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1 Graphical models
We have already seen howconditional independence(CI) assumptions help to represent joint distributions in terms
of smaller pieces (see the chapter on naive Bayes classifiers, Chapter??). We give a very simple example in Figure 1,
where we show how the joint distributionp(X, Y ) can be represented in terms of the marginal distributionsp(X) and
p(Y ) if we assume thatX andY are (unconditionally) independent,X ⊥ Y .

Graphical models provide a way to represent CI assumptions pictorially, in terms of graph (network) structures.
The nodes represent random variables, and the (lack of) edges represent CI assumptions. For the example in Figure 1,
we would draw a graph with two nodes,X andY , with no edge between them, representing the fact thatX ⊥ Y .

To define aspecificprobability model, we need to associate parametric functions with the nodes in the graph.
We will explain how to do this in detail below, but as a very simple example, for the model in Figure 1, we would
associatep(x) with nodeX andp(y) with nodeY , wherep(x) andp(y) are tables of 6 numbers each. We will write
the resulting probability model asp(x|G, θ), whereG is the graph structure,θ are the parameters of the model, and
x = (x1, . . . , xd) are the nodes in the graph.

Note thatθ may encode additional CI relations that are not encoded in the graph. For example, in Figure 1, if the
graph wereX−Y (meaningX andY are dependent), but the joint tablep(X, Y ) were a diagonal matrix, thenX ⊥ Y

would still hold, but this would be by virtue of the specific parameter valuesθ in the tablep(X, Y ), rather than because
of the graph structure. One of the principles of graphical modeling is to try to make as many CI relations graphically
explicit as possible. A distribution that does not contain any non-graphical CI relations is said to befaithful to the
graph. Many real-world problems containcontext-specific independence, which essentially means that the graph
structure changes depending on the values of the nodes. Thiscannot be captured using standard graphical modeling
techniques.

There are three main kinds of graphical model:

• Directed graphical models(DGMs), also calledBayesian networksor belief networks. (The term “belief”
is sometimes used to represent a (posterior) probability distribution.) These models require that the graph is a
directed acyclic graph (DAG). Note that what makes “Bayesian networks” Bayesian isjust the fact that they
are a convenient way to represent probability distributions, which it is at the core of Bayesian statistics. It is
possible to use frequentist parameter estimation techniques in conjunction with “Bayesian networks”, as we will
see in Chapter??.

• Undirected graphical models(UGMs), also calledMarkov random fields (MRFs) or Markov networks .
These can use any undirected graph structure.

• Chain graphs, which are a combination of DGMs and UGMs, and have directed and undirected edges. Loosely
speaking, they are DAGs, but some nodes have internal structure represented as an undirected graph.

These model classes have differentexpressive power, in the sense that they represent different sets of distributions, as
we will explain below. See Figure 2.

Each graph represents a set of CI relations (in a way which we shall shortly define); let us call theseI(G). Any
given probability distributionp also defines a set of CI relations; let us call theseI(p). We say that a graphG is an
I-map (independence map) for distributionp if I(G) ⊆ I(p). In other words, the graph does not make any assertions
of CI which are not true of the distribution. This allows us touse the graph as a safe proxy forp when reasoning about
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Figure 1: Computingp(x, y) = p(x)p(y), whereX⊥Y . HereX andY are discrete random variables;X has 6 possible states
(values) andY has 5 possible states. A general joint distribution on two such variables would require(6× 5)− 1 = 29 parameters
to define it (we subtract 1 because of the sum-to-one constraint). By assuming (unconditional) independence, we only need (6 −
1) + (5 − 1) = 9 parameters to definep(x, y). Source: Sam Roweis.

Probabilistic models

Graphical models

Directed UndirectedChordal

Figure 2: Venn diagram representing relationships between different kinds of graphical models.

p’s CI properties. This is helpful for designing algorithms that work for large classes of distributions, regardless of the
specific numerical parametersθ. Note that the fully connected graph is an I-map of all distributions, since it makes no
CI assertions at all (since it is not missing any edges).

We say that a graphG is a perfect map of a distributionp if I(G) = I(p). In other words, the graph captures
all and only the CI relations of the distribution. It turns out that DGMs and UGMs are perfect maps for different
sets of distributions. In this sense, neither is more powerful than the other as a representation language. However,
there are some distributions that can be perfectly modeled by either a DGM or a UGM; the resulting graphs are called
decomposableor chordal. We shall define these concepts later.

A simple example of a decomposable graph is achain: directed chains and undirected chains represent the same
set of probability distributions, namely those that satisfy the (first order)Markov property

Xt−1 ⊥ Xt+1|Xt t = 2, . . . , d− 1 (1)

In words, this says that the futureXt+1 is independent of the pastXt−1 given the presentXt. See Figure 3. Another
example of a decomposable graph is atree. For example, the graphs in Figure 4 represent distributions that satisfy the
CI relations

Xi ⊥ Xj |Y i, j ∈ {1, . . . , d}, i 6= j (2)

In the context of naive Bayes classifiers, this says that the featuresXj are conditionally independent given the class
labelY .

The graph structure reflects our beliefs about the domain. Ifthe graph structure is “wrong”, the resulting model
will be a poor prediction of the future. There are various ways of assessinggoodness of fitof models, including
graphical models; see e.g., [CDLS99] for a discussion. Also, we can use model selection techniques, such ascross
validation, to choose between different model structures. We will discuss this later.

In this chapter, we focus on DGMs, and return to UGMs in Chapter ??.
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Figure 3: Directed and undirected chain.

Figure 4: Directed and undirected tree structure.

2 DGMs provide a compact representation of joint probability distributions
By the chain rule of probability, any joint distribution canbe written as follows

p(x1:d) = p(x1)p(x2|x1)p(x3|x1, x2) . . . p(xd|x1:d−1) (3)

for an arbitrary ordering of the variables. In Section 3.5 below, we will show that a DAGG implies the following CI
relations:

Xj ⊥ Xpred
j
\πj
|Xπj

(4)

whereπj are theparentsof nodej in G and predj are the predecessors ofj in anytopological ordering of G. (This
is an ordering of the nodes in which parents preceed their children.) Note thatπj∪predj = {1, . . . , j − 1}. Hence we
can simplify Equation 3 to

p(x1:d) = p(x1)p(x2|xπ1
)p(x3|xπ3

) . . . p(xd|xπd
) (5)

where each of the termsp(xj |xπj
) is called aconditional probability distribution (CPD).

Let us consider the “water sprinkler” example in Figure 5. This defines a joint distribution over 4 binary variables,
representing whether it is cloudy or not (C), whether it is raining or not (R), whether the water sprinkler is on or not
(S), and whether the grass is wet or not (W). It is common to usethe heuristic that we should add an edge fromXπj

to Xj if Xπj
are all the immediate causes ofXj . Since clouds cause rain, there is an arc from C to R. Since we are

assuming this is a light-sensitive sprinkler, there is an arc from C to S. Finally, since either the sprinkler or the rain can
cause the grass to be wet, there are arcs from S and R to W.

This graph encodes various CI assumptions. For example, thelack of arc between S and R meansS ⊥ R|C,
since C is a predecessor of S and R in any topological ordering. Similarly, the lack of arc between C and W means
W ⊥ C|S, R. Informally, this means that the clouds do not have any direct effect on the wet grass; rather, this effect
is mediated via S and R. Sometimes we say thatS andR screen offW from C. These two CI assumptions allow us to
represent the joint as a product of local factors, one per node:

P (C, S, R, W ) = P (C)P (S|C)P (R|S, C)P (W |S, R, C) chain rule (6)

= P (C)P (S|C)P (R|�S, C)P (W |S, R, C) sinceS ⊥ R|C (7)

= P (C)P (S|C)P (R|�S, C)P (W |S, R,�C) sinceW ⊥ C|S, R (8)

= P (C)P (S|C)P (R|C)P (W |S, R) (9)

If we multiply all these CPDs together, we get the joint distribution shown in Table 1.
In this example, each CPDp(Xj |Xπj

) is represented as a multidimensional table. These are called conditional
probability tables (CPTs). Formally, each row of the table are the parameters ofa conditional multinomial distribu-
tion; we have one row for each possible conditioning case, i.e., combination of parent values. For example, for node
W , we have

p(W = w|S = s, R = r, θw) = Mu(w|θw,s,r, 1) (10)
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C P(S=F) P(S=T) P(R=F) P(R=T)

Cloudy

Sprinkler Rain

WetGrass

F  F 1.0        0.0

T  F

F  T

T   T

0.1         0.9

0.1         0.9

0.01      0.99

S  R  P(W=F)  P(W=T)

P(C=F)  P(C=T)

0.5         0.5

F 0.5 0.5

T 0.9          0.1

C

F

T 0.2           0.8

0.8           0.2

Figure 5: Water sprinkler Bayes net with CPDs shown. T and F stand for true and false.

C S R W Probability
0 0 0 0 0.200
0 0 0 1 0.000
0 0 1 0 0.005
0 0 1 1 0.045
0 1 0 0 0.020
0 1 0 1 0.180
0 1 1 0 0.001
0 1 1 1 0.050
1 0 0 0 0.090
1 0 0 1 0.000
1 0 1 0 0.036
1 0 1 1 0.324
1 1 0 0 0.001
1 1 0 1 0.009
1 1 1 0 0.000
1 1 1 1 0.040

Table 1:Joint distribution defined by the water sprinkler model. Here 0 represents False and 1 represents True.
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Figure 6: Linear Gaussian CPDp(y|x) = N (Y |a + bx, σ2), wherea is the offset andb is the slope. Source: [RN02] Figure
14.6a(a).

whereθw are all the parameters for nodeW , and each row is indexed bys andr. For theroot nodes, which have no
parents, the CPTs are just unconditional multinomial distributions.

The number of parameters in this representation is

(Kj − 1)
∏

k∈πj

Kk = O(K1+|πj |) (11)

whereKj is the number of states for nodej, andK = maxj Kj . (We subtract 1 because each row of the CPT sums
to one.) In the water sprinkler example, there are

1 + (2 − 1)× 2 + (2− 1)× 2 + (2 − 1)× 4 = 1 + 2 + 2 + 4 = 9 (12)

free parameters. In contrast, an unconstrained joint distribution on 4 binary variables has24 − 1 = 15 parameters. In
general, a DGM can have exponentially fewer parameters thanan unconstrained distribution. Thus the DGM requires
less space to store in memory, and it will require less data (smaller sample size) to learn its parameters from data.

2.1 Compact representations of CPDs

CPTs require a number of parameters that is exponential in the number of parents. We give an example of a more
compact representation of a CPD for discrete variables in Section 5.2.

If the child node is continuous valued, we replace the multinomial distribution with a different kind of distribution,
say Gaussian. Also, if the parents are continuous, we cannotuse a different parameter value for every possible parent
configuration; instead we will need a functional mapping from parent values to child values. For example, ifW , S

andR represent the amount of wet grass/ sprinkler flow/ rain fall,we could use

p(w|s, r, θw) = N (w|a + b1s + b2r, σ
2) (13)

whereθw = (a,b, σ2) are the parameters ofW ’s CPD. We can write this more compactly using scalar product
notation:

p(w|s, r, θw) = N (w|βT [1; s; r], σ2) (14)

whereβ = (a; b1; b2) and [1; s; r] are column vectors. This is a simple example oflinear regression, where the
mean of the child is a linear function of its parents, and the variance is a constant (see Figure 6). If all the CPDs are
Gaussian or linear-Gaussian, the corresponding joint distributionp(x1:d) is multivariate Gaussian. Unlike the water
sprinkler example, we cannot represent this as a table, but wecanrepresent it compactly in terms of a mean vector and
covariance matrix: see Chapter??.
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Figure 7: Two examples of the Bayes ball algorithm

3 Conditional independence properties encoded by DAGs
We have said that DAGs encode a set of CI relations. There are various ways to “read off” such relations from the
graph; we will consider three below.1 The goal is to be able to answer questions of the form

XA ⊥ XB|XS (15)

for any (disjoint) set of nodesA, B, andS. Each method will give the same answer, so you are free to pickwhichever
is most convenient.

3.1 d-separation

We sayX1 −X2 · · · −Xn is anactive path in a DAGG given evidenceE if

1. Whenever we have av-structure, Xi−1 → Xi ← Xi+1, thenXi or one of its descendants is inE; and

2. no other node along the path is inE

In other words, if any of the nodes along the path are observed, then they must be at the bottom of a v-structure. We
also sayX is d-separatedfrom Y givenE if there is no active path from anyx ∈ X to anyy ∈ Y givenE. (This is
like regular graph separation, but takes the direction of the edges into account.) Then we have

Theorem 3.1. xA ⊥ xB|xC if every variable inA is d-separated from every variable inB conditioned on all the
variables inC.

Consider the DAG in Figure 7. Suppose we want to know if

x1 ⊥ x6|{x2, x3} (16)

We shade the nodes that we are conditioning on, namelyx2 andx3: see Figure 7(left). We see that 1 is d-separated
from 6, since the evidence breaks the 1-2-4 and the 1-3-5 paths (makes them inactive). Hencex1 ⊥ x6|{x2, x3} is
true.

Now suppose we want to know if
x2 ⊥ x3|{x1, x6} (17)

We shade nodes 1 and 6 in Figure 7(right). Now there is an active path 2-6-5-3, sincex6 ∈ E. Hencex2 6⊥
x3|{x1, x6}.

3.2 Bayes ball algorithm

To check ifxA ⊥ xB |xC we need to check if every variable inA is d-separated from every variable inB conditioned
on all variables inC. TheBayes ball algorithm is a simple way to implement this test. We shade all nodesxC , place
“balls” at each node inxA (or xB), let them bounce around according to some rules, and then ask if any of the balls
reach any of the nodes inxB (or xA). The three main rules are shown in Figure 8. Notice that balls can travel opposite
to edge directions. We also need the boundary conditions, which are shown in Figure 9.

1Reading off CI relations is tricky, because one needs to worry about the directionality of the edges. There are several ways to do this. In
contrast, in the UGM case, there will be only one way.
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X Y Z X Y Z

(a) (b)

(a)

X

Y

Z X

Y

Z

(b)

(a)

X

Y

Z

(b)

X

Y

Z

Figure 8: Bayes ball rules. A shaded node is one we condition on. If there is an arrow with a vertical bar it means the ball cannot
pass through; otherwise the ball can pass through.

(a) (b)

X Y X Y

(a) (b)

X Y X Y

Figure 9: Bayes ball boundary conditions. A curved arrow means the ball “bounces back”.
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We can derive the 3 main rules as follows. First consider a chain structureX→Y→Z. When we condition ony,
arex andz independent? We have

p(x, y, z) = p(x)p(y|x)p(z|y) (18)

which implies

p(x, z|y) =
p(x)p(y|x)p(z|y)

p(y)
(19)

=
p(x, y)p(z|y)

p(y)
(20)

= p(x|y)p(z|y) (21)

and thereforex ⊥ z|y. So observing the middle node of chain breaks it in two. Thinkof x as the past,y as the present
andz as the future.

Now consider the structureX←Y→Z. When we condition ony, arex andz independent?

p(x, y, z) = p(y)p(x|y)p(z|y) (22)

which implies

p(x, z|y) =
p(x, y, z)

p(y)
(23)

=
p(y)p(x|y)p(z|y)

p(y)
= p(x|y)p(z|y) (24)

and thereforex ⊥ z|y So observing a root node separates its children.
Finally consider av-structure X→Y←Z. When we condition ony, arex andz independent? We have

p(x, y, z) = p(x)p(z)p(y|x, z) (25)

so we see thatx andz aremarginally independent, but giveny they areconditionally dependent. This important
effect is calledexplaining away(and is also known as Berkson’s paradox). Thus observing a child at the bottom of a
v-structure makes its parents become inter-dependent.

As an example of explaining away, suppose we toss two coins, representing the binary numbers 0 and 1, and we
observe the “sum” of their values. A priori, the coins are independent, but once we observe their sum, they become
coupled (e.g., if the sum is 1, and the first coin is 0, then we know the second coin is 1).

3.3 Convert to UGM

As we discuss in Chapter??, given anundirectedgraphH , we say thatXA ⊥p XB|XS in the distributionp iff A

separatesB from S in H , i.e., if we cut all the edges touching nodes inS, there will no paths from any node inA to
any node inB. We will write this asA ⊥H B|S. (We useXj for the random variables, andj for the nodes in the
graph.)

One strategy for inferring CI relations in DAGs is to convertthe DAG to a UGM, and then apply the above method.
This conversion process has two steps:

1. Form theancestralgraph ofG with respect toU = {A, B, S}. This means we remove all nodes fromG that
are not inU or are not ancestors ofU . Let the result be denoted byA = ancestral(G, U). See Figure 10 for an
example. (The reason we need to form the ancestral graph is toprevent us from concluding that hidden nodes
(not part ofA, B or S) at the bottom of v-structures cause their parents to becomedependent.)

2. Form themoral graph ofA. This means we connect together all “unmarried” (disconnected) parents who share a
common child, by addingmoral edges, thus converting thefamily (parents and children) into a fully connected
clique. See Figures 11,12 for some examples. Let the result be denoted byH = moral(A). (The reason we need
to moralize the graph is to capture the fact that parents become dependent given their children, due to explaining
away.)

8



Figure 10: Example of how to form an ancestral graph.

Figure 11: Example of how to form a moral graph. The blue edges are the newly added moral edges.

It can then be shown that
XA ⊥p XB|XS ⇐⇒ A ⊥H B|S (26)

where
H = moral(ancestral(G, A∪B∪S)) (27)

is the corresponding UGM. For example, combining Figure 10 and Figure 12, we can conclude that

X1 ⊥ X4|{X5, X7} (28)

3.4 Markov blankets

The above methods allow us to determine ifXA ⊥ XB|XS for any sets of nodesA, B andS. SupposeA = {i}. The
minimal set of nodes that rendersi independent of all the rest of the nodes is calledi’s Markov blanket , MBi:

Xi ⊥ XRi
|XMBi

(29)

where
Ri = {1, . . . , d} \ {i} \MBi (30)

Figure 12: Example of how to form a moral graph. The blue edges are the newly added moral edges.
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Yn

Znj
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Z1j
X

Figure 13: A nodeX is independent of all other nodes given its Markov blanket, which include its parentsU , childrenY and
coparentsZ. Source: [RN02] Fig 14.4.

are the rest of the nodes excludingi and its Markov blanket. Below we will show thati’s Markov blanket are its
parentsU1, . . . , Um, its childrenY1, . . . , Yn, and itsco-parents, i.e., other nodesZ who are also parents if theYj .
(The reasoni depends on the co-parents is because of explaining away.) See Figure 13.

To see why this is true, partition all the nodes intoXi and the other nodes,X−i. We can partition the other nodes
X−i in those that involveXi (namely its parents, its children, and its co-parents), andthe other nodes,O. Then the
full conditional is given by

p(Xi|X−i) =
p(Xi, X−i)

∑

x p(Xi = x, X−i)
(31)

=
p(Xi, U1:n, Y1:m, Z1:m, O)

∑

x p(Xi = x, U1:n, Y1:m, Z1:m, O)
(32)

=
p(Xi|U1:n)[

∏

j p(Yj |Xi, Zj)]P (U1:n, Z1:m, O)
∑

x p(Xi = x|U1:n)[
∏

j p(Yj |Xi = x, Zj)]P (U1:n, Z1:m, O)
(33)

=
p(Xi|U1:n)[

∏

j p(Yj |Xi, Zj)]
∑

x p(Xi = x|U1:n)[
∏

j p(Yj |Xi = x, Zj)]
(34)

∝ p(Xi|Pa(Xi))
∏

Yj∈ch(Xi)

p(Yj |Pa(Yj)) (35)

so the terms that do not involveXi cancel out from the numerator and denominator. We are left with a product of
terms that includeXi in their “scope”. This proves thatXi ⊥ XRi

|MBi.
The ability to sample from the full conditional distributions p(Xi|X−i) of each node will prove crucial to the

Gibbs samplingalgorithm (see Section??).

3.5 Local Markov property

One consequence of the global Markov properties definined byd-separation is that a node is independent of all its
predecessors in the total ordering, given its parents:

Xj ⊥ Xpred
j
\πj
|Xπj

(36)

This was the basis of deriving Equation 5.

3.6 Markov equivalence

Consider the 3 DGMs in Figure 14(left). These all represent the same set of CI statements, namely

X ⊥ Z|Y, X 6⊥ Z (37)

Hence these graphs are calledMarkov equivalent. However, the v-structureX→Y←Z encodesX ⊥ Z andX 6⊥
Z|Y , which represents a different set of CI assumptions.
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Figure 14: PDAG representation of Markov equivalent DAGs.

Figure 15: Three DAGs.

We can represent an equivalence class using apartially directed acyclic graph (PDAG), akaessential graph
in which edges some edges are directed and some undirected. The undirected ones represent reversible edges; any
combination is possible so long as no new v-structures are created. The directed edges are calledcompelled edges,
since changing their orientation would change the v-structures and hence change the equivalence class. For example,
the PDAGX − Y − Z represents{X→Y→Z, X←Y←Z, X←Y→Z} which encodesX 6⊥ Z andX ⊥ Z|Y . See
Figure 14.

One can show the following.

Theorem 3.2 (Verma and Pearl [VP90]). Two structures are Markov equivalent if they have the same undirected
skeleton and the same set of v-structures.

For example, referring to Figure 15, we see thatG1not ≡ G2, since reversing the2→4 arc creates a new v-
structure. However,G1 ≡ G3, since reversing the1→5 arc does not create a new v-structure.

As a consequence of this theorem, we should not try to interpret the direction of the arrows in terms ofcausality.

4 Bayesian models
Each CPDp(Xj |Xπj

, θj) depends on the parametersθj . (In the case of CPTs, these are the numbers in the table.)
We can show these parameters explicitly as nodes in the graph, as shown in Figure 16(left). This is very natural from
a Bayesian standpoint, which treats parameters just like other random variables. In fact, the only difference between
parameters and “regular” variables is that we assume the number of parameters is fixed, whereas the number of regular
variables increases as we get more data cases. This is illustrated in Figure 16(right). We see thatθj is a parent of all
Xij , wherei = 1 : n indexes the data cases. This is because we assume the data is iid, so eachxi is drawn from the
same distribution, and hence has the same parameters.

A more concise notation for representing iid repetition is obtained by drawing a box around all the repeated
variables, with the number of repetitions indicated in the bottom right corner. See Figure 17(left). All nodes outside
the box pointing in are assumed to point all copies inside in the obvious way. This is calledplate notation.

We see in the above examples that the parameters for each CPD are independent. This assumption is calledglobal
parameter independence. If all the regular variabes are observed (i.e., we havecomplete data, or nomissing data),
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all the parameters are d-separated from each other, so the parameters will also be independent in the posterior. For the
water sprinkler example, we have

p(θ|D) ∝ p(θ)p(D|θ) (38)

= p(θc)
∏

i

p(ci|θc)× p(θs)
∏

i

p(si|ci, θs) (39)

×p(θr)
∏

i

p(ri|ci, θr)× p(θw)
∏

i

p(wi|si, ri, θs) (40)

Hence we can estimate the parameters for each node separately.
In the case of tabular CPDs, it is common to also assume that the multinomial parameters defining each row of the

table are independent. This is calledlocal parameter independence. See Figure 17(right). If the data is complete, the
posterior will factorize across nodes and across conditioning cases. For example, for theR node in the water sprinkler
example, if we associate a Dirichlet prior with each row of the distribution, we have

p(θR|D) =
1

∏

k=0

p(θR|C=k)
n

∏

i=1

p(ri|θR|C=k)I(ci=k) (41)

=
∏

k

Dir(θR|C=k|αR|C=k)Mu(nR,C=k|θR|C=k, nC=k) (42)

=
∏

k

Dir(θR|C=k|αR|C=k + nR,C=k) (43)

where

nR,C=k = (

n
∑

i=1

I(Ri = 0, Ci = k), I(Ri = 1, Ci = k)) (44)

is the vector of sufficient statistics for nodeR derived from those cases in whichC = k. As usual with the Dirichlet-
multinomial distribution, Bayesian inference amounts to simply updating the hyper-parameters by counting. In Fig-
ure 18, we give an example where we sequentially update the distribution overθR after seeing each data case. (In this
case, all the nodes are binary, so the Dirichlet-multinomial becomes beta-Bernoulli.)

A slightly more complex example is shown in Figure 19. This illustratesnested plates: e.g.,Xij is doubly
indexed and is therefore inside both thei andj plates. This model corresponds to the following factorization of the
joint distribution

p(π, θ, D) = p(π)
d

∏

j=1

c
∏

c=1

p(θjc)×
n

∏

i=1

d
∏

j=1

p(xij |yi, θj) (45)

We can further simplify the last term using the indicator trick as follows:

d
∏

j=1

p(xij |yi, θj) =

d
∏

j=1

C
∏

c=1

p(xij |θjc)
I(yi=c) (46)

Finally, Figure 20 illustrates the difference between the Bayesian approach to predicting future valuesx̃ and the
plug-in approach. In the Bayesian approach, we compute

p(x̃|D) =

∫

p(x̃|θ)p(θ|D)dθ (47)

which corresponds to integrating out the unknown variableθ in Figure 20. In the plug-in approach, we first estimateθ

based on the data, and then “clamp it”, and use this fixed valueto predict the future:

p(x̃|D) ≈ p(x̃|θ̂(D)) (48)
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Figure 16: Left: The sprinkler network with parameters shown explicitly. Right: the same network unrolled forn cases.

Figure 17: Left: The unrolled sprinkler network in plate notation. Right: illustration of local parameter independence.

Figure 18: Sequential updating ofp(θR|D) in the water sprinkler network. We start with aDir(1, 1) prior distribution on each
row of the CPT. We then update eitherθR|C=0 or θR|C=1 depending on whether the conditioning case (value ofCi).
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Figure 19: Naive Bayes classifier. Left: plate over casesi = 1 : n. Right: additional plates over featuresj = 1 : d and classes
c = 1 : C.

Figure 20: Predicting future datãx based on observed training dataxi, i = 1 : n.

14



Figure 21: Part of the MS Windows Hardware troubleshooter. Source: [HB94].

5 More complex examples of DGMs
We will use the DGM notation throughout the book to describe the CI assumptions behind different statistical models.
Such models are often sufficiently simple that they can be described without using graphical model notation. In this
section, we look at a few examples where the graph structure is crucial to understanding the model.

5.1 Troubleshooters in Microsoft Windows

Microsoft Windows uses DGMs to performfault diagnosisandtrouble shootingof various kinds. An example from
the Windows 2000 Hardware troubleshooter is shown in Figure21. This example is concerned with modeling printer
failures. A typical task, given some observed data on some ofthe nodes, is to infer the most likely causes of this
data. An additional task is to recommend actions to the user;this requires the use ofdecision theory. DGMs can be
extended to this setting by addingaction/ decisionnodes andutility nodes; the result is called adecision diagramor
influence diagram. See e.g., [CDLS99] for details.

5.2 QMR

Figure 24 shows thequick medical reference (QMR)network. Thebipartite graph structure shows how diseases
cause symptoms. In QMR, all nodes are binary. However, sincemany of the leaves (symtpoms) have high fan-in
(i.e., many parents), the number of parameters that would beneeded to represent the CPDs in tabular form would be
prohibitive. Consider a leafXj with parentsZπj

. A CPT requiresO(2n) parameters, since it can model arbitrary
interactions amongs the parents. An approach that only needs O(n) parameters is to uselogistic regression(see
Section??). However, the approach actually used in QMR was to usenoisy-OR CPDs. This is similar to logistic
regression, but is restricted to binary nodes. Specifically, the noisy-or assumption is that if a parent is “on”, then the
the child will also be on (since it is an or-gate), but the linkfrom each parentZk to childXj may fail independently at
random with probabilityqkj . So the only way for the child to be off is if the “wires” from all parents which are on fail
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Z1 Z2 P (Xj = 0|Z1, Z2) P (Xj = 1|Z1, Z2)
0 0 1 0
1 0 q1j 1− q1j

0 1 q2j 1− q2j

1 1 q1jq2j 1− q1jq2j

Figure 22: Noisy-or CPD for 2 parents. Note that this is not a linear function of the parameters.

B Z1 Z2 P (Xj = 0|Z1, Z2) P (Xj = 1|Z1, Z2)
1 0 0 q0j 1− q0j

1 1 0 q0jq1j 1− q0jq1j

1 0 1 q0jq2j 1− q0jq2j

1 1 1 q0jq1jq2j 1− q0jq1jq2j

Figure 23: Noisy-or CPD for 2 parents with leak node.

independently at random. Thus

p(Xj = 0|Zπj
) =

∏

k∈πj

q
I(Zk=1)
kj =

∏

k∈πj :Zk=1

qkj (49)

For example, Figure 22 shows the CPD for 2 parents.
If we observe thatXj = 1 but all its parents are off, then this contradicts the model.Hence we add a dummyleak

nodeor background nodeB, which is always on, this represents “all other causes”. Theparameterq0j represents the
probability that the background leak will be inhibited:

p(Xj = 0|Zπj
) = q0j

∏

k∈πj

q
I(Zk=1)
kj (50)

See Figure 23 for an example.
At test time, the goal is to infer the diseases given the symptoms. Some of the symptoms are not observed, and

therefore may be removed, since they do not convey any information about their parents (the diseases); this is called
barren node removal. For example, consider a small model with 3 diseases and 5 symptoms. Suppose symptoms 3
and 5 are not measured. Then

p(z1:3|x1, x2, x4) ∝
∑

x3

∑

x5

p(z1:3, x1:5) (51)

= p(z1:3)p(x1|z1:3)p(x2|z1:3)p(x4|z1:3)

[

∑

x3

p(x3|z1:3)

] [

∑

x5

p(x5|z1:3)

]

(52)

= p(z1:3)p(x1|z1:3)p(x2|z1:3)p(x4|z1:3) (53)

since
∑

x3
p(x3|z1:3) = 1. See Figure 25. Despite this trick, state estimation in the QMR model can be very slow.

For general CPDs, it would take aboutO(2w) time, wherew is the size of the largest clique in the moral graph (after
barren node removal). For many of the hard test cases for which QMR is used (called theCPSCcases),w ∼ 151, so
exact inference would be intractable. Thequickscorealgorithm exploits properties of the noisy-OR to perform exact
inference inO(2p) time, wherep is the number of positive findings (leaf nodes in the “on” state). However, even this
can be too slow, sincep > 20 for many of the CPSC cases. Many approximate inference methods have been applied
to this model. See e.g., [JJ99] and references therein.

5.3 Pedigree analysis

Consider the problem ofgenetic linkage analysis, which is concerned with finding the location of a disease-causing
gene given observed characteristics of relatives and a known family tree structure.
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Figure 24: QMR network.

Figure 25: Barren node removal in a small QMR-style network.
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i;`
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p
¹i;`
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father ¼i = 1

individual i = 3

mother ¹i = 2

locus ` = 1

Figure 26: Left: family tree, circles are females, squares are males. Right: equivalent DGM for a single locus. Blue nodesPi,` is
the observed phenotype for individuali at locus`. All other nodes are hidden. Yellow nodesG

p/m
i,` is the paternal/ maternal allele.

Red nodesSp/m
i,` is the paternal/ maternal selection variable (which do not exist for the founder (root) nodes). Source: [FGL00].
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Figure 27: DGM for two loci. The red selection variables are linked across loci,Sp/m
i,` →S

p/m
i,`+1

. Source: [FGL00].
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Gp Gm p(P = a) p(P = b) p(P = o) p(P = ab)
a a 1 0 0 0
a b 0 0 0 1
a o 1 0 0 0
b a 0 0 0 1
b b 0 1 0 0
b o 0 1 0 1
o a 1 0 0 0
o b 0 1 0 0
o o 0 0 1 0

Figure 28: CPD which encodes mapping from genotype to phenotype (bloodtype). This is a deterministic, but many-to-one,
mapping. For example, A dominates O, so if a person has genotype AO or OA, their phenotype will be A. But AA also produces
blood type A. So if we observePi = A, there are 3 possible genotypes:Gi = A, A, A, O or O, A. We can use the blood types of
relatives to help disambiguate the evidence.

Each personi carries two copies of each gene`, one from their mother (maternal geneGm
i,`) and one from their

father (paternal geneGp
i,`). Each gene comes in several “versions” calledalleles. For example, the gene for blood type

can be of 3 types,Gp/m
i,` ∈ {A, B, O}. The maternal and paternal copies of each gene together produce aphenotype,

Pi,`. (We are only considering single-gene causes for simplicity). For example, there are 4 types of blood a person
can have:Pi,` ∈ {A, B, O, AB}. The mapping from genotype to phenotype is determined by thepentrance model,
p(Pi,`|G

m
i,`, G

p
i,`). See figure 28 for an example.

Let πi be the father ofi. A personi’s paternal geneGp
i,` can come fromπi’s maternal copyGm

πi,`
or paternal copy

G
p
πi,`

. This is determined by a hidden selection orhaplotypevariable,Sp
i,`, as follows:

p(Gp
i,`|G

p
πi,`

, Gm
πi,`, S

p
i,`) =

{

δ(Gp
i,` −G

p
πi,`

) if S
p
i,` = 0

δ(Gp
i,` −Gm

πi,`
) if S

p
i,` = 1

(54)

ThusSp
i,` causesGp

i,` to switch between the two parent nodes deterministically. Asimilar equation holds forp(Gm
i,`|G

p
µi,`

, Gm
µi,`

, Sm
i,`),

whereµi is i’s mother. This is called thetransmission model. The root nodes in the tree are calledfounder nodes, and
have priorsp(Gm

i,`) representing the frequency of the allele types of gene` in the general population. See Figure 26.
Now consider two adjacent loci on the paternal chromosome, say G

p
i,` andG

p
i,`+1. If ` was inherited from the

paternalπi, then` + 1 will also be inherited from the paternalπi, unless there was arecombination event(crossover
between the chromosomes) between` and` + 1. Let the probability of this event beθ`; this depends on the distance
betweeǹ and`+1 on the chromosome. We definep(Sp

i,`+1 = 0|Si,` = 1) = θ` andp(Sp
i,`+1 = 0|Si,` = 0) = 1−θ`;

this is called therecombination model. The result is a set ofMarkov chains connecting theSp
i variables for each

personi. We have a similar set of Markov chains for theSm
i variables. See Figure 27.

Finally we are ready to solve the linkage analysis problem. Suppose all the parameters of the model, including
the distance between all the loci, are known. The only unknown is the location of the disease-causing gene. If there
areL loci, we constructL + 1 models, in which the disease-causing gene is postulated to lie between each of the
adjacent markers. We compute the likelihood of the observeddata under modelj, p(P1:N |Mj, θ), for j = 1 : L + 1,
and pick the most likely one. Note that computing the likelihood requires marginalizing out all the hiddenS andG

variables, which can be computationally intractable if thenumber of individuals and/or loci is large. See [FG02] and
the references therein for some exact methods based on thevariable elimination algorithm (see Section??), which is
also calledpeeling in this context. Unfortunately, even this exact method is often intractable. See e.g., [CAAK06] for
some approximate methods.
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