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1 Introduction
Whereas probability is concerned with describing the relative likelihoods of generating various kinds of data, statistics
is concerned with the opposite problem: inferring the causes that generated the observed data. Indeed, statistics used
to be known asinverse probability.

As mentioned earlier, there are two interpretations of probability: the frequentist interpretation in terms of long
term frequencies of future events, and the Bayesian interpretation, in terms of modeling (subjective) uncertainty given
the current data. This in turn gives rise to two approaches tostatistics. Thefrequentist approach to statistics is the
most widely used, and hence is sometimes called theorthodox approachor classical approach. We will give a very
brief introduction here. For more details, consult one of the many excellent textbooks on this topic, such as [Ric95] or
[Was04].

2 Point estimation
Point estimation refers to computing a single “best guess” of some quantity ofinterest from data. The quantity could
be a parameter in a parametric model (such as the mean of a Gaussian), or a regression function, or a prediction
of a future value of some random variable. We assume there is some “true” value for this quantity, which is fixed
but unknown, call itθ. Our goal is to construct anestimator, which is some functiong that takes sample data,
D = (X1, . . . , XN ), and returns a point estimatêθN :

θ̂N = g(X1, . . . , XN ) (1)

Sinceθ̂N depends on the particular observed data,θ̂ = θ̂(D), it is a random variable. (Often we omit the subscriptN

and just writeθ̂.)
An example of an estimator is thesample meanof the data:

µ̂ = x =
1

N

N
∑

n=1

xn (2)

Another is thesample variance:

σ̂2 =
1

N

N
∑

n=1

(xn − x) (3)

A third example is the empirical fraction of heads in a sequence of heads (1s) and tails (0s):

θ̂ =
1

N

N
∑

n=1

Xn (4)

whereXn ∼ Be(θ).
There are many possible estimators, so how do we know which touse? Below we describe some of the most

desirable properties of an estimator.
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Figure 1: Graphical illustration of whŷσ2

ML is biased: it underestimates the true variance because it measures spread around the
empirical mean̂µML instead of around the true mean. Source: [Bis06] Figure 1.15.

2.1 Unbiased estimators

We define thebiasof an estimator as
bias(θ̂N ) = ED∼θ(θ̂N − θ) (5)

where the expectation is over data setsD drawn from a distribution with parameterθ. We say that̂θN is unbiasedif
Eθ(θ̂N ) = θ. It is easy to see that̂µ is an unbiased estimator:

Eµ̂ = E
1

N

N
∑

n=1

Xn =
1

N

∑

n

E[Xn] =
1

N
Nµ (6)

However, one can show (exercise) that

Eσ̂2 =
N − 1

N
σ2 (7)

Therefore it is common to use the following unbiased estimator of the variance:

σ̂2
N−1 =

N

N − 1
σ̂2 (8)

In Matlab,var(X) returnsσ̂2
N−1 whereasvar(X,1) returnsσ̂2.

One might ask: why isσ2
ML biased? Intuitively, we “used up” one “degree of freedom” inestimatingµML, so we

underestimateσ. (If we usedµ instead ofµML when computingσ2
ML, the result would be unbiased.) See Figure 1.

2.2 Bias-variance tradeoff

Being unbiased seems like a good thing, but it turns out that alittle bit of bias can be useful so long as it reduces the
variance of the estimator. In particular, suppose our goal is to minimize themean squared error(MSE)

MSE = Eθ(θ̂N − θ)2 (9)

It turns out that when minimizing MSE, there is abias-variance tradeoff.

Theorem 2.1. The MSE can be written as

MSE = bias2(θ̂) + Var θ(θ̂) (10)
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Proof. Let θ = ED∼θ(θ̂(D)). Then

ED(θ̂(D) − θ)2 = ED(θ̂(D) − θ + θ − θ)2 (11)

= ED(θ̂(D) − θ)2 + 2(θ − θ)ED(θ̂(D) − θ) + (θ − θ)2 (12)

= ED(θ̂(D) − θ)2 + (θ − θ)2 (13)

= V (θ̂) + bias2(θ̂) (14)

where we have used the fact thatED(θ̂(D) − θ) = θ − θ = 0.

Later we will see that simple models are often biased (because they cannot represent the truth) but have low
variance, whereas more complex models have lower bias but higher variance.Bagging is a simple way to reduce the
variance of an estimator without increasing the bias: simply take weighted combinations of estimatros fit on different
subsets of the data, chosen randomly with replacement.

2.3 Consistent estimators

Having low MSE is good, but is not enough. We would also like our estimator to converge to the true value as we
collect more data. We call such an estimatorconsistent. Formally,θ̂ is consistent if̂θN converges in probability toθ
asN→∞. µ̂, σ̂2 andσ̂2

N−1 are all consistent.

3 The method of moments
Thek’th moment of a distribution is

µk = E[Xk] (15)

Thek’th sample momentis

µ̂k =
1

N

N
∑

n=1

Xk
n (16)

Themethod of momentsis simply to equateµk = µ̂k for the first few moments (the minimum number necessary)
and then to solve forθ. Although these estimators are not optimal (in a sense to be defined later), they are consistent,
and are simple to compute, so they can be used to initialize other methods that require iterative numerical routines.
Below we give some examples.

3.1 Bernoulli

Sinceµ1 = E(X) = θ, andµ̂1 = 1
N

∑N
n=1Xn, we have

θ̂ =
1

N

N
∑

n=1

xn (17)

3.2 Univariate Gaussian

The first and second moments are

µ1 = E[X ] = µ (18)

µ2 = E[X2] = µ2 + σ2 (19)

Soσ2 = µ2 − µ2
1. The corresponding estimates from the sample moments are

µ̂ = X (20)

σ̂2 =
1

N

N
∑

n=1

x2
n −X

2
=

1

N

N
∑

n=1

(xn −X)2 (21)
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Figure 2: An empirical pdf of some rainfall data, with two Gamma distributions superimposes. Solid red line = method of moment.
dotted black line = MLE. Figure generated byrainfallDemo.

3.3 Gamma distribution

LetX ∼ Ga(a, b). The first and second moments are

µ1 =
a

b
(22)

µ2 =
a(a+ 1)

b2
(23)

To apply the method of moments, we must expressa andb in terms ofµ1 andµ2. From the second equation

µ2 = µ2
1 +

µ1

b
(24)

or
b =

µ1

µ2 − µ2
1

(25)

Also

a = bµ1 =
µ2

1

µ2 − µ2
1

(26)

Sinceσ̂2 = µ̂2 − µ̂2
1, we have

b̂ =
x

σ̂2
, â =

x2

σ̂2
(27)

As an example, let us consider a data set from the book by [Ric95, p250]. The data records the average amount
of rain (in inches) in southern Illinois during each storm over the years 1960 - 1964. If we plot its empirical pdf as
a histogram, we get the result in Figure 2. This is well fit by a Gamma distribution, as shown by the superimposed
lines. The solid line is the pdf with parameters estimated bythe method of moments, and the dotted line is the pdf
with parameteres estimated by maximum likelihood. Obviously the fit is very similar, even though the parameters are
slightly different numerically:

âmom = 0.3763, b̂mom = 1.6768, âmle = 0.4408, b̂mle = 1.9644 (28)

This was implemented usingrainfallDemo.
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4 Maximum likelihood estimates
A maximum likelihood estimate(MLE) is a setting of the parametersθ that makes the data as likely as possible:

θ̂mle = arg max
θ
p(D|θ) (29)

Since the dataD = {x1, . . . ,xn} is iid, the likelihood factorizes

L(θ) =

N
∏

i=1

p(xi|θ) (30)

It is often more convenient to work with log probabilities; this will not changearg maxL(θ), since log is a monotonic
function. Hence we define thelog likelihood as`(θ) = log p(D|θ). For iid data this becomes

`(θ) =

N
∑

i=1

log p(xi|θ) (31)

The mle then maximizes̀(θ).
MLE enjoys various theoretical properties, such as being consistent andasymptotically efficient, which means

that (roughly speaking) the MLE has the smallest variance ofall well-behaved estimators (see [Was04, p126] for
details). Therefore we will use this technique quite widely. We consider several examples below that we will use later.

4.1 Univariate Gaussians

LetXi ∼ N (µ, σ2). Then

p(D|µ, σ2) =

N
∏

n=1

N (xn|µ, σ
2) (32)

`(µ, σ2) = −
1

2σ2

N
∑

n=1

(xn − µ)2 −
N

2
lnσ2 −

N

2
ln(2π) (33)

To find the maximum, we set the partial derivatives to 0 and solve. Starting with the mean, we have

∂`

∂µ
= −

2

2σ2

∑

n

(xn − µ) = 0 (34)

µ̂ =
1

N

N
∑

i=n

xn (35)

which is just the empirical mean. Similarly,

∂`

∂σ2
=

1

2
σ−4

∑

n

(xn − µ̂) −
N

2σ2
= 0 (36)

σ̂2 =
1

N

N
∑

n=1

(xn − µ̂)2 (37)

=
1

N

[

∑

n

x2
n +

∑

n

µ̂2 − 2
∑

n

xnµ̂

]

(38)

=
1

N
[
∑

n

x2
n +Nµ̂2 − 2Nµ̂2] =

1

N
[
∑

n

x2
n +N(

1

N

∑

n

xn)2 − 2N(
1

N

∑

n

xn)2] (39)

=
1

N

∑

n

x2
n − (

1

N

∑

n

xn)2− =
1

N

∑

n

x2
n − (µ̂)2 (40)

since
∑

n xn = Nµ̂. This is just the empirical variance.
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4.2 Bernoullis

LetX ∈ {0, 1}. GivenD = (x1, . . . , xN ), the likelihood is

p(D|θ) =

N
∏

i=1

p(xi|θ) (41)

=
N
∏

i=1

θxi(1 − θ)1−xi (42)

= θN1(1 − θ)N2 (43)

whereN1 =
∑

i xi is the number of heads andN2 =
∑

i(1 − xi) is the number of tails The log-likelihood is

L(θ) = log p(D|θ) = N1 log θ +N2 log(1 − θ) (44)

Solving for dL
dθ = 0 yields

θML =
N1

N
(45)

the empirical fraction of heads.
Suppose we have seen 3 tails out of 3 trials. Then we predict that the probability of heads is zero:

θML =
N1

N1 +N2
=

0

0 + 3
(46)

This is an example of thesparse data problem: if we fail to see something in the training set, we predict that it can
never happen in the future. Later we will consider Bayesian and MAP point estimates, which avoid this problem.

4.3 Multinomials

The log-likelihood is

`(θ;D) = log p(D|θ) =
∑

k Nk log θk (47)

We need to maximize this subject to the constraint
∑

k θk = 1, so we use aLagrange multiplier . The constrained
cost function becomes

˜̀ =
∑

k

Nk log θk + λ

(

1 −
∑

k

θk

)

(48)

Taking derivatives wrtθk yields

∂ ˜̀

∂θk
=

Nk

θk
− λ = 0 (49)

Taking derivatives wrtλ yields the original constraint:

∂ ˜̀

∂λ
=

(

1 −
∑

k

θk

)

= 0 (50)

Using this sum-to-one constraint we have

Nk = λθk (51)
∑

k

Nk = λ
∑

k

θk (52)

N = λ (53)

θ̂k =
Nk

N
(54)

Henceθ̂k is the fraction of timesk occurs. If we did not observeX = k in the training data, we set̂θk = 0, so we have
the same sparse data problem as in the Bernoulli case (in factit is worse, sinceK may be large, so it is quite likely
that we didn’t see some of the symbols, especially if our dataset is small).
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4.4 Gamma distribution

The pdf forGa(a, b) is

Ga(x|a, b) =
1

Γ(a)
baxa−1e−bx (55)

So the log likelihood is

`(a, b) =
∑

n

[a log b+ (a− 1) logxn − bxn − log Γ(a)] (56)

= Na log b+ (a− 1)
∑

n

log xn − b
∑

n

xn −N log Γ(a) (57)

The partial derivatives are

∂`

∂a
= N log b+

∑

n

log xn −N
Γ′(a)

Γ(a)
(58)

∂`

∂b
=

Na

b
−
∑

n

xn (59)

where
∂

∂a
log Γ(a)

def
= ψ(a) =

Γ′(a)

Γ(a)
(60)

is thedigamma function (which in matlab is calledpsi). Setting∂`
∂b = 0 we fund

b̂ =
Nâ
∑

n xn
=
â

x
(61)

But when we substitute this in to∂`
∂a = 0 we get a nonlinear equation fora:

0 = N log â−N log x+
∑

n

log xn −Nψ(a) (62)

This equation cannot be solved in closed form; an iterative method for finding the roots (such as Newton’s method)
must be used. We can start this process from the method of moments estimate.

In Matlab, if you typetype(which(’gamfit’)), you can look at its source code, and you will find that it
estimatesa by callingfzero with the following function:

lkeqn(a) = −
1

N

∑

n

logXn − logX − log(a) + ψ(a) (63)

It then substituteŝa into Equation 61.

4.5 Why maximum likelihood?

Recall that the KL divergence between “true” distributionp and approximationq is defined as

KL(p||q) =
∑

x

p(x) log
p(x)

q(x)
= const−

∑

x

p(x) log q(x) (64)

where the constant term only depends onp (which is fixed) and notq (which needs to be estimated). If we drop the
constant term, the result is called thecross entropy. Now supposep is theempirical distribution , which puts a
probability atom on the observed training data and zero masseverywhere else:

pemp(x) =
1

n

n
∑

i=1

δ(x− xi) (65)
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Now we get

KL(pemp||q) = const−
∑

x

p(x) log q(x) = const−
1

n

∑

i

log q(xi) (66)

This is just the average negative log likelihood ofq on the training set. So minimizing KL divergence to the empirical
distribution is equivalent to maximizing likelihood.

5 Sampling distributions
In addition to a point estimate, it is useful to have some measure of uncertainty. Note that the frequentist notion of
uncertainty is quite different from the Bayesian. In the frequentist view, uncertainty means: how much would my
estimate change if I had different data? This is called thesampling distribution of the estimator. In the Bayesian
view, uncertainty means: how much do I believe my estimate given the current data? This is called theposterior
distribution of the parameter. In otherwords, the frequentist is concerned withED [θ̂|D] (and its spread), whereas the
Bayesian is concerned withEθ[θ|D] (and its spread). Sometimes these give the same answers, butnot always.

The distribution of̂θ is called the sampling distribution. Its standard deviation is called thestandard error :

se(θ̂) =

√

Var (θ̂) (67)

Often the standard error depends on the unknown distribution. In such cases, we often estimate it; we denote such
estimates bŷse.

Later we will see that many sampling distributions are approximately Gaussian as the sample size goes to infinity.
More precisely, we say an estimator isasymptotically Normal if

θ̂N − θ

se
 N (0, 1) (68)

(where here means converges in distribution).

5.1 Confidence intervals

A 1 − α confidence intervalis an intervalCn = (a, b) wherea andb are functions of the dataX1:N such that

Pθ(θ ∈ CN ) ≥ 1 − α (69)

In other words,(a, b) trapsθ with probability1 − α. Often people use 95% confidence intervals, which corresponds
toα = 0.05.

If the estimator is asymptotically normal, we can use properties of the Gaussian distribution to compute an approx-
imate confidence interval.

Theorem 5.1. Suppose that θ̂N ≈ N (θ, ŝe2). Let Φ be the cdf of a standard Normal, Z ∼ N (0, 1), and let zα/2 =
Φ−1(1 − (α

2 )), so that P (Z > zα/2) = α/2. By symmetry of the Gaussian, P (Z < −zα/2) = α/2, so P (−zα/2 <
Z < zα/a) = 1 − α. (see Figure 3). Let

CN = (θ̂N − zα/2ŝe, θ̂N + zα/2ŝe) (70)

Then
P (θ ∈ CN )→1 − α (71)

Proof. LetZN = (θ̂ − θ)/ŝe. By assumption,Zn  Z. Hence

P (θ ∈ CN ) = P (θ̂N − zα/2ŝe < θ < θ̂N + zα/2ŝe) (72)

= P (zα/2ŝe <
θ̂N − θ

ŝe
< zα/2ŝe) (73)

→ P (zα/2ŝe < Z < zα/2ŝe) (74)

= 1 − α (75)
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Figure 3: A N (0, 1) distribution with thezα/2 cutoff points shown. The central non shaded area contains1 − α of the probability
mass. Ifα = 0.05, thenzα/2 = 1.96 ≈ 2.

For 95% confidence intervals,α = 0.05 andzα/2 = 1.96 ≈ 2, which is why people often express their results as

θ̂N ± 2ŝe.

5.2 The counter-intuitive nature of confidence intervals

Note that saying that “̂θ has a 95% confidence interval of[a, b]” doesnot meanP (θ̂ ∈ [a, b]|D) = 0.95. Rather, it
means

pD′∼P (·|θ)(θ̂ ∈ [a(D′), b(D′)]) = 0.95 (76)

i.e., if we were to repeat the experiment, then 95% of the time, the true parameter would be in the[a, b] interval. To
see that these are not the same statement, consider this example (from [Mac03, p465]). Suppose we draw two integers
from

p(x|θ) =







0.5 if x = θ
0.5 if x = θ + 1
0 otherwise

(77)

If θ = 39, we would expect the following outcomes each with prob 0.25:

(39, 39), (39, 40), (40, 39), (40, 40) (78)

Letm = min(x1, x2) and define a CI as
[a(D), b(D)] = [m,m], (79)

For the above samples this yields
[39, 39], [39, 39], [39, 39], [40, 40] (80)

which is clearly a 75% CI. However, ifD = (39, 39) thenp(θ = 39|D) = P (θ = 38|D) = 0.5. And if D = (39, 40)
thenp(θ = 39|D) = 1.0. Thus even if we knowθ = 39, we only have 75% “confidence” in this fact. Later we will
see that Bayesiancredible intervals give the more intuitively correct answer.

5.3 Sampling distribution for Bernoulli MLE

Consider estimating the parameter of a Bernoulli usingθ̂ = 1
N

∑

nXn. SinceXn ∼ Be(θ), we haveS =
∑

nXn ∼
Binom(N, θ). So the sampling distribution is

p(θ̂) = p(S = Nθ̂) = Binom(Nθ̂|N, θ) (81)

We can compute the mean and variance of this distribution as follows.

Eθ̂ =
1

N
E[S] =

1

N
Nθ = θ (82)
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so we see this is an unbiased estimator. Also

Var θ̂ = Var [
1

N

∑

n

Xn] (83)

=
1

N2

∑

n

Var [Xn] (84)

=
1

N2

∑

n

θ(1 − θ) (85)

=
θ(1 − θ)

N
(86)

So
se =

√

θ(1 − θ)/N (87)

and

ŝe =

√

θ̂(1 − θ̂)/N (88)

We can compute an exact confidence interval using quantiles of the Binomial distribution. However, for reasonably
smallN , the Binomial is well approximated by a Gaussian, soθ̂N ≈ N (θ, ŝe2). So an approximate1− α confidence
interval is

θ̂N ± zα/2ŝe (89)

5.4 Large sample theory for the MLE

Computing the exact sampling distribution of an estimator can often be difficult. Fortunately, it can be shown that, for
certain models1, as the sample size tends to infinity, the sampling distribution becomes Gaussian. We say the estimator
is asymptotically Normal.

Define thescore functionas the derivative of the log likelihood

s(X, θ) =
∂ log p(X |θ)

∂θ
(90)

Define theFisher information to be

IN (θ) = Var

(

N
∑

n=1

s(Xn, θ)

)

(91)

=
∑

n

Var (s(Xn, θ)) (92)

Intuitively, this measures the stability of the MLE wrt variations in the data set (recall thatX is random andθ is fixed).
It can be shown thatIN (θ) = NI1(θ). We will write I(θ) for I1(θ). We can rewrite this in terms of the second
derivative, which measures the curvature of the likelihood.

Theorem 5.2. Under suitable smoothness assumptions on p, we have

I(θ) = E

[

(

∂

∂θ
log p(X |θ)

)2
]

= −E

[

∂2

∂θ2
log p(X |θ)

]

(93)

We can now state our main theorem.

Theorem 5.3. Under appropriate regularity conditions, the MLE is asymptotically Normal.

θ̂N ∼ N (θ, se2) (94)

1Intuively, the requirement is that each parameter in the model get to “see” an infinite amount of data.

10



where
se ≈

√

1/IN (θ) (95)

is the standard error of θ̂N . Furthemore, this result still holds if we use the estimated standard error

ŝe ≈

√

1/IN (θ̂) (96)

The proof can be found in standard textbooks, such as [Ric95]. The basic idea is to use a Taylor series expansion
of `′ aroundθ.

The intuition behind this result is as follows. Theasymptotic varianceis given by

1

NI(θ)
= −

1

E`′′(θ)
(97)

so when the curvature at the MLE|`′′(θ̂)|, is large, then the variance is low, whereas if the curvatureis nearly flat, the
variance is high. (Note that̀′′(θ̂) < 0 sinceθ̂ is a maximum of the log likelihood.) Intuitively, the curvature is large
if the parameter is “well determined”.2

For example, considerXn ∼ Be(θ). The MLE isθ̂ = 1
N

∑

nXn and the log likelihood is

log p(x|θ) = x log θ + (1 − x) log(1 − θ) (98)

so the score function is

s(X, θ) =
X

θ
−

1 −X

1 − θ
(99)

and

−s′(X, θ) =
X

θ2
+

1 −X

(1 − θ)2
(100)

Hence

I(θ) = Eθ(−s
′(X, θ)) =

θ

θ2
+

1 − θ

(1 − θ)2
=

1

θ(1 − θ)
(101)

So

ŝe =
1

√

IN (θ̂N )
=

1
√

NI(θ̂N )
=

(

θ̂(1 − θ̂)

N

)

1
2

(102)

which is the same as the result we derived in Equation 88.
In the multivariate case, theFisher information matrix is defined as

IN (θ) = −







EθH11 · · · EθH1p

. . .
EθHp1 · · · EθHpp






(103)

where

Hjk =
∂2`N
∂θj∂θk

(104)

is the Hessian of the log likelihood. The multivariate version of Theorem 5.3 is

θ̂ ∼ N (θ, I−1
N (θ)) (105)
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