Multivariate Gaussians

Kevin P. Murphy
Last updated September 28, 2007

1 Multivariate Gaussians
Themultivariate Gaussian or multivariate normal (MVN) distribution is defined by

1

def
N(x|p,X) = CRENRE

exp[—3(x = )" (x — )] €y
wherep is ap x 1 vector,X is ap x p symmetric positive definite (pd)matrix, andp is the dimensionality ok. It
can be shown that'[X] = pu and CoyX] = X (see e.g., [Bis06, p82]). (Note that in the 1D casés the standard
deviation, whereas in the multivariate casds the covariance matrix.)

The quadratic form A = (x — u)"Y 7! (x — p) in the exponent is called tHdahalanobis distancebetween
x andpu. The equatiom\ = const defines an ellipsoid, which are the level sets of cohgt@bability density: see
Figure 1. Often we just drawn the elliptical contour that tadms 95% of the probability mass.

2 Bivariate Gaussians
In the 2D case, define tlerrelation coefficientbetweenX andY as

Cou(X,)Y
. (X.Y) @
VVar(X)Var(Y)
Hence the covariance matrix is )
HES ( Ta ”"g”y> 3)
pO'g:O'y O'y

and the pdf (for the zero mean case) is given below

(1) 1 < 1 <x2 N y? 2pxy )> @)
{1," = ——F——— X B T — J— - —
Py 210,044/ 1 — p? P 2(1—=p%) \o2 o2 (0.0y)

It should be clear from this example that when doing muliateranalysis, using matrices and vectors is easier than
working with scalar variables.

3 Parsimonious covariance matrices

A full covariance matrix hag(p + 1)/2 parameters. Hence it may be hard to estimate from data. Weestiict

¥ to be diagonal; this has parameters. Or we can usespherical (isotropic) covariancey = ¢21. See Figure 2
for a visualization of these different assumptions. We wilhsider otheparsimonious representationsfor high
dimensional Gaussian distributions later in the book. Troblem of estimating a structured covariance matrix is
calledcovariance selection

4 Linear functions of Gaussian random variables

Linear combinations of MVN are MVN:

A~N@Y) = AX ~ N(Ap, ASA) )
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Figure 1: Visualization of a 2 dimensional Gaussian density. ThisrBguas produced bgaussPl ot 2dDeno.
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Figure 2: Samples from a spherical, diagonal and full covariance &answith 95% confidence ellipsoid superimposed. This
figure was generated usigguss Sanpl eDeno.



This implies that marginals of a MVN are also Gaussian. Totlsise suppose thaX < IR® and we want to compute
p(X1, X2): we can just use the projection matrix

1 0 0
A= (0 1 0) ©
Let X ~ N(p, ) andY = AX = (X1, X2). Then
EY = (’“) @)
and
1 0 0 i iz 013 10 o o o 10 o o
Covy = ACOVXAT = < > 021 0922 023 0 1| = ( = 12 13) 0 1| = < = 12)
0 0 00 g2 022

(8)

010 021 022 023
031 032 033

So to marginalize, we just select out the corresponding sovascolumns ofs andX.

5 Marginals and conditionals of a MVN
Supposer = (x1,x2) is jointly Gaussian with parameters

p= (i) == (30 ) a=m=(an 42), ©
In Section 9.2, we will show that we can factorize the joint as
plz1,@2) = p(e2)p(zi|z2) (10)
= N(w2|pa, YXo2)N (1|p1)2, X1)2) (11)
where the marginal parameters faz2) are just gotten by extracting rows and columnsa#er and the conditional
parameters fop(z|2z2) are given by
piz = p+ 1285 (22 — p2) (12)
S = T - Z1285 T (13)
Note that the new mean is a linear functionzgf and the new covariance is independentef Note that both the
marginal and conditional distributions are themselvessS@n: see Figure 3.
5.1 Worked example
Let us consider a 2d example. The covariance matrix is

2:( o1 f"’“’?) (14)

2
pPo102 (o5

so the conditional becomes

p(ailz2) = N ($1|M1 + p(:%@ (9 — p2), of — %) (15)
We see that; is a linear function ofes. If o7 = 09 = o, we get
plailzs) = N (z1lu + p(w2 — p2), 0*(1 - p?)) (16)
If p =0, we get
plailes) = N (21]m, o) a7)

sincexy conveys no information about; .
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Figure 3: Marginalizing and conditionalizing a 2D Gaussian resuita iLD Gaussian. Source: Sam Roweis.

6 Bayes rule for linear Gaussian systems
Consider representing the joint distribution &nandY” in linear Gaussianform:

pz) = N(zlp, A7) (18)
plylz) = N(ylAz+0b,L71) (19)

whereA andL are precision matrices.
In Section 9.3, we show that we can invert this model as falow

p(y) = N(ylAp+b L7+ AATTAT) (20)
p(zly) = N(|S[ATL(y —b) + Apl, %) (21)
Y = (A+ATLA)! (22)

6.1 Worked example
Consider the following 1D example, where we try to estimateom a noisy observation:

px) = N(zlpo,05) (23)
plylz) = N(ylz,0?) (24)
Using

A=1,b=0,A"" =03, L' =0? (25)

the posterior orx is given by
plely) = N(z|pn,05) (26)

1 1\!
2 e _ _
i = (77 @0
o = o (L) @8)
o lont



which matches our earlier result for deriving the postedba Gaussian mean (if we think of as the unknown
parametey:). Also, from Equation 21, the posterior predictive dengsty

p(y) = N (no, 0* + 03) (29)

again matching our earlier result.
6.2 Worked example

Now suppose we have two noisy measurements ahll themy; andy,, with variances, andwvs. Let the prior be
p(z) = N (z|uo, 08) wheres? = oo (an improper flat prior). We have

_ 1_ 2 _ (w1 {1y . (0 ,4 [(uv1 O
b ()4 (- (G 2) oo

Applying the above formulae, and using the fact that 0, the posterior is

p(alyiya) = N(tapy,02),) (31)
(3 )0

= = <0+(%+U—12)>1 (33)
P Y0\ PR IR UT S

which matches the results we derived in HW3 by sequentiahtipg (modulo the substitutions = n,x andy, =
ny7Y).

7 Maximum likelihood estimation

Given N iid datapointsk; stored in rows ofX, the log-likelihood is

Np N 1
logp(X|p,X) = 5 log(2m) — 5 log |X] — 3 Z(Xi —w)"ET ) (35)

1=1
Below we drop the first term since it is a constant. Also, usiregfact that
—log|2| = log|Z7!| (36)

we can rewrite this as

Np N 1
logp(X|p,X) = 5 10%(27T)5 log [A[ — 3 Z(Xi — )" A(xi — p) (37)
1=1
whereA = X~ is called theprecision matrix.
7.1 Mean
Using the following results for taking derivatives wrt vers (wherea is a vector andi is a matrix)

3(2?) _ . (38)
oy"Ay)
oy = (A4 ATy (39)



and using the substitution, = x; — u, we have

i,_Tfl o _iayz‘T71
= 1z t+x Ty, (41)
Hence
B 1Y
S logp(X[uY) = =53 287 xi—p) (42)
H 2 i=1
=1
o) .
bmL = N in (44)

which is just the empirical mean.
7.2 Covariance

To computeX 1, is a little harder We will need to take derivatives wrt a matri a quadratic form and a determinant.
We introduce the required algebra, since we will be usingirariate Gaussians a lot.

First, recall t(A) = >, A;; is thetrace of a matrix (sum of the diagonal elements). This satisfiesciadic
permutation property

tr(ABC) = tr(CAB) = tr(BCA) (45)
We can therefore derive thigce trick , which reorders the scalar inner produétAz as follows
o7 Az = tr(z” Az) = tr(zaT A) (46)
Hence the log-likelihood becomes
. N
(DA 1) = S logl|Al =5} (wi— )" Alw: — p) (47)
= Mg 2 - i —m)TA 48
= 3 og |A| B} Ztl’[(xl ) (i — ) ] (48)
_ Al -1 A
= 310g| |—5Ztr[5 ] (49)
whereS is thescatter matrix
SEN (i —p)xi — )" = (O xx]) - Nzz” (50)
We need to take derivatives of this expression furiVe use the following results
9 T
8—Atr(BA) = B (51)
7]
—logld] = AT 2
o1 o8 4| (52)
Hence
DY) N, r 1o
A = 3 A 25 =0 (53)
1
AT=x=— 4
&S (54)



SO
N

Sigma = % Z(xl —7)(x; —7)T (55)

i=1

Note that this is only of rankV, so if N < p, 3 will be uninvertible.
In the case = 1, this reduces to the standard result

o = % > (xi—p)? (56)

i=1

In matlab, just typesi gnma = cov( X, 1) . Ifyou useSi gna = cov( X), you will get the unbiased estimate
. 1 B o
Eunb - m ;(Xz - .13) (Xz - .13) (57)

N, ¥, x;andy_, x;x! are callecsufficient statistics because if we know these, we do not need the original raw data
X in order to estimate the parameters.

8 Bayesian parameter estimation

The multivariate analog of the normal inverse chi-squaldX) distribution is the normal inverse Wishart (NIW) (see
also [GCSRO04, p85]). Below, we state the results withoubprdhe inverse Wishart and multivariate T distributions
are defined in the appendix.

8.1 Likelihood
The likelihood is

p(D|p, %) o [S]7% exp ( - u)) (58)
1:1

= |Z| % exp (—§tr(AS)> (59)

(60)

whereS' is the matrix of sum of squares (scatter matrix)

S = Z(yi -9 (i —7)" (61)

8.2 Prior
The natural conjugate prior is normal-inverse-wishart

Y o~ IW(AY, ) (62)

plX ~ N(uo,%/kKo) (63)
P, ) E NIW (o, 0, Ao, o) (64)
o x| ot d/2H) exp (—%tr(/\oz_l) - %(M — o) X7 (n - Mo)) (65)



8.3 Posterior
The posterior is

p(MaE|D7MOaKJO;AO7VO) = NIW(M;E|Mn;’in,;An7Vn) (66)
kop + 0+ ny
o = AT (67)
Kn = Ko+n (68)
Vp, = lVg+n (69)
An = Ao+ S+ —"" (5 o) (T — )" (70)
n = 0 o 1 Y — o)y — Ho

The marginals are
SID ~ IW(A v, (72)

An (72)

D = t, - n Ty
1l —d+1 (1 i —dT D)

To see the connection with the scalar case, notAhagtlays the role of,,02 (posterior sum of squares), so

A, A, o2
= = 7
Fn(Vn —d+1)  Kpln  En (73)
8.4 Posterior predictive
B Ap(kn +1)
p(z|D) =t —ay1(n, m) (74)
To see the connection with the scalar case, note that
2
Ap(kn +1) _ Ap(kn +1) _ (kn +1) (75)
Fn(vn —d+1) KnUn, K
8.5 Marginal likelihood
1 Ta(vn/2) [Ao™/? [ ko \¥?
D) = = 7
p( ) 7'(”(1/2 Pd(VO/2) |An|l/'"'/2 K ( 6)
where wherd",(a) is the generalized gamma function
b (20+1—i
Lp(a) = a?@=DAT]T <f) (77)

i=1

(SoT'1 () =T'(«).)



8.6 Reference analysis

A noninformative (Jeffrey’s) prior ip(u, ©) o ||~ (¢+1/2 which is the limit ofko—0, vo— — 1, |Ao|—0 [GCSRO04,
p88]. Then the posterior becomes

Kn = n (79)
v, = n-—1 (80)
Ap = §=) (2 —T)(x; —7)" (81)
p(X[D) = IW,_1(X[9) (82)
WD) = taalpl, —E ) (83)
p(z|D) = %d@mggég) (84)

Note that [Min00] argues that Jeffrey’s principle says thentormative prior should be of the form
1
Jim N (plpso, B/ )W (SIKE) o (2052 [S[~ (D72 oc [ =4+ (85)

This can be achieved by setting = 0 instead ofy = —1.
9 Appendix

9.1 Partitioned matrices

To derive the equations for conditioning a Gaussian, we te&dow how to invert block structured matrices.
(In this section, we follow [Jor06, ch13].) Consider a geth@artioned matrix

M= (g ff) (86)

where we assumg andH are invertible. The goal is to derive an expressionibr'. If we could block diagonalize
M, it would be easier, since then the inverse would be a didgoatix of the inverse blocks. To zero out the top
right we can pre-multiply as follows

I -FH "\ (E F\ (E-FH7'G 0 (87)
0 1 G H) G H
Similarly, to zero out the bottom right we can post-multipkyfollows
I -FH Y\ (E F 1 0\ (E-FH'G 0 (88)
0 1 G H)\-H'G I)~ 0 H

The top left corner is called techur complementof M wrt H, and is denoted//H:
M/H=F—-FH'G (89)

If we rewrite the above as
XYZ=W (90)

whereY = M, we get the following expression for the determinant of dipp@aned matrix:

(XIYllzl = [wl (91)
|M| = [M/H|H| (92)



Also, we can derive the inverse as follows

z7ly"ix=t = w! (93)
y=! = Zzw'x (94)
hence

E F\ ' I 0\ [((M/H)™ 0\ (I —FH (95)

G H o ~H7'G T 0 H=1)\0 I
_ (M/H)"! —(M/H)"'FH"! (96)

- \-H'G(M/H)"' H'+G(M/H)"'FH™!

Alternatively, we could have decomposed the maitixn terms of E and M/ E, yielding
E F\' _ (E'+E'F(M/E)'GE"' E-'F(M/E)"! ©7)

G H n —(M/E)"'GE~! (M/E)~!

Equating these two expression yields the following two folae, the first of which is known as timeatrix inversion
lemma (akaSherman-Morrison-Woodbury formula)

(E-FH'G)™' = E'4+E'F(H-GE'F)"'GE™! (98)
(E-FH'G)"'FH' = E'F(H-GE'F)™! (99)
In the special case thaf = —1, F = u a column vector( = v’ a row vector, we get the following formula for a
rank one update of an inverse
(BE+w)™t = E '+ E u(-I—JvE u) " WE™? (100)
—1 I —1

9.2 Marginals and conditionals of MVNSs: derivation

We can derive the results in Section 5 using the techniquesverting partitioned matrices (see Section 9.1). Let us
factor the jointp(z1, 22) asp(z2)p(x1|x2) by applying Equation 95 to the matrix inverse in the expornem.

T -1
1 1 — M1 211 212 T, — M1
—— 102
exp{ 2 <x2 — {2 o1 oo T2 — [2 (102)

T — -1
1 (T I 0 (2/222) 1 0 I —212222 1 — M1
eXp{ 2 <x2 - m) <—22—21221 I> ( 0 S5 ) \0 I vy — ) {103

= exp{—3(r1 — 1 — T12%55 (w2 — 12))" (B/Ta2) " (w1 — 1 — 12555 (w2 — p12)) } (104)
x exp { =5 (2 — p2)" Bo; (w2 — p2) } (105)
This is of the form
exp(quadratic form inzq, z2) x exp(quadratic form ins) (106)
Using Equation 92 we can also split up the normalization tzorts
1 1
@mPrI2gs = (2m) P2 (|5 /0| Saa])2 (107)
1 1
= 2rPPI2/50l2 (2m)7| 552 (108)
Hence we have succesfully factorized the joint as
p(z1,22) = p(x2)p(zi|z2) (109)
= N(z2|pa, Xo2)N (21|p1)2, X1)2) (110)
where the parameters of the marginal and conditional bigion can be read off from the above equations, using
(2/Z92) 7t =211 — B19855 Ty (111)

10



9.3 Bayes rule for linear Gaussian systems: derivation
The following section is based on [Bis06, p93]. Considerftilewing joint distribution.

plx) = N(z|p, A7) (112)
plylr) = N(ylAz+b,L77) (113)

Letz = (x,y) and consider the log of the joint:
logp(z) = —2(x — p)"A(x — p) — 2(y — Ax — b)"L(y — Ax — b) + const (114)
Expanding out the second order and cross terms we have

—%XT(A +ATLA)x — %yTLy + %yTLAX + %XTATLy (115)

T
X A+ ATLA —ATL\ (x\ 1 r
(y) ( A )(y)__gz Ra (116)

where the precision matrix is defined as

N[

_ (A+ATLA —ATL
R= < 1A I ) (117)
The covariance of the joint is found using the matrix invendemma:
A—l _A—lAT
_p-1_
=R = (AA—1 L+ AA—lAT> (118)
The mean of the joint is given by
Elz] = (Elx], E[Ax +b]) = (1, App + b) (119)
To compute the marginaly), we use the moment form results:
Ely] = Au+b (120)
Covy] = Yoo=L '+ AA1AT (121)
To compute the conditionalx|y) we use the canonical form results:
Elxly] = Zqamz = Z12(m — Aia(x2 — p2)) (122)
= Sip(Aupm +ATL(y — b)) (123)
= (A+ATLA) Y ATL(y —b) + Ap) (124)
Covlxly] = Syp=Aj;=A5 =(A+ATLA)™! (125)

9.4 Inverse Wishart

This is the multidimensional generalization of the inveBsemma. Consider@x d positive definite (covariance) ma-
trix X and a dof parameter > d — 1 and psd matri¥s. Some authors (eg [GCSR04, p574]) use this parametenizatio

-1
IW,(X|S7Y) = (2vd/2rd(y/2)) |S]/2|X |~ (Hd+D/2 oy <—%TT(SX1)> (126)
which has mean

EX = — (127)



T distribution, dof 2.0 Gaussian
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Figure 4: Left: T distribution in 2d with dof=2 an& = 0.17». Right: Gaussian density with = 0.17> andyu = (0, 0); we see it
goes to zero faster. Producedroyl ti var Tpl ot .
In Matlab, usé wi shr nd. In the 1d case, we have
-2 2y 2\—1
X" (Blvo, 05) = IWy, (E](r005) ™) (128)

Other authors (e.g., [Pre05, p117]) use a slightly diffefermulation (with2d < v)

—1

IW(X|Q) = |2t hzgdta f[ L((v—d—j)/2) (129)
j=1
QX e (5 Tr(x Q) (130
which has mean
EX = 7}/_%_2 (131)

9.5 Multivariate t distributions
The multivariate T distribution i@ dimensions is given by

v+d
T(v/2+d/2) [3|~1/2 1 . -9
to(x|p, ) = (1"/(1//2)/ )Jd/Lwd/z X 1—|—;(m—,u)TZ Yo —p) (132)

whereX is called the scale matrix (since it is not exactly the camece matrix). This has fatter tails than a Gaussian:
see Figure 4. In Matlab, use/t pdf .
The distribution has the following properties

EFxz = pifr>1 (133)
modex = pu (134)
Cova = Lzz forv > 2 (135)

L

(The following results are from [Koo03, p328].) Suppdse~ T'(u, X, v) and we partition the variables into 2
blocks. Then the marginals are

12



and the conditionals are

Yilya ~ T(p1)2, X1)2,v +di) (137)
pip = p1+ S1255; (y2 — pi2) (138)
L = hip(En — 1225 E]) (139)

1 _
hig = h [V + (y2 — 12) 555 (2 — )] (140)

We can also show linear combinations of Ts are Ts:
Y ~T(u,2,v) = AY ~T(Ap, AXA',v) (141)

We can sample from @ ~ T'(u1, 2, v) by samplingz ~ 7'(0, 1, ) and then transforming = ;. + R” x, where
R = chol(X), soRTR = 3.
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