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1 Multivariate Gaussians
Themultivariate Gaussianor multivariate normal (MVN) distribution is defined by

N (x|µ, Σ)
def
=

1

(2π)p/2|Σ|1/2
exp[− 1

2 (x − µ)T Σ−1(x − µ)] (1)

whereµ is ap × 1 vector,Σ is ap × p symmetric positive definite (pd)matrix, andp is the dimensionality ofx. It
can be shown thatE[X ] = µ and Cov[X ] = Σ (see e.g., [Bis06, p82]). (Note that in the 1D case,σ is the standard
deviation, whereas in the multivariate case,Σ is the covariance matrix.)

Thequadratic form ∆ = (x − µ)T Σ−1(x − µ) in the exponent is called theMahalanobis distancebetween
x andµ. The equation∆ = const defines an ellipsoid, which are the level sets of constant probability density: see
Figure 1. Often we just drawn the elliptical contour that contains 95% of the probability mass.

2 Bivariate Gaussians
In the 2D case, define thecorrelation coefficientbetweenX andY as

ρ =
Cov(X, Y )

√

V ar(X)V ar(Y )
(2)

Hence the covariance matrix is

Σ =

(

σ2
x ρσxσy

ρσxσy σ2
y

)

(3)

and the pdf (for the zero mean case) is given below

p(x, y) =
1

2πσxσy

√

1 − ρ2
exp

(

−
1

2(1 − ρ2)

(

x2

σ2
x

+
y2

σ2
y

−
2ρxy

(σxσy)

))

(4)

It should be clear from this example that when doing multivariate analysis, using matrices and vectors is easier than
working with scalar variables.

3 Parsimonious covariance matrices
A full covariance matrix hasp(p + 1)/2 parameters. Hence it may be hard to estimate from data. We canrestrict
Σ to be diagonal; this hasp parameters. Or we can use aspherical (isotropic) covariance,Σ = σ2I. See Figure 2
for a visualization of these different assumptions. We willconsider otherparsimonious representationsfor high
dimensional Gaussian distributions later in the book. The problem of estimating a structured covariance matrix is
calledcovariance selection.

4 Linear functions of Gaussian random variables
Linear combinations of MVN are MVN:

A ∼ N(µ, Σ) ⇒ AX ∼ N(Aµ, AΣA′) (5)
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Figure 1: Visualization of a 2 dimensional Gaussian density. This figure was produced bygaussPlot2dDemo.
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Figure 2: Samples from a spherical, diagonal and full covariance Gaussian, with 95% confidence ellipsoid superimposed. This
figure was generated usinggaussSampleDemo.
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This implies that marginals of a MVN are also Gaussian. To seethis, suppose thatX ∈ IR3 and we want to compute
p(X1, X2): we can just use the projection matrix

A =

(

1 0 0
0 1 0

)

(6)

Let X ∼ N (µ,Σ) andY = AX = (X1, X2). Then

E Y =

(

µ1

µ2

)

(7)

and

CovY = ACovXAT =

(

1 0 0
0 1 0

)





σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33









1 0
0 1
0 0



 =

(

σ11 σ12 σ13

σ21 σ22 σ23

)





1 0
0 1
0 0



 =

(

σ11 σ12

σ21 σ22

)

(8)
So to marginalize, we just select out the corresponding rowsand columns ofµ andΣ.

5 Marginals and conditionals of a MVN
Supposex = (x1, x2) is jointly Gaussian with parameters

µ =

(

µ1

µ2

)

, Σ =

(

Σ11 Σ12

Σ21 Σ22

)

, Λ = Σ−1 =

(

Λ11 Λ12

Λ21 Λ22

)

, (9)

In Section 9.2, we will show that we can factorize the joint as

p(x1, x2) = p(x2)p(x1|x2) (10)

= N (x2|µ2, Σ22)N (x1|µ1|2, Σ1|2) (11)

where the marginal parameters forp(x2) are just gotten by extracting rows and columns forx2, and the conditional
parameters forp(x1|x2) are given by

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2) (12)

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21 (13)

Note that the new mean is a linear function ofx2, and the new covariance is independent ofx2. Note that both the
marginal and conditional distributions are themselves Gaussian: see Figure 3.

5.1 Worked example

Let us consider a 2d example. The covariance matrix is

Σ =

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

(14)

so the conditional becomes

p(x1|x2) = N

(

x1|µ1 +
ρσ1σ2

σ2
2

(x2 − µ2), σ2
1 −

(ρσ1σ2)
2

σ2
2

)

(15)

We see thatx1 is a linear function ofx2. If σ1 = σ2 = σ, we get

p(x1|x2) = N
(

x1|µ1 + ρ(x2 − µ2), σ2(1 − ρ2)
)

(16)

If ρ = 0, we get

p(x1|x2) = N
(

x1|µ1, σ2
1

)

(17)

sincex2 conveys no information aboutx1.
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Figure 3: Marginalizing and conditionalizing a 2D Gaussian results in a 1D Gaussian. Source: Sam Roweis.

6 Bayes rule for linear Gaussian systems
Consider representing the joint distribution onX andY in linear Gaussianform:

p(x) = N (x|µ, Λ−1) (18)

p(y|x) = N (y|Ax + b, L−1) (19)

whereΛ andL are precision matrices.
In Section 9.3, we show that we can invert this model as follows

p(y) = N (y|Aµ + b, L−1 + AΛ−1AT ) (20)

p(x|y) = N (x|Σ[AT L(y − b) + Λµ], Σ) (21)

Σ = (Λ + AT LA)−1 (22)

6.1 Worked example

Consider the following 1D example, where we try to estimatex from a noisy observationy:

p(x) = N (x|µ0, σ
2
0) (23)

p(y|x) = N (y|x, σ2) (24)

Using
A = 1, b = 0, Λ−1 = σ2

0 , L
−1 = σ2 (25)

the posterior onx is given by

p(x|y) = N (x|µn, σ2
n) (26)

σ2
n =

(

1

σ2
0

+
1

σ2

)−1

(27)

µn = σ2
n

(

y

σ2
+

µ0

σ2
0

)

(28)
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which matches our earlier result for deriving the posteriorof a Gaussian mean (if we think ofx as the unknown
parameterµ). Also, from Equation 21, the posterior predictive densityis

p(y) = N (µ0, σ
2 + σ2

0) (29)

again matching our earlier result.

6.2 Worked example

Now suppose we have two noisy measurements ofx, call themy1 andy2, with variancesv1 andv2. Let the prior be
p(x) = N (x|µ0, σ

2
0) whereσ2

0 = ∞ (an improper flat prior). We have

µ = µ0, Λ
−1 = σ2

0 ,y =

(

y1

y2

)

, A =

(

1
1

)

, b =

(

0
0

)

, L−1 =

(

v1 0
0 v2

)

(30)

Applying the above formulae, and using the fact thatΛ = 0, the posterior is

p(x|y1, y2) = N (µx|y, σ2
x|y) (31)

σ2
x|y = Σ =

(

1

σ2
0

+
(

1 1
)

(

v1 0
0 v2

)(

1
1

))−1

(32)

= =

(

0 + (
1

v1
+

1

v2
)

)−1

(33)

µx|y = σ2
x|y

[

(

1 1
)

(

v1 0
0 v2

)(

y1

y2

)

+
1

σ2
0

µ

]

= σ2
x|y(

y1

v1
+

y2

v2
) (34)

which matches the results we derived in HW3 by sequential updating (modulo the substitutionsy1 = nxx andy2 =
nyy).

7 Maximum likelihood estimation
GivenN iid datapointsxi stored in rows ofX , the log-likelihood is

log p(X |µ, Σ) = −
Np

2
log(2π) −

N

2
log |Σ| −

1

2

N
∑

i=1

(xi − µ)T Σ−1(xi − µ) (35)

Below we drop the first term since it is a constant. Also, usingthe fact that

− log |Σ| = log |Σ−1| (36)

we can rewrite this as

log p(X |µ, Σ) = −
Np

2
log(2π)

N

2
log |Λ| −

1

2

N
∑

i=1

(xi − µ)T Λ(xi − µ) (37)

whereΛ = Σ−1 is called theprecision matrix.

7.1 Mean

Using the following results for taking derivatives wrt vectors (wherea is a vector andA is a matrix)

∂(aTy)

∂y
= a (38)

∂(yT Ay)

∂y
= (A + AT )y (39)
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and using the substitutionyi = xi − µ, we have

∂

∂µ
(xi − µ)T Σ−1(xi − µ) =

∂

∂yi

∂yi

∂µ
yT

i Σ−1yi (40)

= −1(Σ−1 + Σ−T )yi (41)

Hence

∂

∂µ
log p(X |µ, Σ) = −

1

2

N
∑

i=1

−2Σ−1(xi − µ) (42)

= Σ−1
N
∑

i=1

(xi − µ) = 0 (43)

so

µML =
1

N

∑

i

xi (44)

which is just the empirical mean.

7.2 Covariance

To computeΣML is a little harder We will need to take derivatives wrt a matrix of a quadratic form and a determinant.
We introduce the required algebra, since we will be using multivariate Gaussians a lot.

First, recall tr(A) =
∑

i Aii is the trace of a matrix (sum of the diagonal elements). This satisfies thecyclic
permutation property

tr(ABC) = tr(CAB) = tr(BCA) (45)

We can therefore derive thetrace trick , which reorders the scalar inner productxT Ax as follows

xT Ax = tr(xT Ax) = tr(xxT A) (46)

Hence the log-likelihood becomes

`(D|Λ, µ̂) =
N

2
log |Λ| − 1

2

∑

i

(xi − µ)T Λ(xi − µ) (47)

=
N

2
log |Λ| − 1

2

∑

i

tr[(xi − µ)(xi − µ)T Λ] (48)

=
N

2
log |Λ| − 1

2

∑

i

tr[SΛ] (49)

whereS is thescatter matrix

S
def
=
∑

i

(xi − x)(xi − x)T = (
∑

i

xix
T
i ) − NxxT (50)

We need to take derivatives of this expression wrtΛ. We use the following results

∂

∂A
tr(BA) = BT (51)

∂

∂A
log |A| = A−T (52)

Hence

∂`(D|Σ)

∂Λ
=

N

2
Λ−T −

1

2
ST = 0 (53)

Λ−T = Σ =
1

N
S (54)
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so

ˆSigma =
1

N

N
∑

i=1

(xi − x)(xi − x)T (55)

Note that this is only of rankN , so if N < p, Σ̂ will be uninvertible.
In the casep = 1, this reduces to the standard result

σ2
ML =

1

N

N
∑

i=1

(xi − µ)2 (56)

In matlab, just typeSigma = cov(X,1). If you useSigma = cov(X), you will get the unbiased estimate

Σ̂unb =
1

N − 1

N
∑

i=1

(xi − x)(xi − x)T (57)

N ,
∑

i xi and
∑

i xix
T
i are calledsufficient statistics, because if we know these, we do not need the original raw data

X in order to estimate the parameters.

8 Bayesian parameter estimation
The multivariate analog of the normal inverse chi-squared (NIX) distribution is the normal inverse Wishart (NIW) (see
also [GCSR04, p85]). Below, we state the results without proof. The inverse Wishart and multivariate T distributions
are defined in the appendix.

8.1 Likelihood

The likelihood is

p(D|µ, Σ) ∝ |Σ|−
n

2 exp

(

−
1

2

n
∑

i=1

(yi − µ)T Σ−1(yi − µ)

)

(58)

= |Σ|−
n

2 exp

(

−
1

2
tr(ΛS)

)

(59)

(60)

whereS is the matrix of sum of squares (scatter matrix)

S =

N
∑

i=1

(yi − y)(yi − y)T (61)

8.2 Prior

The natural conjugate prior is normal-inverse-wishart

Σ ∼ IW (Λ−1
0 , ν0) (62)

µ|Σ ∼ N(µ0, Σ/κ0) (63)

p(µ, Σ)
def
= NIW (µ0, κ0, Λ0, ν0) (64)

∝ |Σ|−((ν0+d)/2+1) exp

(

−
1

2
tr(Λ0Σ

−1) −
κ0

2
(µ − µ0)

T Σ−1(µ − µ0)

)

(65)
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8.3 Posterior

The posterior is

p(µ, Σ|D, µ0, κ0, Λ0, ν0) = NIW (µ, Σ|µn, κn, Λn, νn) (66)

µn =
κ0µ + 0 + ny

κn
(67)

κn = κ0 + n (68)

νn = ν0 + n (69)

Λn = Λ0 + S +
κ0n

κ0 + n
(y − µ0)(y − µ0)

T (70)

The marginals are

Σ|D ∼ IW (Λ−1
n , νn) (71)

µ|D = tνn−d+1(µn,
Λn

κn(νn − d + 1)
) (72)

To see the connection with the scalar case, not thatΛn plays the role ofνnσ2
n (posterior sum of squares), so

Λn

κn(νn − d + 1)
=

Λn

κnνn
=

σ2

κn
(73)

8.4 Posterior predictive

p(x|D) = tνn−d+1(µn,
Λn(κn + 1)

κn(νn − d + 1)
) (74)

To see the connection with the scalar case, note that

Λn(κn + 1)

κn(νn − d + 1)
=

Λn(κn + 1)

κnνn
=

σ2(κn + 1)

κn
(75)

8.5 Marginal likelihood

p(D) =
1

πnd/2

Γd(νn/2)

Γd(ν0/2)

|Λ0|ν0/2

|Λn|νn/2

(

κ0

κn

)d/2

(76)

where whereΓp(a) is the generalized gamma function

Γp(α) = πp(p−1)/4

p
∏

i=1

Γ

(

2α + 1 − i

2

)

(77)

(SoΓ1(α) = Γ(α).)
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8.6 Reference analysis

A noninformative (Jeffrey’s) prior isp(µ, Σ) ∝ |Σ|−(d+1)/2 which is the limit ofκ0→0, ν0→− 1, |Λ0|→0 [GCSR04,
p88]. Then the posterior becomes

µn = x (78)

κn = n (79)

νn = n − 1 (80)

Λn = S =
∑

i

(xi − x)(xi − x)T (81)

p(Σ|D) = IWn−1(Σ|S) (82)

p(µ|D) = tn−d(µ|x,
S

n(n − d)
) (83)

p(x|D) = tn−d(x|x,
S(n + 1)

n(n − d)
) (84)

Note that [Min00] argues that Jeffrey’s principle says the uninformative prior should be of the form

lim
k→0

N (µ|µ0, Σ/k)IWk(Σ|kΣ) ∝ |2πΣ|−
1
2 |Σ|−(d+1)/2 ∝ |Σ|−( d

2
+1) (85)

This can be achieved by settingν0 = 0 instead ofν0 = −1.

9 Appendix

9.1 Partitioned matrices

To derive the equations for conditioning a Gaussian, we needto know how to invert block structured matrices.
(In this section, we follow [Jor06, ch13].) Consider a general partioned matrix

M =

(

E F
G H

)

(86)

where we assumeE andH are invertible. The goal is to derive an expression forM−1. If we could block diagonalize
M , it would be easier, since then the inverse would be a diagonal matrix of the inverse blocks. To zero out the top
right we can pre-multiply as follows

(

I −FH−1

0 I

)(

E F
G H

)

=

(

E − FH−1G 0
G H

)

(87)

Similarly, to zero out the bottom right we can post-multiplyas follows
(

I −FH−1

0 I

)(

E F
G H

)(

I 0
−H−1G I

)

=

(

E − FH−1G 0
0 H

)

(88)

The top left corner is called theSchur complementof M wrt H , and is denotedM/H :

M/H = E − FH−1G (89)

If we rewrite the above as
XY Z = W (90)

whereY = M , we get the following expression for the determinant of a partitioned matrix:

|X ||Y ||Z| = |W | (91)

|M | = |M/H ||H | (92)

9



Also, we can derive the inverse as follows

Z−1Y −1X−1 = W−1 (93)

Y −1 = ZW−1X (94)

hence
(

E F
G H

)−1

=

(

I 0
−H−1G I

)(

(M/H)−1 0
0 H−1

)(

I −FH−1

0 I

)

(95)

=

(

(M/H)−1 −(M/H)−1FH−1

−H−1G(M/H)−1 H−1 + G(M/H)−1FH−1

)

(96)

Alternatively, we could have decomposed the matrixM in terms ofE andM/E, yielding
(

E F
G H

)−1

=

(

E−1 + E−1F (M/E)−1GE−1 E−1F (M/E)−1

−(M/E)−1GE−1 (M/E)−1

)

(97)

Equating these two expression yields the following two formulae, the first of which is known as thematrix inversion
lemma (akaSherman-Morrison-Woodbury formula )

(E − FH−1G)−1 = E−1 + E−1F (H − GE−1F )−1GE−1 (98)

(E − FH−1G)−1FH−1 = E−1F (H − GE−1F )−1 (99)

In the special case thatH = −1, F = u a column vector,G = v′ a row vector, we get the following formula for a
rank one update of an inverse

(E + uv′)−1 = E−1 + E−1u(−I − v′E−1u)−1v′E−1 (100)

= E−1 −
E−1uv′E−1

1 + v′E−1u
(101)

9.2 Marginals and conditionals of MVNs: derivation

We can derive the results in Section 5 using the techniques for inverting partitioned matrices (see Section 9.1). Let us
factor the jointp(x1, x2) asp(x2)p(x1|x2) by applying Equation 95 to the matrix inverse in the exponentterm.

exp

{

−
1

2

(

x1 − µ1

x2 − µ2

)T (
Σ11 Σ12

Σ21 Σ22

)−1(
x1 − µ1

x2 − µ2

)

}

(102)

= exp

{

− 1
2

(

x1 − µ1

x2 − µ2

)T (
I 0

−Σ−1
22 Σ21 I

)(

(Σ/Σ22)
−1 0

0 Σ−1
22

)(

I −Σ12Σ
−1
22

0 I

)(

x1 − µ1

x2 − µ2

)

}

(103)

= exp
{

− 1
2 (x1 − µ1 − Σ12Σ

−1
22 (x2 − µ2))

T (Σ/Σ22)
−1(x1 − µ1 − Σ12Σ

−1
22 (x2 − µ2))

}

(104)

× exp
{

− 1
2 (x2 − µ2)

T Σ−1
22 (x2 − µ2)

}

(105)

This is of the form
exp(quadratic form inx1, x2) × exp(quadratic form inx2) (106)

Using Equation 92 we can also split up the normalization constants

(2π)(p+q)/2|Σ|
1
2 = (2π)(p+q)/2(|Σ/Σ22||Σ22|)

1
2 (107)

= (2π)p/2|Σ/Σ22|
1
2 (2π)q/2|Σ22|

1
2 (108)

Hence we have succesfully factorized the joint as

p(x1, x2) = p(x2)p(x1|x2) (109)

= N (x2|µ2, Σ22)N (x1|µ1|2, Σ1|2) (110)

where the parameters of the marginal and conditional distribution can be read off from the above equations, using

(Σ/Σ22)
−1 = Σ11 − Σ12Σ

−1
22 Σ21 (111)
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9.3 Bayes rule for linear Gaussian systems: derivation

The following section is based on [Bis06, p93]. Consider thefollowing joint distribution.

p(x) = N (x|µ, Λ−1) (112)

p(y|x) = N (y|Ax + b, L−1) (113)

Let z = (x,y) and consider the log of the joint:

log p(z) = − 1
2 (x − µ)T Λ(x − µ) − 1

2 (y − Ax − b)T L(y − Ax − b) + const (114)

Expanding out the second order and cross terms we have

− 1
2x

T (Λ + AT LA)x− 1
2y

T Ly + 1
2y

T LAx + 1
2x

T AT Ly (115)

= − 1
2

(

x

y

)T (
Λ + AT LA −AT L

−LA L

)(

x

y

)

= − 1
2z

T Rz (116)

where the precision matrix is defined as

R =

(

Λ + AT LA −AT L
−LA L

)

(117)

The covariance of the joint is found using the matrix inversion lemma:

Σz = R−1 =

(

Λ−1 −Λ−1AT

AΛ−1 L−1 + AΛ−1AT

)

(118)

The mean of the joint is given by

E[z] = (E[x], E[Ax + b]) = (µ, Aµ + b) (119)

To compute the marginalp(y), we use the moment form results:

E[y] = Aµ + b (120)

Cov[y] = Σ22 = L−1 + AΛ−1AT (121)

To compute the conditionalp(x|y) we use the canonical form results:

E[x|y] = Σ1|2η1|2 = Σ1|2(η1 − Λ12(x2 − µ2)) (122)

= Σ1|2(Λ11µ1 + AT L(y − b)) (123)

= (Λ + AT LA)−1(AT L(y − b) + Λµ) (124)

Cov[x|y] = Σ1|2 = Λ−1
1|2 = Λ−1

11 = (Λ + AT LA)−1 (125)

9.4 Inverse Wishart

This is the multidimensional generalization of the inverseGamma. Consider ad×d positive definite (covariance) ma-
trix X and a dof parameterν > d−1 and psd matrixS. Some authors (eg [GCSR04, p574]) use this parameterization:

IWν(X|S−1) =
(

2νd/2Γd(ν/2)
)−1

|S|ν/2|X|−(ν+d+1)/2 exp

(

−
1

2
Tr(SX−1)

)

(126)

which has mean

E X =
S

ν − d − 1
(127)
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Figure 4: Left: T distribution in 2d with dof=2 andΣ = 0.1I2. Right: Gaussian density withΣ = 0.1I2 andµ = (0, 0); we see it
goes to zero faster. Produced bymultivarTplot.

In Matlab, useiwishrnd. In the 1d case, we have

χ−2(Σ|ν0, σ
2
0) = IWν0

(Σ|(ν0σ
2
0)−1) (128)

Other authors (e.g., [Pre05, p117]) use a slightly different formulation (with2d < ν)

IW 2
ν (X|Q) =



2(ν−d−1)d/2πd(d−1)/4
d
∏

j=1

Γ((ν − d − j)/2)





−1

(129)

×|Q|(ν−d−1)/2|X|−ν/2 exp

(

−
1

2
Tr(X−1Q)

)

(130)

which has mean

E X =
Q

ν − 2d − 2
(131)

9.5 Multivariate t distributions

The multivariate T distribution ind dimensions is given by

tν(x|µ, Σ) =
Γ(ν/2 + d/2)

Γ(ν/2)

|Σ|−1/2

vd/2πd/2
×

[

1 +
1

ν
(x − µ)T Σ−1(x − µ)

]−( ν+d

2
)

(132)

whereΣ is called the scale matrix (since it is not exactly the covariance matrix). This has fatter tails than a Gaussian:
see Figure 4. In Matlab, usemvtpdf.

The distribution has the following properties

E x = µ if ν > 1 (133)

modex = µ (134)

Cov x =
ν

ν − 2
Σ for ν > 2 (135)

(The following results are from [Koo03, p328].) SupposeY ∼ T (µ, Σ, ν) and we partition the variables into 2
blocks. Then the marginals are

Yi ∼ T (µi, Σii, ν) (136)
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and the conditionals are

Y1|y2 ∼ T (µ1|2, Σ1|2, ν + d1) (137)

µ1|2 = µ1 + Σ12Σ
−1
22 (y2 − µ2) (138)

Σ1|2 = h1|2(Σ11 − Σ12Σ
−1
22 ΣT

12) (139)

h1|2 =
1

ν + d2

[

ν + (y2 − µ2)
T Σ−1

22 (y2 − µ2)
]

(140)

We can also show linear combinations of Ts are Ts:

Y ∼ T (µ, Σ, ν) ⇒ AY ∼ T (Aµ, AΣA′, ν) (141)

We can sample from ay ∼ T (µ, Σ, ν) by samplingx ∼ T (0, 1, ν) and then transformingy = µ + RT x, where
R = chol(Σ), soRT R = Σ.
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