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1 Graphical models

We have already seen haenditional independence(Cl) assumptions help to represent joint distributionseinmts
of smaller pieces (see the chapter on naive Bayes classifirepter??). We give a very simple example in Figure 1,
where we show how the joint distributigri X, Y') can be represented in terms of the marginal distributigfis) and
p(Y) if we assume thaX andY are (unconditionally) independend¥, 1 Y.

Graphical models provide a way to represent Cl assumptiatgrially, in terms of graph (network) structures.
The nodes represent random variables, and the (lack ofsedgeesent Cl assumptions. For the example in Figure 1,
we would draw a graph with two nodeX, andY’, with no edge between them, representing the factXhdt Y.

To define aspecificprobability model, we need to associate parametric funstiwith the nodes in the graph.
We will explain how to do this in detail below, but as a very plsmexample, for the model in Figure 1, we would
associate(z) with nodeX andp(y) with nodeY’, wherep(x) andp(y) are tables of 6 numbers each. We will write
the resulting probability model agx|G, 6), whereG is the graph structurd) are the parameters of the model, and
x = (z1,...,x4) are the nodes in the graph.

Note thatd may encode additional ClI relations that are not encodeddiytaph. For example, in Figure 1, if the
graph wereX —Y (meaningX andY are dependent), but the joint taleX, Y') were a diagonal matrix, thel L Y
would still hold, but this would be by virtue of the specifiapmeter valueg in the tablep(X, Y), rather than because
of the graph structure. One of the principles of graphicatielimg is to try to make as many Cl relations graphically
explicit as possible. A distribution that does not contaiy aon-graphical Cl relations is said to Eathful to the
graph. Many real-world problems contaiontext-specific independencewhich essentially means that the graph
structure changes depending on the values of the nodescdii®t be captured using standard graphical modeling
techniques.

There are three main kinds of graphical model:

e Directed graphical models(DGMs), also calledBayesian networksor belief networks. (The term “belief”
is sometimes used to represent a (posterior) probabilityidition.) These models require that the graph is a
directed acyclic graph (DAG). Note that what makes “Bayesian networks” Bayesigjuss the fact that they
are a convenient way to represent probability distribigjamhich it is at the core of Bayesian statistics. It is
possible to use frequentist parameter estimation teckesiouconjunction with “Bayesian networks”, as we will
see in Chapte??.

e Undirected graphical models(UGMs), also calledMarkov random fields (MRFs) or Markov networks.
These can use any undirected graph structure.

e Chain graphs, which are a combination of DGMs and UGMs, and have direateldladirected edges. Loosely
speaking, they are DAGs, but some nodes have internal gsteuapresented as an undirected graph.

These model classes have differerpressive poweyin the sense that they represent different sets of disioibs, as
we will explain below. See Figure 2.

Each graph represents a set of Cl relations (in a way whichhak shortly define); let us call thedéG). Any
given probability distributiorp also defines a set of Cl relations; let us call thégg. We say that a grap&' is an
I-map (independence map) for distributipnf 7(G) C I(p). In other words, the graph does not make any assertions
of Cl which are not true of the distribution. This allows uaise the graph as a safe proxy fowhen reasoning about
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Figure 1: Computingp(z,y) = p(x)p(y), whereX LY. Here X andY are discrete random variable&; has 6 possible states
(values) and” has 5 possible states. A general joint distribution on twahstariables would requiré x 5) — 1 = 29 parameters
to define it (we subtract 1 because of the sum-to-one congtrdy assuming (unconditional) independence, we onlydriée—

1) + (5 — 1) = 9 parameters to defingx, y). Source: Sam Roweis.
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Figure 2: Venn diagram representing relationships between diffédiaas of graphical models.

p’s Cl properties. This is helpful for designing algorithrhat work for large classes of distributions, regardlessef t
specific numerical parametegtsNote that the fully connected graph is an I-map of all disttions, since it makes no
Cl assertions at all (since it is not missing any edges).

We say that a grapty’ is aperfect map of a distributionp if I(G) = I(p). In other words, the graph captures
all and only the CI relations of the distribution. It turnstabat DGMs and UGMs are perfect maps for different
sets of distributions. In this sense, neither is more paweiian the other as a representation language. However,
there are some distributions that can be perfectly modejtadtber a DGM or a UGM; the resulting graphs are called
decomposableor chordal. We shall define these concepts later.

A simple example of a decomposable graph ¢hain: directed chains and undirected chains represent the same
set of probability distributions, namely those that sagtibk (first order)Markov property

thlJ_Xt+1|Xt t:2,,d—1 (1)

In words, this says that the futufé,, ; is independent of the pa&i; ; given the presenk;. See Figure 3. Another
example of a decomposable graph tsee. For example, the graphs in Figure 4 represent distribatibat satisfy the
Cl relations

X, LX;|Y d,5e{1,...,d},i#j 2)

In the context of naive Bayes classifiers, this says thateh&fesX; are conditionally independent given the class
labelY".

The graph structure reflects our beliefs about the domaithelfgraph structure is “wrong”, the resulting model
will be a poor prediction of the future. There are various svay assessingoodness of fitof models, including
graphical models; see e.g., [CDLS99] for a discussion. Alg®can use model selection techniques, suctress
validation, to choose between different model structures. We willusahis later.

In this chapter, we focus on DGMs, and return to UGMs in Chapte
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Figure 3: Directed and undirected chain.
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Figure 4: Directed and undirected tree structure.

2 DGMs provide a compact representation of joint probability distributions
By the chain rule of probability, any joint distribution che written as follows

p(z1:a) = p(x1)p(22|21)p(T3]21, 22) - . . P(Td|T1:0-1) 3)

for an arbitrary ordering of the variables. In Section 3.lbhewe will show that a DAGG implies the following Cl
relations:
Xj L Xpredi\r, | Xn, 4

wherer; are theparentsof nodej in G and pred are the predecessors pin anytopological ordering of G;. (This
is an ordering of the nodes in which parents preceed thdureim.) Note thatr;Upred, = {1,...,j5 — 1}. Hence we
can simplify Equation 3 to

p(x1:0) = p(x1)p(x2|Tr, )p(23|Tay) - . . P(Ta]2x,) (5)

where each of the termgx; |z, ) is called aconditional probability distribution (CPD).

Let us consider the “water sprinkler” example in Figure 5isTdefines a joint distribution over 4 binary variables,
representing whether it is cloudy or not (C), whether it isireg or not (R), whether the water sprinkler is on or not
(S), and whether the grass is wet or not (W). It is common tothisdeuristic that we should add an edge fraim
to X; if X, are all the immediate causes_&f. Since clouds cause rain, there is an arc from C to R. Slncereve a
assuming th|s is a light-sensitive sprinkler, there is arfimm C to S. Finally, since either the sprinkler or the raamc
cause the grass to be wet, there are arcs from S and R to W.

This graph encodes various Cl assumptions. For exampldatheof arc between S and R meafis|. R|C,
since C is a predecessor of S and R in any topological ordeS8imgilarly, the lack of arc between C and W means
W L C|S, R. Informally, this means that the clouds do not have any tigéfect on the wet grass; rather, this effect
is mediated via S and R. Sometimes we say thahd i screen offW from C. These two Cl assumptions allow us to
represent the joint as a product of local factors, one peenod

P(C,S,R,W) = P(C)P(S|C)P(R|S,C)P(W|S, R,C) chain rule (6)
= P(C)P(S|C)P(R|$,C)P(W|S, R,C) sinceS L R|C 7)
= P(C)P(S|C)P(R|S8,C)P(W|S, R, sinceW L C|S,R (8)
= P(C)P(S|C)P(R|C)P(W|S, R) 9)

If we multiply all these CPDs together, we get the joint dizition shown in Table 1.

In this example, each CPB(X;| X, ) is represented as a multidimensional table. These aredcaileditional
probability tables (CPTs). Formally, each row of the table are the parameteascohditional multinomial distribu-
tion; we have one row for each possible conditioning case,Gombination of parent values. For example, for node
W, we have

p(W=w|lS=s,R=r,0,) = Mu(w|@,,,1) (10)
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Figure 5: Water sprinkler Bayes net with CPDs shown. T and F stand fierand false.

Probability
0.200
0.000
0.005
0.045
0.020
0.180
0.001
0.050
0.090
0.000
0.036
0.324
0.001
0.009
0.000
0.040
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Table 1:Joint distribution defined by the water sprinkler model. él@represents False and 1 represents True.
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Figure 6: Linear Gaussian CPR(y|z) = N (Ya + bz, c?), wherea is the offset and is the slope. Source: [RN02] Figure
14.6a(a).

whered,, are all the parameters for nodlig, and each row is indexed byandr. For theroot nodes, which have no
parents, the CPTs are just unconditional multinomial gistrons.
The number of parameters in this representation is

(K;—1) [ Kr=o0(K*Iml) (11)

kem;

whereK is the number of states for nogeand X' = max; K. (We subtract 1 because each row of the CPT sums
to one.) In the water sprinkler example, there are

1+(2-1)x24+2-1)x24(2-1)x4=1+2424+4=09 (12)

free parameters. In contrast, an unconstrained jointiliigton on 4 binary variables ha$ — 1 = 15 parameters. In
general, a DGM can have exponentially fewer parametersahamconstrained distribution. Thus the DGM requires
less space to store in memory, and it will require less dat@allsr sample size) to learn its parameters from data.

2.1 Compact representations of CPDs

CPTs require a number of parameters that is exponentiakimtimber of parents. We give an example of a more
compact representation of a CPD for discrete variables ati@&e5.2.

If the child node is continuous valued, we replace the maitiral distribution with a different kind of distribution,
say Gaussian. Also, if the parents are continuous, we carsecd different parameter value for every possible parent
configuration; instead we will need a functional mappingrfrparent values to child values. For examplé}if S
and R represent the amount of wet grass/ sprinkler flow/ rain fedl could use

p(wls,r,0,) = N(w|a + bys + bar, 0?) (13)

wheref,, = (a,b,0?) are the parameters ¢¥’'s CPD. We can write this more compactly using scalar product

notation:
p(w|s,r,0,) = N(w|ﬁT[1; s;7],0?) (14)

where3 = (a;b1;b2) and|[1; s;r] are column vectors. This is a simple exampldinéar regression where the
mean of the child is a linear function of its parents, and thgance is a constant (see Figure 6). If all the CPDs are
Gaussian or linear-Gaussian, the corresponding jointiloligton p(x1.4) is multivariate Gaussian. Unlike the water
sprinkler example, we cannot represent this as a table, doanrepresent it compactly in terms of a mean vector and
covariance matrix: see Chapt?.
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Figure 7: Two examples of the Bayes ball algorithm

3 Conditional independence properties encoded by DAGs

We have said that DAGs encode a set of Cl relations. Thereaaieus ways to “read off” such relations from the
graph; we will consider three belowThe goal is to be able to answer questions of the form

Xa 1L Xp|Xs (15)
for any (disjoint) set of noded, B, andS. Each method will give the same answer, so you are free tovgickhever
iS most convenient.

3.1 d-separation
We sayX; — X»--- — X, is anactive pathin a DAG G given evidence¥ if

1. Whenever we havewastructure, X; 1 — X; «— X;.1, thenX; or one of its descendants is &1 and
2. no other node along the path isiin

In other words, if any of the nodes along the path are obsetkied they must be at the bottom of a v-structure. We
also sayX is d-separatedfrom Y given E if there is no active path from any € X to anyy € Y givenE. (Thisis
like regular graph separation, but takes the direction@ftiges into account.) Then we have

Theorem 3.1. z4 L zp|xc if every variable inA is d-separated from every variable i conditioned on all the
variables inC.

Consider the DAG in Figure 7. Suppose we want to know if
X1 1 x6|{x2, {L3} (16)

We shade the nodes that we are conditioning on, namebndx3: see Figure 7(left). We see that 1 is d-separated
from 6, since the evidence breaks the 1-2-4 and the 1-3-Sathkes them inactive). Henaeg L xg|{x2,z3} IS
true.
Now suppose we want to know if
To L $3|{J)1, ],‘5} (17)

We shade nodes 1 and 6 in Figure 7(right). Now there is aneagidth 2-6-5-3, sinces € E. Hencexs [
x3|{x1,x6}.
3.2 Bayes ball algorithm

To checkifx 4 | zp|xc we need to check if every variable iis d-separated from every variablefihconditioned
on all variables irC. TheBayes ball algorithmis a simple way to implement this test. We shade all nagesplace
“palls” at each node in: 4 (or zg), let them bounce around according to some rules, and theif asy of the balls
reach any of the nodes irg (or x 4). The three main rules are shown in Figure 8. Notice thaslzalh travel opposite
to edge directions. We also need the boundary conditionishwere shown in Figure 9.

1Reading off Cl relations is tricky, because one needs toyvabout the directionality of the edges. There are severgva do this. In
contrast, in the UGM case, there will be only one way.
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Figure 8: Bayes ball rules. A shaded node is one we condition on. Ietieean arrow with a vertical bar it means the ball cannot
pass through; otherwise the ball can pass through.
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Figure 9: Bayes ball boundary conditions. A curved arrow means thie'lbalinces back”.



We can derive the 3 main rules as follows. First consider incdtauctureX —Y — 2. When we condition oy,
arex andz independent? We have

p(z,y, 2) = p(z)p(ylr)p(z|y) (18)
which implies
Pz, 2ly) = p(w)p(;/(Igp(ZIy) (19)
_ p(%z()g)(ZIy) (20)
= p(zly)p(zly) (21)

and therefore: L z|y. So observing the middle node of chain breaks it in two. Thihk as the pasty as the present
andz as the future.
Now consider the structur® <Y — 7. When we condition ory, arex andz independent?

p(z,y,2) = p(y)p(z|y)p(z|y) (22)
which implies
Ly = P@y2)
p(IL, |y) p(y) (23)
PP — oty (24)

and therefore: | z|y So observing a root node separates its children.
Finally consider av-structure X —Y «Z. When we condition omy, arex andz independent? We have

p(x,y,2) = p(x)p(2)p(y|z, 2) (25)

so we see that andz are marginally independentut giveny they areconditionally dependentThis important
effect is callecexplaining away(and is also known as Berkson’s paradox). Thus observingaatthe bottom of a
v-structure makes its parents become inter-dependent.

As an example of explaining away, suppose we toss two capsesenting the binary numbers 0 and 1, and we
observe the “sum” of their values. A priori, the coins areeipendent, but once we observe their sum, they become
coupled (e.qg., if the sum is 1, and the first coin is 0, then wanaktine second coin is 1).

3.3 Convertto UGM

As we discuss in Chapt&?, given anundirectedgraphH, we say thatX4 L, Xp|Xg in the distributionp iff A
separate®? from S in H, i.e., if we cut all the edges touching nodesSinthere will no paths from any node i to
any node inB. We will write this asA Ly B|S. (We useX; for the random variables, arydfor the nodes in the
graph.)

One strategy for inferring Cl relations in DAGs is to conwéeg DAG to a UGM, and then apply the above method.
This conversion process has two steps:

1. Form theancestralgraph ofG with respect tdJ = {A, B, S}. This means we remove all nodes frdithat
are not inU or are not ancestors &f. Let the result be denoted by = ancestrdlG, U). See Figure 10 for an
example. (The reason we need to form the ancestral graptpretent us from concluding that hidden nodes
(not part of A, B or S) at the bottom of v-structures cause their parents to bectmpendent.)

2. Formthemoral graph ofA. This means we connect together all “unmarried” (discotegarents who share a
common child, by addinghoral edges thus converting thé&mily (parents and children) into a fully connected
clique. See Figures 11,12 for some examples. Let the result beetthpf/ = moral 4). (The reason we need
to moralize the graph is to capture the fact that parentsrhed®pendent given their children, due to explaining
away.)
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Figure 10: Example of how to form an ancestral graph.
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Figure 11: Example of how to form a moral graph. The blue edges are théyremided moral edges.
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It can then be shown that
Xal, Xp|Xg <= AlyB|S (26)

where
H = moralancestrdlG, AUBUS)) (27)

is the corresponding UGM. For example, combining FigureddRigure 12, we can conclude that
X1 L Xy|{X5, X7} (28)

3.4 Markov blankets

The above methods allow us to determin&(if | X | Xg for any sets of noded, B andS. Supposed = {i}. The
minimal set of nodes that rendersxdependent of all the rest of the nodes is callfsdMarkov blanket, M B;:

Xi L Xgr,| XwmB, (29)
where
Ry =A{1,...,d}\{i} \ M B; (30)
’I L I
C l | |
1
J ‘S —> .l '5
3 L’ 3 —
N/ N/
4 3

Figure 12: Example of how to form a moral graph. The blue edges are théyremided moral edges.



Figure 13: A node X is independent of all other nodes given its Markov blankéticv include its parent#/, childrenY and
coparentsZ. Source: [RNO2] Fig 14.4.

are the rest of the nodes excludingnd its Markov blanket. Below we will show théds Markov blanket are its
parentsUy, ..., Uy, its childrenY, ..., Y,, and itsco-parents i.e., other nodeg’ who are also parents if thi;.
(The reason depends on the co-parents is because of explaining away fi§ere 13.

To see why this is true, partition all the nodes ikipand the other nodes_,;. We can partition the other nodes
X_; in those that involveX; (namely its parents, its children, and its co-parents),tahedther nodeg). Then the
full conditional is given by

PN = i 31)
_ p(Xile:nayl:maZI:va)
- Zg;p(Xz = x;U1:n75/1:nL7Z1:m7O) (32)
B p(Xi|Urn) [, p(Y;|X5, Z5)| P(Urins Z1im, O) (33)
2 p(Xa = 2| Un)[TL p(Y51 X = 2, Z)]P(Urns Z1im, O)
_ p(Xi|U1:n)[Hj p(Yj|Xiv Zj)] (34)

> P(Xi = z|U)[[ L, p(Yj|Xi = 2, Z;)]

x p(XidPa(x)) [ p0|Pa(v) (35)

Y; Ech(X;)

so the terms that do not involvg; cancel out from the numerator and denominator. We are léft aviproduct of
terms that includeX; in their “scope”. This proves that; | Xg,|M B;.

The ability to sample from the full conditional distributisp(X;|X_;) of each node will prove crucial to the
Gibbs samplingalgorithm (see Sectio®?).

3.5 Local Markov property

One consequence of the global Markov properties definined-bgparation is that a node is independent of all its
predecessors in the total ordering, given its parents:

X; L Xpreq.\wj | Xx, (36)
This was the basis of deriving Equation 5.

3.6 Markov equivalence
Consider the 3 DGMs in Figure 14(left). These all represeasame set of Cl statements, namely

X122y, XLZ (37)

Hence these graphs are callddrkov equivalent. However, the v-structur& —Y « 7 encodesX | Z andX [
Z|Y, which represents a different set of Cl assumptions.

10
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Figure 15: Three DAGs.

We can represent an equivalence class usipgréally directed acyclic graph (PDAG), akaessential graph
in which edges some edges are directed and some undiredbedurilirected ones represent reversible edges; any
combination is possible so long as no new v-structures @&ed. The directed edges are caltedhpelled edges
since changing their orientation would change the v-stimest and hence change the equivalence class. For example,
the PDAGX — Y — Z represent§ X —Y —Z, XY —Z, XY —Z} which encodes{ } Z andX L Z|Y. See
Figure 14.

One can show the following.

Theorem 3.2(Verma and Pearl [VP90])Two structures are Markov equivalent if they have the santbrected
skeleton and the same set of v-structures.

For example, referring to Figure 15, we see thatot = G,, since reversing the—4 arc creates a new v-
structure. Howevel/; = (3, since reversing the—5 arc does not create a new v-structure.
As a consequence of this theorem, we should not try to ingethe direction of the arrows in terms cdusality.

4 Bayesian models

Each CPDp(X;|Xx,,0;) depends on the parametés (In the case of CPTs, these are the numbers in the table.)
We can show these parameters explicitly as nodes in the gaggghown in Figure 16(left). This is very natural from
a Bayesian standpoint, which treats parameters just lfkeraandom variables. In fact, the only difference between
parameters and “regular” variables is that we assume théeuaf parameters is fixed, whereas the number of regular
variables increases as we get more data cases. This isatemstin Figure 16(right). We see thgtis a parent of all
Xij;, wherei = 1 : n indexes the data cases. This is because we assume the ddtadgssiachk; is drawn from the
same distribution, and hence has the same parameters.

A more concise notation for representing iid repetition Igained by drawing a box around all the repeated
variables, with the number of repetitions indicated in té&dm right corner. See Figure 17(left). All nodes outside
the box pointing in are assumed to point all copies insidaéndbvious way. This is callgalate notation.

We see in the above examples that the parameters for eachi@®dlapendent. This assumption is caligobal
parameter independencelf all the regular variabes are observed (i.e., we l@maplete datg or nomissing datg),

11



all the parameters are d-separated from each other, sorh@eiers will also be independent in the posterior. For the
water sprinkler example, we have

p(0|D) o< p(0)p(D|0) (38)
= pw)H (cil0e) Hpsm, 5) (39)
Hp rilei, 0,) % p(0w) [ [ p(wilsi, 7, 65) (40)

[
Hence we can estimate the parameters for each node separatel
In the case of tabular CPDs, it is common to also assume taahtltinomial parameters defining each row of the
table are independent. This is calledal parameter independenceSee Figure 17(right). If the data is complete, the

posterior will factorize across nodes and across conditgpcases. For example, for tlignode in the water sprinkler
example, if we associate a Dirichlet prior with each row @& thistribution, we have

p(Or|D) = ﬁ p(Orjc=rk) ﬁp(ﬂ@mc:k)[(ci:k) (41)
= =1

= H Dz’r(HR‘c:k|aR‘c:k)Mu(nR,c:k|HR‘c:k, nc:k) (42)

k
= H Dir(0gjc=klarjc=k + NRr,c=k) (43)

k

where .

npcok = () I(Ri =0,C; = k), I(R; =1,C; = k)) (44)

is the vector of sufficient statistics for nodiederived from those cases in which= k. As usual with the Dirichlet-
multinomial distribution, Bayesian inference amountsitody updating the hyper-parameters by counting. In Fig-
ure 18, we give an example where we sequentially update dtrédition overd ; after seeing each data case. (In this
case, all the nodes are binary, so the Dirichlet-multinbbreaomes beta-Bernoulli.)

A slightly more complex example is shown in Figure 19. Thigsiratesnested plates e.g., X;; is doubly
indexed and is therefore inside both thandj plates. This model corresponds to the following factorarabf the
joint distribution

d c n d

p(w,0,D0) = p(m) [ [[rOic) x [T ] plwilvir 05) (45)

j=1c=1 i=1j=1
We can further simplify the last term using the indicatockras follows:

d C

d
1] ploislu.6; HH (1716 5c)" =2 (46)

j=1

Finally, Figure 20 illustrates the difference between tlay&sian approach to predicting future valdeand the
plug-in approach. In the Bayesian approach, we compute

p(|D) = / p((0)p(6]D)do (47)

which corresponds to integrating out the unknown vari@hbteFigure 20. In the plug-in approach, we first estintate
based on the data, and then “clamp it”, and use this fixed ‘alpeedict the future:

p(#|D) = p(#|6(D)) (48)

12
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Figure 19: Naive Bayes classifier. Left: plate over cases 1 : n. Right: additional plates over featurgs= 1 : d and classes
c=1:C.

Figure 20: Predicting future data based on observed training data: = 1 : n.
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Figure 21: Part of the MS Windows Hardware troubleshooter. Source:9#B

5 More complex examples of DGMs

We will use the DGM notation throughout the book to descritee@l assumptions behind different statistical models.
Such models are often sufficiently simple that they can beriesl without using graphical model notation. In this
section, we look at a few examples where the graph structumeicial to understanding the model.

5.1 Troubleshooters in Microsoft Windows

Microsoft Windows uses DGMs to perforrfault diagnosisandtrouble shooting of various kinds. An example from
the Windows 2000 Hardware troubleshooter is shown in FigareThis example is concerned with modeling printer
failures. A typical task, given some observed data on sombeohodes, is to infer the most likely causes of this
data. An additional task is to recommend actions to the duisisrrequires the use afecision theory DGMs can be
extended to this setting by addiagtion/ decisionnodes anditility nodes; the result is calleddecision diagramor
influence diagram See e.g., [CDLS99] for details.

52 QMR

Figure 24 shows thquick medical reference (QMR) network. Thebipartite graph structure shows how diseases
cause symptoms. In QMR, all nodes are binary. However, simaey of the leaves (symtpoms) have high fan-in
(i.e., many parents), the number of parameters that wouttebded to represent the CPDs in tabular form would be
prohibitive. Consider a leak; with parentsZ, . A CPT requiresD(2") parameters, since it can model arbitrary
interactions amongs the parents. An approach that onlysn@éad) parameters is to udegistic regression(see
Section??). However, the approach actually used in QMR was tonmsy-OR CPDs. This is similar to logistic
regression, but is restricted to binary nodes. Specifictilly noisy-or assumption is that if a parent is “on”, then the
the child will also be on (since it is an or-gate), but the lirdm each parent,, to child X; may fail independently at
random with probabilityy, ;. So the only way for the child to be off is if the “wires” froml @larents which are on fail
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7y Zy | P(X; =0121,%s) P(X; =171, %)

0 0 1 0

1 0 Q1 L —qi
0 1 q2; 1 — qoy
1 1 q1592; 1 — q15q2;

Figure 22: Noisy-or CPD for 2 parents. Note that this is not a linear fiorcof the parameters.

B 71 Z| P(X; =02, %) P(X; =12, %)
1 0 O qoj 1 — qo;

1 1 0 405915 1 —qojq1;

1 0 1 405925 1= qojq2;

1 1 1 405915925 1 = qojq1j92;

Figure 23: Noisy-or CPD for 2 parents with leak node.

independently at random. Thus

p(X;=01Ze) = [[ sV = [ (49)
kem; kem;:Zp=1

For example, Figure 22 shows the CPD for 2 parents.

If we observe thakX; = 1 but all its parents are off, then this contradicts the modehce we add a dummgak
nodeor background nod#, which is always on, this represents “all other causes”. Jdrameter; represents the
probability that the background leak will be inhibited:

p(X; =01Zx) = a0; [] ars?*=" (50)

kem;

See Figure 23 for an example.

At test time, the goal is to infer the diseases given the sgmpt Some of the symptoms are not observed, and
therefore may be removed, since they do not convey any irgtom about their parents (the diseases); this is called
barren node removal For example, consider a small model with 3 diseases and pteyns. Suppose symptoms 3
and 5 are not measured. Then

p(z13|T1, T2, 24) ZZP(21;3,$1:5) (52)

T3 s

= pz13)p(21]21:3)p(22|21:3)p(24] 21:3) [ZP($3|ZL3)] [ZP($5|ZL3)] (52)

T3

= p(z13)p(21]21:3)p(22|21:3)p(T4]21:3) (53)

since}_, p(r3|z1:3) = 1. See Figure 25. Despite this trick, state estimation in tMRQnodel can be very slow.
For general CPDs, it would take aba2) time, wherew is the size of the largest clique in the moral graph (after
barren node removal). For many of the hard test cases forv@MR is used (called thEPSCcases)w ~ 151, so
exact inference would be intractable. Téngckscorealgorithm exploits properties of the noisy-OR to perfornaex
inference inO(2P) time, wherep is the number of positive findings (leaf nodes in the “on”afatHowever, even this
can be too slow, since > 20 for many of the CPSC cases. Many approximate inference rdsthave been applied
to this model. See e.g., [JJ99] and references therein.

5.3 Pedigree analysis

Consider the problem afenetic linkage analysiswhich is concerned with finding the location of a diseasgstay
gene given observed characteristics of relatives and a tkifexwily tree structure.
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Figure 24: QMR network.

Figure 25: Barren node removal in a small QMR-style network.

locus £/ =1

father m; mother p; = 2

individu

Figure 26: Left: family tree, circles are females, squares are maléghtRequivalent DGM for a single locus. Blue nodBs; is
the observed phenotype for individuadt locust. All other nodes are hidden. Yellow nodé%m is the paternal/ maternal allele.

Red node§zfzm is the paternal/ maternal selection variable (which do mit éor the founder (root) nodes). Source: [FGLOQ].
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Locus #1
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Figure 27: DGM for two loci. The red selection variables are linked wmci,Sﬁémesﬂfl. Source: [FGLOQ].
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Gy Gm p(P=a) p(P=b) p(P=o0) p(P=ab)
a a 1 0 0 0
a b 0 0 0 1
a 0 1 0 0 0
b a 0 0 0 1
b b 0 1 0 0
b o] 0 1 0 1
0 a 1 0 0 0
o] b 0 1 0 0
0 o] 0 0 1 0

Figure 28: CPD which encodes mapping from genotype to phenotype (bfpeyl This is a deterministic, but many-to-one,
mapping. For example, A dominates O, so if a person has gead® or OA, their phenotype will be A. But AA also produces
blood type A. So if we observ®;, = A, there are 3 possible genotyp&s; = A, A, A, O or O, A. We can use the blood types of
relatives to help disambiguate the evidence.

Each persori carries two copies of each gefieone from their mother (maternal ge’,) and one from their
father (paternal ger@pg) Each gene comes in several “versions” calildles For example, the gene for blood type

can be of 3 typest/m € {A, B,0O}. The maternal and paternal copies of each gene togethengea@phenotype
P; . (We are only conS|dering single-gene causes for simp)icor example, there are 4 types of blood a person
can have,, € {4, B, 0, AB}. The mapping from genotype to phenotype is determined bp¢inérance mode)
p(Pie|GYy, GY ). See figure 28 for an example.
Let ; be the father of. A personi’s paternal gené}p can come fromr;’s maternal copy=7" , or paternal copy
G ;- This is determined by a hidden selectlor‘maplotype variable Sl ¢ as follows:

» p_ J G, —GL ) ifS), =0
(G Z|G7r Na 7r éaSi,Z) _{ (Gf)[ 7rm Z) if Sf[ =1 (54)

ThusS” causes?pg to switch between the two parent nodes deterministicallsirdilar equation holds fas(G ";|GM 0 G 0 ST,
whereuZ is i's mother. This is called thizansmission model The root nodes in the tree are calfednder nodes and
have priorg(GY",) representing the frequency of the allele types of geinethe general population. See Figure 26.

Now conS|der two adjacent loci on the paternal chromosome(¥ , andG7, . If ¢ was inherited from the
paternalr;, then? + 1 will also be inherited from the paterna), unless there wasracombination event(crossover
between the chromosomes) betwéeamd/ + 1. Let the probability of this event b#; thls depends on the distance
betweerf and/+1 on the chromosome. We defipgSy,, | = 0[S;, = 1) = 0, andp(S},, ; = 0|Si¢ = 0) = 1—0y;
this is called theecombination model The result is a set dflarkov chains connecting the5? variables for each
personi. We have a similar set of Markov chains for thg variables. See Figure 27.

Finally we are ready to solve the linkage analysis problenmpp®se all the parameters of the model, including
the distance between all the loci, are known. The only unkniswhe location of the disease-causing gene. If there
are L loci, we constructl, + 1 models, in which the disease-causing gene is postulated tretween each of the
adjacent markers. We compute the likelihood of the obsedegal under model, p(Pi.n|M;,0), forj =1: L+ 1,
and pick the most likely one. Note that computing the liketd requires marginalizing out all the hiddSrandG
variables, which can be computationally intractable if tiienber of individuals and/or loci is large. See [FG02] and
the references therein for some exact methods based watiadle elimination algorithm (see Sectio®?), which is
also calledbeelingin this context. Unfortunately, even this exact method temfntractable. See e.g., [CAAKOG] for
some approximate methods.
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