol 1, . N
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since) ,, x, = Nj. This is just the empirical variance.



4.2 Bernoullis
LetX € {0,1}. GivenD = (z1,...,zn), the likelihood is

N
p(D10) = [Ip(ilo) (41)
1=1
N
= JJera-o'= (42)
i=1
= N (1-g)N (43)
whereN; = )", z; is the number of heads aid, = >, (1 — ;) is the number of tails The log-likelihood is
L(O) = logp(D|0) = Nilog + Nolog(1l —6) (44)
Solving for 4& = 0 yields
N
Orrr, = Wl (45)

the empirical fraction of heads.
Suppose we have seen 3 tails out of 3 trials. Then we preditttie probability of heads is zero:
Ny 0
Ny +Ny; 0+3
This is an example of theparse data problem if we fail to see something in the training set, we predietttit can
never happen in the future. Later we will consider BayesiahMAP point estimates, which avoid this problem.

Omr = (46)

4.3 Multinomials
The log-likelihood is
£0; D) =logp(D|0) =, Nilog by (47)

We need to maximize this subject to the constrainif, = 1, so we use dagrange multiplier. The constrained
cost function becomes

0 = ) Nilogby + A (1 — Z@k> (48)
k k

Taking derivatives wré, yields
ol Ny,
00y, Ok A (49)

Taking derivatives wri yields the original constraint:

or
= <1 - zk:ok,> =0 (50)

Using this sum-to-one constraint we have

N, = Mo (51)

Z Nk: = A ak: (52)
k k

= A (53)

. = % (54)

Henceék is the fraction of time& occurs. If we did not observ& = k in the training data, we ség =0, so we have
the same sparse data problem as in the Bernoulli case (iiit fastvorse, since’ may be large, so it is quite likely
that we didn’t see some of the symbols, especially if our datas small).



4.4 Gamma distribution
The pdf forGa(a, b) is

_ 1 a_a—1_—bx
Ga(z|a,b) = I‘(a)b % e (55)
So the log likelihood is
l(a,b) = Z[a logb + (a — 1)log x,, — bxy, — logT'(a)] (56)
= Nalogb—l—(a—l)Zlogxn—ben—Nlogf‘(a) (57)

The partial derivatives are

or I'(a)
i N10gb+zn:10gxn—Nr(a) (58)
ol Na
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where 5 (a)
Z logT'(a) & y(a) = ——
5 108T(@) < ¥(@) = T (60)
is thedigammafunction (which in matlab is calledsi ). Setting% = 0 we fund
. Na a
b= = — 61
But when we substitute this in t§§ = 0 we get a nonlinear equation far
0=Nloga— NlogZT+ » loga, — Nty(a) (62)

This equation cannot be solved in closed form; an iteratie¢hiwd for finding the roots (such as Newton’s method)
must be used. We can start this process from the method of ntsrestimate.

In Matlab, if you typet ype(whi ch(’ ganfit’)), you can look at its source code, and you will find that it
estimates: by callingf zer o with the following function:

lkeqn(a) = —— Z log X,, —log X — log(a) + ¥(a) (63)

It then substitutes into Equation 61.
4.5 Why maximum likelihood?
Recall that the KL divergence between “true” distributjpand approximation is defined as

L(p|lg) = Zp 1og _const—Zp )log g(x (64)

where the constant term only dependspofwhich is fixed) and nog (which needs to be estimated). If we drop the
constant term, the result is called tbess entropy. Now suppose is theempirical distribution , which puts a
probability atom on the observed training data and zero mesywhere else:

n

Demp(x) = % Z 0(x — ;) (65)

i=1



Now we get
1
K L(pempl|lq) = const— Zp(a:) log q(x) = const— - Z log q(x;) (66)

This is just the average negative log likelihoodyadn the training set. So minimizing KL divergence to the encgpir
distribution is equivalent to maximizing likelihood.

5 Sampling distributions

In addition to a point estimate, it is useful to have some meaef uncertainty. Note that the frequentist notion of
uncertainty is quite different from the Bayesian. In thajfrentist view, uncertainty means: how much would my
estimate change if | had different data? This is calledsémpling distribution of the estimator. In the Bayesian
view, uncertainty means: how much do | believe my estimatergthe current data? This is called thesterior
distribution of the parameter. In otherwords, the frequentist is coremtwith £, [é|D] (and its spread), whereas the
Bayesian is concerned withy [0| D] (and its spread). Sometimes these give the same answempttakvays.

The distribution of is called the sampling distribution. Its standard deviat®called thestandard error :

se(f) = \/Var (6) (67)

Often the standard error depends on the unknown distributio such cases, we often estimate it; we denote such
estimates bye.

Later we will see that many sampling distributions are apijpnately Gaussian as the sample size goes to infinity.
More precisely, we say an estimatorisymptotically Normal if

Oy —0
Se

~ N(0,1) (68)

(where~ here means converges in distribution).
5.1 Confidence intervals
A 1 — « confidence intervalis an intervalC,, = (a, b) wherea andb are functions of the dat&’;.y such that

P0eCy)>1—a (69)

In other words{a, b) trapsé with probabilityl — «. Often people use 95% confidence intervals, which corredpon
toa = 0.05.

If the estimator is asymptotically normal, we can use prigenf the Gaussian distribution to compute an approx-
imate confidence interval.

Theorem 5.1. Suppose that O ~ N(6, se®). Let ® be the cdf of a standard Normal, Z ~ A/(0,1), and let z,, /5 =
P11 — (%)), sothat P(Z > z,/2) = /2. By symmetry of the Gaussian, P(Z < —z,/2) = /2,50 P(—z4)2 <
Z < za/q) =1 —a. (seeFigure 3). Let

Cy = (éN — Za/25€, On + Zq/25€) (70)

Then
PO eCy)—1—a (71)

Proof. Let Zy = (6 — 6)/se. By assumptionZ,, ~ Z. Hence

PO cCy) = Plly-— Zq25€ < 0 < On + Zq /25€) (72)
= P(zy/25e < oNsAe_ o < Zq)25€) (73)

—  P(zq/25€¢ < Z < 24)25€) (74)

|
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Figure 3: A A/(0, 1) distribution with thez,, > cutoff points shown. The central non shaded area contains: of the probability
mass. Ifa = 0.05, thenz, ;o = 1.96 ~ 2.

For 95% confidence intervals, = 0.05 andz, » = 1.96 ~ 2, which is why people often express their results as
9N =+ 2se.
5.2 The counter-intuitive nature of confidence intervals

Note that saying thatf* has a 95% confidence interval [of, b]” doesnot meanP(d € [a,b]|D) = 0.95. Rather, it
means R
poimp(jo)( € [a(D'),b(D")]) = 0.95 (76)

i.e., if we were to repeat the experiment, then 95% of the tifme true parameter would be in the b] interval. To
see that these are not the same statement, consider thiplex@mm [Mac03, p465]). Suppose we draw two integers
from
0.5 ifxz=20
p(z|@)=¢ 05 ifx=60+1 (77)
0  otherwise

If & = 39, we would expect the following outcomes each with prob 0.25:

(39, 39), (39, 40), (40, 39), (40, 40) (78)
Letm = min(z1, z2) and define a Cl as
[a(D)’b(D)] = [m’m]7 (79)
For the above samples this yields
[39,39], [39,39], [39,39], [40,40] (80)

which is clearly a 75% CI. However, D = (39, 39) thenp(d = 39|D) = P(0 = 38|D) = 0.5. And if D = (39, 40)
thenp(6 = 39|D) = 1.0. Thus even if we know = 39, we only have 75% “confidence” in this fact. Later we will
see that Bayesiagredible intervals give the more intuitively correct answer.

5.3 Sampling distribution for Bernoulli MLE

Consider estimating the parameter of a Bernoulli uéing % >, Xn. SinceX,, ~ Be(f), we haveS = )" X, ~
Binom(N, 0). So the sampling distribution is

p(0) = p(S = NO) = Binom(NG|N, 0) (81)
We can compute the mean and variance of this distributionlbsfs.

N 1 1
Bl = S E[S]= NO =6 (82)
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so we see this is an unbiased estimator. Also

Varf = Var % ;Xn] (83)
= > Var [X,,] (84)
=m0 (85)
_0(1-0)
= N (86)
So
se=+/0(1 —0)/N (87)
and
se =1/0(1—0)/N (88)

We can compute an exact confidence interval using quanfilieedinomial distribution. However, for reasonably
small NV, the Binomial is well approximated by a Gaussianggo~ N (0, sAeQ). So an approximate — « confidence
interval is R

On £ zq 25 (89)
5.4 Large sample theory for the MLE
Computing the exact sampling distribution of an estimagor often be difficult. Fortunately, it can be shown that, for
certain modef§ as the sample size tends to infinity, the sampling disiobuiecomes Gaussian. We say the estimator

is asymptotically Normal.
Define thescore functionas the derivative of the log likelihood

B 0log p(X10)
S(X,0) = —=5—— (90)
Define theFisher information to be
N
In(#) = Var (Z s(Xn,9)> (91)
n=1
= ) Var(s(X,,0)) (92)

Intuitively, this measures the stability of the MLE wrt vations in the data set (recall th&tis random and is fixed).
It can be shown thafy (0) = NI;(0). We will write 1(0) for I;(¢). We can rewrite this in terms of the second
derivative, which measures the curvature of the likelihood

Theorem 5.2. Under suitable smoothness assumptions on p, we have

1(0) = E

(% 1ogp(X|9))2] — 5 [ 2 osp(X1) (©3)

We can now state our main theorem.
Theorem 5.3. Under appropriate regularity conditions, the MLE is asymptotically Normal.
On ~ N (0, se?) (94)

Lintuively, the requirement is that each parameter in theehget to “see” an infinite amount of data.

10



where
sex/1/In(0) (95)

is the standard error of § . Furthemore, this result still holdsif we use the estimated standard error

ge ~\/1/In(0) (96)

The proof can be found in standard textbooks, such as [Rid&1g basic idea is to use a Taylor series expansion
of ¢/ aroundd.
The intuition behind this result is as follows. Thsymptotic varianceis given by

1 1

NI) E((0)

(97)

so when the curvature at the MUE'(0)], is large, then the variance is low, whereas if the curvasinearly flat, the
variance is high. (Note thdt’(é) < 0 sincef is a maximum of the log likelihood.) Intuitively, the curuae is large
if the parameter is “well determined”.

For example, consideX,, ~ Be(f). The MLE isf = + 3", X, and the log likelihood is

log p(x]6) = xlog 6 + (1 — z)log(1 — ) (98)
so the score function is Y 1_-x
s(X,0) = 9 1-46 (99)
and % Ly
(X0 =2 4 —— 2 1
s'(X,0) 92+(1_9)2 (100)
Hence 0 L )
I(0) = Eg(—5'(X,0)) = —= = 101
() 9( S( a)) 92+(1_0)2 9(1_0) ( )
So
A 2
o=t L _ (9(1N 9)> (102)
VIn@y)  \/NI@N)
which is the same as the result we derived in Equation 88.
In the multivariate case, tHesher information matrix is defined as
EgHyy -+ FEgHy,
In@0)=—1| - (103)
EgH, - FEgHy,
where 92
Hiy = —2 104
00,00 (104)
is the Hessian of the log likelihood. The multivariate versof Theorem 5.3 is
0~ N, 15'(0)) (105)
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2From the Bayesian standpoint, the equivalent statemehaighe parameter is well determined if the posterior unost is small. (Sharply
peaked Gaussians have lower entropy than flat ones.) Thiguafaly a much more natural intepretation, since it talksualour uncertainty about
6, rather than variance induced by changing the data.
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