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1 Bayesian vs frequentist statistics

In Bayesian statistics, probability is interpreted asespnting thelegree of beliefin a proposition, such as “the mean
of X is 0.44”, or “the polar ice cap will melt in 2020”, or “the polae cap would have melted in 2000 if we had
not...”, etc. Thus we see it can be applied to reasoning alrmaitime events (ice cap melting), counterfactual events
(ice cap would have melted), as well as more “traditionadtistical questions, such as computing distributions over
random variablesBayes rule provides the mechanism by whighior beliefs are converted intposterior beliefs
when new data arrives. (Bayes rule is sometimes called teeofinverse probability.) For example, to estimate a
parameted from dataD, one can writen(0|D) « p(0)p(D|#), wherep(0) is the prior andb(D|0) is thelikelihood.
Decision theorycan be used to decide how to convert beliefs into actions.ekample, if we want to summarize
our belief state with a single number (callegaint estimate), we often use thposterior meanor posterior mode,
depending on our loss function. There are various comgediguments (see e.g., [Jay03]) that Bayesian statistics is
the only consistent way to reason under uncertainty.

In frequentist statistics (also calledclassical statisticsor orthodox statistics), probability is interpreted as rep-
resenting long run frequencies of repeatable events. Tloamnot be used to reason about one time events or coun-
terfactual events. One can talk about the probability oadetving a certain valugy(D|0) (this is the likelihood
function), since one can imagine repeating the experimahbaserving different data. But one cannot talk about the
probability of a parameter having a certain valp§)|D), since parameters are assumed to be fixed (but unknown)
constants, which do not have probability distributionsagged with them. However, one can use decision theory to
designestimators, which are functions that map directly from the data to pestimates of the paramete@s? f(D).
These are designed to work well over repeated trials. Uaitgytestimates in frequentist statistics are based on the
sampling distribution of the estimator, i.e., how much variation there will be ie #stimate when different data is
used. This is not necessarily the same as uncertainty &bgiven the actual data you have observed. An estimator
is said to have gooftequentist properties it it works well in the long run (i.e., over repeated trialeywever, such
estimators are not necessarily optimal for any given proble

The Bayesian approach is often criticized because thepirgttion of probability in terms of beliefs seesubjec-
tive. In particular, the dependence on the prior (which can diffam one person to the next) is seen as “unscientific”.
However, all statistical modeling depends on prior assionpt(e.g., the form of the model); Bayesians just make
such assumptions explicit. As I. J. Good said (quoted in8BBr “The subjectivist states his judgements, whereas the
objectivist sweeps them under the carpet by calling assomgpknowledge, and he basks in the glorious objectivity
of science.”

As you can see, there has been much heated debate betwaenfists and Bayesians. However, these days there
is a growing consensus that both approaches are usefulx&ompde, the method ampirical Bayesis an approach
which sets the prior based on the data. Although not stri8tlyesian, such approaches work well in practice, and
have provably good frequentist properties. We will see eplasof this in later chapters.

In this chapter, we will avoid philosophical arguments, anelsent a brief overview of the Bayesian approach to
statistics. As we will see, it is intuitive and conceptualggant. More importantly, the Bayesian approach allovis us
model complex probabilistic dependencies amongst thenpeteas, usindpierarchical Bayesian models This is not
possible using point estimation/ optimization methodshsas maximum likelihood, since probabilistic information
can only “flow” between random variables, not between caristdThis remark will become clearer later.)



The main disadvantage of Bayesian methods is their compnghtexpense. Some frequentist methods, such as
(penalized) maximum likelihood estimation, can be thowglais simply computationally cheap approximations to full
Bayesian inference. We will discuss some other simple tigcles at the end, but the topic of approximate Bayesian
inference is beyond the scope of this chapter.

2 Conjugate analysis
Bayes rule tells us how to combine the prigf)) and the likelihoogh(D|0) to get the posteriop(6|D):

_ p(9)p(DI0)
where the normalizing constant is
o(D) = [ p(O)p(DIO) @

This is often computationally difficult to compute. Howemehen the prior has a certain nice mathematical form, we
can work out the answer in closed form. In particular, we spyi@ is conjugateto a likelihood if, when multiplied
together, the posterior has the same functional form asribe [fThe prior is called aatural conjugate prior if it

has the same functional form as the likelihood.) If the pisoconjugate, then the model ¢dosed under Bayesian
updating, which lets us easily perform sequential (recursive) updaBelow we will see some examples that should
make these concepts clearer.

2.1 The beta-binomial model

Let us start out introduction to Bayesian statistics by logkat a simple example: analysing coin tosses. Suppose we
toss a coinV times, and observe € {0,1,...,n} heads. The probability of this happening is given bylifreomial
distribution:

p(z]0) = Bin(z|0,n) = (Z) ) ©)

whered is the probability of heads. This is called thikelihood of the datar given unknown parametér
A closely related distribution is thBernoulli distribution, which is a special case of the binomial whes 1 (so
x €40,1}).
p(x]0) = Ber(z]) = 6°(1 — 0)' == = ¢'@=1 (1 — ) (==0) (4)
Suppose we toss the cointimes; letD = (z1,...,x,) represent the sequence of heads/ tails. The likelihood of
generating this data sequence (assuming independenbssis)) is

p(DIo) = [[ 0" =D (1 - )= = g™ (1 - p)™ ®)
i=1
whereN,; = ) . I(xz; = 1) is the number of heads amdl, = )", I(z; = 0) is the number of tails. Thus the
difference between the binomial likelihood (which is shlgfor modelingcountdata,z € {0,...,n}) and the

bernoulli likelihood (which is suitable for modelirginary data,z; € {0,1}) is just the Z term. Since this is a

constant with respect # we can drop it from the likelihood function. Thus most of fbBowing analysis applies to
both situations, although we shall focus on the Bernousie¢aince we will often be interested in modeling sequences
of bits (binary data).

2.1.1 Problems with the MLE

In frequentist statistics, one estimafdsy constructing estimators, such asthaximum likelihood estimate(MLE),
which in this case is just the empirical fraction of heads:

A Ny _N1
9_N1+N0_N ©6)



One problem with the MLE is that it caoverfit when the sample size is small. For example, suppose we have
seen 3 tails out of 3 trials. Then the MLE estimates that tiedgbility of heads is zero:

0
0+3 %
In this context, this problem is called tlsparse dataproblem: if we fail to see something in the training set, we
predict that it can never happen in the future, which seenitle@ éxtreme. To consider another example, suppose
we have seel white swans and O black swans; can we infer all swans are white! On visiting Australia, we
may encounter a black swan. This is called tieck swan paradox and is an example of the famopsoblem of
induction in philosophy. Below we will see how a Bayesian approachesothis problem.

é:

2.1.2 Prior
Since the Binomial likelihood has the form
p(DI6) oc [07(1—6)™] ®)
we see that the natural conjugate prior has the formhmta distribution
1
0 = Betd6 = go1=1(1 — gyt 9
plBlar, a0) = Bet@bla, ao) = st~ (1= 0) ©)
whereB(ay, «p) is thebeta function, defined as
['(a)I'(b)
B(a,b) = ———= 10
@b = Fatp) (10)
and the gamma function is defined as
F(x):/ u e du (11)
0

Note thatl'(z + 1) = 2I'(z) andI'(1) = 1. Also, for integersI'(z + 1) = x!. Note also thal’(3) = /7. The
normalization constant/ B(«g, a1 ) ensures

1
/ Betaz|aq, ap)dz =1 (12)
0

a1, aq are callechyperparameters since they are parameters of the prior; we will discussethiesnore detail
below. This prior is suitable since it defines a density on@hé] interval, andd € [0, 1].
If x ~ Beta(a1, ap), then we have the following properties

mean = a1 (13)
a1+ ag
-1
mode = 0[17, ag+ag > 2 (14)
a] + o — 2
Var = Q190 ap+ a1 > 1 (15)

(041 + 050)2(041 + ap + 1)’

See Figure 1 for plots of some beta distributions. Noticetttmmode of the distribution is not unique unlegst«; >
1. For example, ifeg = oy = 1, we get the uniform distribution, and ify, and«; are both less than 1, we get a
bimodal distribution with “spikes” at 0 and 1. We requitg > 0 and«; > to ensure the distribution is integrable
(i.e., to ensurd3(ay, ap) exists.

To set the hyper parameters of the beta distribution, sugpasr prior is that the probability of heads should be
aboutp, and you believe this prior with strength equivalent to ab¥usamples. Then you just solve the following
equations forvy, ag:

aq
= 16
p p—— (16)
= a1+ (17)
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Figure 1: Some betde(a, b) distributions. This figure was produced bgtaDistPlot

So we find the very intuitive result that we set to the expected number of heads,= Np, andag to the expected
number of tailspjg = N — Np. In other words, we can interpret the hyper-parameterseoptior in terms oirtual
data or fictitious data.

2.1.3 Posterior
Multiplying prior and likelihood yields the posterior:

p(0lD) o< p(D]6)p(0) (18)
N et gy (19)
0N1+()(1—1(1 _ 0)N0+()(0_1 (20)

x Betad| Ny + a1, No + ) (21)

We see that the hyper-parameters play a role analogavisamd N, so they can be thought of as “virtual” heads/tails;
they are often calledseudo countsa = a3 + « is called theeffective sample sizéstrength) of the prior, and plays
arole analogous t&/ = N; + Ny. The posterior is another Beta distribution with updatechpeeters. For example,
suppose we start witlBeta(fla; = 2,9 = 2) and observer = 1, soN; = 1, Ny = 0; then the posterior is
Beta(f|an = 3, a9 = 2). So the mean shifts fro¥[0] = 2/4 to E[0| D] = 3/5. We can plot the prior and posterior,
as in Figure 2. We can continue to sequentially update thahlifon (converting prior into posterior) as more data
streams in; this is useful fanline learning and for processing large datasets, since we don’t needr®tsi original
data.

Let us re-write the hyper-parameters of the prior in such ativat the posterior mean becomes a convex combi-
nation of the prior mean and the MLE. L&t = N; + Ny be number of samples (observations). Metbe the number
of pseudo observations (strength of prior) and define tha preans as fractions of’:

ay = N'of, ag= N'dl, (22)

where
0<alal<1 23)
al+ap=1 (24)
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Figure 2: Updating a Beté1, ag) prior with a Bernoulli likelihood with sufficient statissaV: = 2,No = 1 to yield a Betéas +

N1, a0 + No) posterior. (The distributions have been normalized to suone for plotting purposes, to make the vertical scale of
the likelihood and prior comparable.) Lefi; = ap = 2. The posterior mean is shifted slightly leftwards away fribia MLE

of 2/3 towards the prior mean &/2. The posterior is also narrower than the prior. Right:= «¢ = 0.1. The posterior mean

is strongly shifted to the right, since the prior encodes lmelief that the coin is biased towards heads or tails. Figuade by
betaDistPlot2

Thus our new prior is
p(0) = Beta(N'a), N'apy) = Beta(az, ag) (25)

whereN’ is the strength of our prior, ang, and«, are fractions. Then posterior mean is@vex combinationof
the prior mean and the MLE

a1 + N

Elfla1, a0, N1, No] = m+£+£+% (26)

N/a/1+N1
= N+N @7)

N’ , N N
_ M 28
NiNYT NI N (28)
N

= 'wO/1+(1_w)Wl (29)

wherew = N'/(N + N') is the number of virtual samples relative to the total nundfeiamples (total plus actual).
2.1.4 Posterior predictive distribution

Ultimately the only way we can be sure our beliefs are valifitisey help us predict the future well. We can compute
such predictions by integrating out the parameters of théah@fter all, parametric models are just a tool we use to
predict observables). For a single Bernoulli trial, we have

1
p(X =1D) = / p(X = 116)p(6D)db (30)
o

_ 31
ag + af (31)

1
/ 0 Betaf|ay, apy)dO = E[0] =
0

wherea) = aq + N7 andaf, = ap + Ny are the parameters of the postefidiith a uniform priora; = ag = 1, we
getLaplace’s rule of succession
Ny +1

X=1|N,Ng)= —+ "~
A= 1IN = F o N T2

(32)

lWe are redefiningyj anda, from their previous role as rescaled parameters of the.prior



This avoids the sparse data problem we encountered earlier.
If we have a large sample size, the posterior will convergepoint centered on the MLE:

p(0]D)—6(0 — Opurc) (33)

In this case, the posterior predictive distribution can bttemn by simply using alug-in estimate
p(XID) = [ p(xX10)p(610)d0 ~ [ p(x10)5(6 — 618 = p(X]6) (34)

In the case of the Beta-Bernoulli model, if we plug in the pdst mean estimatd, = E[0]D], we get the same result
as the exact posterior predictive density:

!
oy

p(X = 1|Ny, No) = p(X = 1|§™*") = (35)

af + o
2.1.5 Marginal likelihood
Themarginal likelihood is the expected value of the likelihood, where the expemtatare with respect to the prior:

p(D) ﬁf/fwmmmw (36)

It is called marginal likelihood because we are marginalizing dut In Section 6.1, we will see that the marginal
likelihood forms the basis ddayesian model selection

Let us know discuss how to compuytéD). Since we know(0|D) = Betg0|a], ), wherea; = o + N; and
af = ag + Np, we know the normalization constant of the posterior. Hence

_ pO)p(DI0)
o) (37)
— 1 1 a;—1 _ pyao—1 Ny _ mNo
= 20 | Blanay! 470 [0% (1 —0)] (38)
= L# a;—1 o ap—1pNy . No
= 5D) Blarag) 07 A0 A0 (39)
1 ()/1— _ 016—
= By 0% (40)
Matching up the constant terms gives
1 1 1
p(D) Blar,a0)  B(a},ap) (41)
o)
_ Blai,ap)
p(D) - B(Oél,Oéo) (42)

(The Beta-Binomial model has an extra factor in front.)
2.2 The Dirichlet-multinomial model

Let X,, ~ Mult(6,1) haveK possible values. (The generalization to multiple trixls, ~ Mult(6, M,,), is straight-
forward.) The analysis of the multinomial distribution isry similar to the Binomial case, so we summarize it here
without proof.

2.2.1 Likelihood

K
p(Dl6) = 6" (43)
j=1
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Figure 3: Some Dirichlet distributions in 3D, defined over the 3D siexpl(Such points satisfy < z;, < 1 andZi:1 xp = 1.) If
we put a lot of prior mass on one of the components, we selédrmiof the vertices. Figure produced diyichletPlot3d

2.2.2 Prior
The Beta generalized t& states is called thBirichlet distribution:
— . — 1 a1 — 2 — AR —
p(0l@) = Dir(0]d) = 7@ 00T (Y 6 =1) (44)
k
K
. I (67}
Zpipta) = =) (45)
MO PR

Here the termY (>, 0, = 1) just ensures the probabilities sum to one, i.e., they liehersimplex. See Figure 3 for
some examples of Dirichlet distributions.

If x ~ Dir(z|as,...,ax), then we have these properties
«
E[z,] = =% (46)
«
o — 1
ddzp] = —— 47
modezy,] p— (47)
ap(a— ag)
Var [z — 48
(o] a?(a+1) (48)
wherea = >, ay.
2.2.3 Posterior
p(0|D,@) = Dir(ag + Ni,...,ax + Ni) = Dir(al, ..., a) (49)
2.2.4 Posterior predictive
For a single new sample of/d-ary variable, we have
aj + Nj
X=jD) = 21— 50
p(X =j[D) N5, ar (50)
2.2.5 Marginal likelihood
Zpir(N + 62) (>, on) r Nk + O/k
D) = - = 51
p(D) Zpir () D(M + 32, ax) H oy

k



2.3 Normal-normal model

Now let us consider Bayesian estimation of the mean of a uaieaGaussian, whose variance is assumed to be known.
(If the variance is also unknown, we can use the normal-gaprioa see Section 2.4.)

2.3.1 Likelihood
LetD = (x1,...,z,) be the data. The likelihood is

n 1 n
2 _ 2\ __ 2\—n/2 2
p(Dlp,0%) = 7];[11)(3371“%0’ ) = (270%) "/ exp{—@ ;(x — 1) } (52)
Let us define the empirical mean and variance
R (53)
n 4
=1
2 1 - —\2
s = =) (x; —7T) (54)
n 1=1
We can rewrite the term in the exponent as follows
Dwi—p)? = Y-~ (p-T) (55)
= Y@ +Y @F-w? -2 (@~ T —7) (56)
= ns?4+n(T — p)? (57)
since
d(wi—T)(n-%) = (p—7) <(Z i) — nf) = (p—T)(nT —nT) =0 (58)
Hence
pDl0?) = ————exp (5 [ns? + iz — )7 (59)
’ (2m)n/2 o 202
n/2 2
1 n 9 ns
x <§) exp (—F(x — ) ) exp <—F> (60)
If o2 is a constant, we can write this as
2
n 9 .o
p(Dl) o exp (—505(T = 0)?) o< (@i, ) (61)

since we are free to drop constant factors in the definitighefikelihood. Thus: observations with varianee? and
mearz is equivalentto 1 observatian = 7 with variances? /n.

2.3.2 Prior

Since the likelihood has the form
2

"m0 Zlu.
p(Dl) o exp (—5o5(T = p)?) o N(aln, =) (62)
thenatural conjugate prior has the form
1
) exp (= galie ) ) x Nulio. ) (63
0

(Do not confuserZ, which is the variance of the prior, with?, which is the variance of the observation noise.) (A
natural conjugate prior is one that has the same form askighibod.)



2.3.3 Posterior
Hence the posterior is given by

p(p|D) o p(D|u,0)p(ulpo, o5) (64)
1 2 1 2
X exp l—ﬁ 213(331 — i) 1 X €xXp {—E(M — Ho) } (65)
_ __1 2 2 . __1 2 2 66
= exp |55 > (@] +4” = 2aip) + —— (u® + 4 — 2pt0p) (66)
20° = 20¢
Since the product of two Gaussians is a Gaussian, we willitetnris in the form
2 2 2
p (1 Ho | DoiTi Moo, i
D S (. POy a&iti)  (Ho i 67
p(p[D) o< exp{ 2 (08+02>+M<03+ o2 ) (208+ 202 (67)
def Lo 2y| 1 2
= exp {— 502 (1™ = 2ppn + un)] = exp {—ﬁ(u — Hn) (68)
Matching coefficients ofi?, we findo? is given by
2 2
—p (1 n
_ 1. n 69
202 2 <0’8 * 02> (69)
1 1 n
= = 4 70
o2 o8 T3 (70)
2 2
1
2= (71)
nog+o -+ oz
Matching coefficients of: we get
—244ptn D1 Ti | o
- Lei=17i 4 PO 72
—202 a ( o? + ol (72)
fin D1 Ti | Mo
Ll i = 73
o2 o2 * o? (73)
2,7 2
~ NIt o (74)
ag O'O
Hence
i L A R (75)
n = = Jn —_— e
K nod + o2 o nod + o2 ol o2

This operation of matching first and second powerg & calledcompleting the square
Another way to understand these results is if we work withgireision of a Gaussian, which is 1/variance (high
precision means low variance, low precision means higtawag). Let

A = 1/0? (76)

N = 1/cf (77)

Ay = 1/ (78)

Then we can rewrite the posterior as

p(ulDA) = N(plpn, At (79)

A = Ao4nA (80)

ZnA + poA
o = R = wpar + (L= w)no (81)
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Figure 4: Sequentially updating a Gaussian mean starting with a pegatered oniy = 0. The true parameters af¢ = 0.8
(unknown),(c®)* = 0.1 (known). Notice how the data quickly overwhelms the priawl dow the posterior becomes narrower.
Source: Figure 2.12 [Bis06].

wherenz = " x; andw = ’;—j The precision of the posterio,, is the precision of the priok, plus one
contribution of data precision for each observed data point. Also, we see the mean of thenmsis a convex
combination of the prior and the MLE, with weights propon@bto the relative precisions.

To gain further insight into these equations, consider ffeceof sequentially updating our estimate jof(see
Figure 4). After observing one data poin{son = 1), we have the following posterior mean

2 2

g JO
= 82
H 02+a§u0+02+a§x (82)
. o5
= pot(@—po) 53 (83)
(@ o) =5 (84)
= z—(x—py)————
Ho 02+ 03

The first equation is a convex combination of the prior and MIEe second equation is the prior mean ajusted
towards the data. The third equation is the dataadjusted towads the prior mean; this is caliddlinkage. These
are all equivalent ways of expressing the tradeoff betwiketinood and prior. See Figure 5 for an example.

2.3.4 Posterior predictive
The posterior predictive is given by

palD) = [ plalup(ulD)dn (85)
— [ Nl N Gl 72 (86)
= N(x|pn, 0% + %) (87)

10
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Figure 5: Bayesian estimation of the megrof a Gaussian from one sampie= 3, n = 1. We assume? = 1, so the likelihood
isp(z|p) = N (3|, 1). (Left) Strong priorp(u) = N (1]0, 1). The posterior i9(u|D) = N (p]1.5,0.5). The posterior mean is
half way between the MLEX = 3) and the prior meari{, = 0), since the prior variance and observation variance araleljote
the posterior is narrower than the prior. (Right) Weak (djqaior p(x) = N (1|0, 10). Posterior ip(u|D) = N (u]2.72,0.91).
The posterior is very similar to the (normalized) likeliltbd-igure produced bgaussBayesDemo .

This follows from general properties of the Gaussian distion (see Equation 2.115 of [Bis06]). An alternative groo
is to note that

= ute (88)
~ N(Mm JTQL) (89)
e ~ N(0,0%) (90)

wheree is a noise term independent pf SinceE[X, + X,| = E[X ] + E[X,] and Var[X; + X,] = Var [X;] +
Var [X,] if X1, X, are independent, we have

X ~ N(pn, UTQL + 02) (91)

since we assume that the residual error is conditionallgpeddent of the parameter. Thus the predictive variance is
the uncertainty due to the observation naideplus the uncertainty due to the parameters,
2.3.5 Marginal likelihood

Writing m = pp andr? = o3 for the hyper-parameters, we can derive the marginal hibeld as follows:

¢ =p(Dlm,o*,7%) = / IV @il )N (i, 72)dp (92)
i=1
o . Sz om? . 727;_252 + ”27212 + 2nTm (©3)
xp | — — — Jex
(V2mo)"/n1? + o2 P 202 272 P 2(n2 + o2)

The proof can be found in the appendix of [DNE6].
2.4 Normal-Gamma model

In this section, we consider the case where the mean andgjmeaire both unknown. We just state the results without
proofs. Derivations may be found in [Mur07]. First we intume two useful distributions.

2.4.1 Gamma distribution

The gamma distribution is a flexible distribution for posdtireal valued rv'sz > 0. It is defined in terms of two
parameters. There are two common parameterizations. 3hieione used by Bishop [BisO6] (and many other

11
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Figure 6: SomeGa(a, b) distributions. Ifa < 1, the peak is at 0. As we increabewe squeeze everything leftwards and upwards.
Figures generated mammabDistPlot2

authors):
Ga(x|shape =, rate =b) = b 2% ez a,b>0 (94)
I'(a)
The second parameterization (and the one used by Matdabpdf ) is
1
Ga(z|shape =, scale =3) = z* e/ (95)

pel ()

Note that the shape parameter controls the shape; the smameter merely defines the measurement scale (the
horizontal axis). The rate parameter is just the inversa®fttale. See Figure 6 for some examples. This distribution
has the following properties (using the rate parameteazst

mean = % (96)
mode = 2" liora > 1 (97)
a
var = = (98)
2.4.2 Studentt distribution
The generalized t-distribution is given as
2 Loa—po, -
Walno?) = et (P (99)
I'(v/24+1/2 1
¢ = Lw2+1/2) (100)

I'(v/2) vTo

wherec is the normalization consant. is the meany > 0 is thedegrees of freedomandcs? > 0 is the scale. (Note
that ther parameter is written as a subscript.)
The distribution has the following properties:

mean = pu, v>1 (101)
mode = pu (102)
2
vo
var =2 v > (103)

12
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Figure 7: Student t-distribution&’, (11, %) for ;1 = 0. The effect o is just to scale the horizontal axis. &s-oo, the distribution
approaches a Gaussian. SeedentTplot

Note: if x ~ t,(u, 0?), then
TR, (104)

which corresponds to a standard t-distribution witk= 0, 02 = 1 (Matlab’stpdf ):

(v +1)/2) 2/ \—(v+1)/2
In Figure 7, we plot the density for different parameter esluT-distributions are like Gaussian distributions with
heavy tails Hence they are more robust to outliers (see Figure 8): As oo, the T approaches a Gaussian.
If v = 1, this is called &Cauchy distribution. This is an interesting distribution sinceXf ~ Cauchy, thenE[X]
does not exist, since the corresponding integral divetgssentially this is because the tails are so heavy that gsmpl
from the distribution can get very far from the cengter

05 05
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
i
(—)5 0 5 10 (—)5 0 5 10

@ (b)

Figure 8: Fitting a Gaussian and a Student distribution to some daf) @nd to some data with outliers (right). The Student
distribution (red) is much less affected by outliers thaa@aussian (green). Source: [Bis06] Figure 2.16.
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It can be shown that the t-distribution is like an infinite sofMGaussians, where each Gaussian has a different
variance [Arc05, p111]:

b (@l A1) = / N (alp, (u\) ) CaulshapeZ  rate=" )du (106)
0

(See exercise 2.46 of [Bis06].)
2.5 Likelihood
The likelihood can be written in this form

p(Dlp,A) = (27577,/2 A"/ exp <—% l (2 — p)? (107)
i=1
= W/\"/2 exp <—% [n(,u —7)% + z:(x7 - E)Q] ) (108)
i=1

2.6 Prior
The conjugate prior is theormal-Gamma:

NGy, Albo, k0,00 6) = Nyl (ko)) Ga(Aao, rate= o) (109)
~ Znalpo, 20, a0, Bo) z2 eXP(—%A(u P P e P (110)
= %G)\ao*% exp (—g [EO(M _ N0)2 + 2ﬂ0]> a11)

1
Zne(po, Ko, @0, o) - = F(iff) (i_z) 2 (112)
0

See Figure 9 for some plots. Hemg is what we thinku is andxg is how much we believe this; ang) is what we
think o2 = A~ is, andag is how much we believe this.

2.7 Posterior
The posterior is

p(, AID) = NG(p, Mpin, kny ns Bn) (113)
K +nx

fn = % (114)

kn = Ko+n (115)

an, = Qo+ n/2 (116)

1 - _vo  Kon(T — po)?
n = 5 i~ —_—— 117
B 50+2;(x Z)°+ 30 T 1) (117)

We see that the posterior sum of squargs,combines the prior sum of squargh, the sample sum of squares,
> (z; — 7)?, and a term due to the discrepancy between the prior meanaanples mean. As can be seen from
Figure 9, the range of probable values foands? can be quite large even after for moderateKeep this picture in
mind whenever someones claims to have “fit a Gaussian” to dia¢a.

The posterior marginals are

p(A[D)

p(u|D)

Ga(Naw, Br) (118)

Bn
Toa,, (1] pons P

n'vn

) (119)
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NG(k=2.0, a=1.0, b=1.0) NG(k=2.0, a=3.0, b=1.0)

‘I”‘I‘I////I/I;/I/Iglllll'l;,/';'lx’w
s

%
09,
258

i
7O
Y
L

Figure 9: Some Normal-Gamma distributions. Produced\isyplot2 .
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2.8 Marginal likelihood

p(D) = Z(2m)* (120)

‘ 1
= (==)2(2m) /2 (121)
2.9 Posterior predictive

ﬂn("{n + 1)

Aphkn

p@|D) = taa, (@[pn, ) (122)

3 Priors

Picking priors is one of the more controversial aspects gfeB&n statistics, because it is seen as “subjective”. But
data analysis is never performed in a vacuum. Even babiescaigorn as “tabula rasa”. So we always have some
kind of prior knowledge. Below we examine various issuesceoning priors.

3.1 Mixture of conjugate priors

Suppose our prior beliefs about a coin are that it is biaseteither to have heads with probability near 1/3 or 2/3.
We can model this usingraixture prior :

K
p(0) = Z%pk(@) (123)
=1

which is a convex combination df priorsp,. The termsy; are callednixing weights, and satisfyd < «; < 1, and
Zle ag = 1. In the coin example, we may hawe(f) = Be(0|10,20), p2(0) = Be(0|20, 10), anda; = a2 = 0.5.
We now show that the posterior is also a convex combinatidheoindividual posteriors:

o) = Palop®)
pok) @) (124)
p(x]0) >, arpr(0)
[ p(10) >, arpr(0)do (125)
_ Zk arpr(z,0)
T o [ (@, 0)do (126)
2w oupk(0]7)pr ()
a > ok QkDr(x) (127)
= a0l (128)
k
where
o, o agpr(z) = ag /pk(x|0)pk(9)d9 (129)

So if the individual priors are conjugate, the posterioll i easy to analyse.
3.2 Improper priors

A distribution that does not integrate to 1 is callegproper. If the prior is improper, the posterior will be proper,
provided

/ P(O)p(D]O)dY < 0o (130)
Typically when we have enough data (sometimes just a sirmjl@)pthe posterior will be proper even if the prior is
not. We will see examples of improper priors below.
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3.3 Jeffreys prior

Jeffreys designed a general technique for creating a nekiad of non-informative or referenceprior. This can
be used to performbjective Bayesian analysis The key observation is that jf(¢) non-informative, then any re-
parameterization of the prior, such @s= h(¢), should also be non-informative. Now, by the change of \dem
formula,

d
Po(6) = po(6) 5| (131)
so the prior will in general chande.
Let us pick
1
Po(¢) < (1(¢))2 (132)
where )
B d*logp(X|)\ _ dlog p(X|¢)
I(¢) = —-FE (T =-F i (133)
is theFisher information. Now
Ologp(x|0) _ Ologp(z|¢) do
o 0o b (134)
Squareing and taking expectations ovewe have
2
0 - & ({w] ) (135)
de
_ do\*
= I(9) (@) (136)
so we find the transformed prior is
d
wl6) = pol@)l (137)
1 d¢
(1(#))% |55 (138)
1
o« (1(0))2 (139)
In the multivariate case, we use
p(0) o< \/det I(0) (140)
where e (o)
_ log p(x
1(0) = E[iaejaek ] (141)
is theFisher information matrix .
3.3.1 Jeffreys prior for the Binomial distribution
In the case of a Binomial distribution, the log-likelihoad i
logp(x|6) = xlogd + (N — z)log(1 — 6) + const (142)
so the Fisher information (using|x|6] = N6) is
N
I(0) = a6 (143)

2Note that the fact that we need to use to the change of vasidbteula when we reparameterize the prior implies that MAfheates are
dependent on the parameterization. MLEs are invariantég#rameterization, since the likelihopdD|#) is a function, not a density, so the
change of variable rule does not apply.
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Hence Jeffrey’s prior is

1 1 1
0) x 6 2(1 —60)" 2 = ———— x Beta, 1 144
p(6) o< 672(1~6) S < Betd(d. 3) (144)
One might think that, sincBeta(1, 1) (called theLaplace prior) is a uniform distribution, that this would be an
uniformative prior. But the posterior mean in this case is

Ni+1

EID] = N1+ Ng + 2

(145)
whereas the MLE ileNTlNO. Clearly by decreasing the magnitude of the pseudo courtsan lessen the impact of
the prior. By the above argument, the most non-informatnier jis

Cli_m)0 Beta(c, ) (146)

which is a mixture of two equal point masses at 0 and 1 (see4Ffdr a proof). This is also called thidaldane
prior . (For a Gaussian, the maximum variance distribution isefattas we will see later), but for a Beta (because of
its compact support in 0:1), the maximum variance distrdwuis this mixture of spikes.)

Note that the Haldane prior is amproper prior , in the sense thaf Be(6/0,0)df = co. However, as long as we
see at least one head and at least one tail, the posteridrenilioper (integrate to 1).

So we see that there are several possible natural candidatesn-informative prior in the case of the Binomial/
Bernoulli distribution:Be(0,0), Be(1, 1) or Be(1,1). Below we will see that for other kinds of parameters, such as
location and scale, there is a unique definition of non-imiative.

3.3.2 Jeffreys prior for a location parameter
Consider estimating the mean of a Gaussian. The log liketi{for N = 1)

L(p) = logp(x|p) = —5(z — p)* /v + const (147)
wherev = ¢2 is the known variance. So
oL _ z—p (148)
o v
0%L
I(p) = 1/v (150)

so the Jeffrey’s prior ig(1) < 1/y/v = const. We can approximate this with a conjugate pkidy:| .o, o2) by letting
oo — 00, corresponding to a “flat” prior.

In general, if a density has the forpiz|n) = f(x — u) thenp is called alocation parameter. If the density
satisfiep(z|i) = f(& — 1), wheret = x + candji = p + ¢, then it is calledranslation invariant . We would like
our prior for the Gaussian mean to be translation invarsmpur results don’t depend on the units of measurement
that we use, so we require

/B p(p)dp = /Bcp(u)du = /B p(p—c)dp (151)

A A—c A
Hencep(i. — ¢) = p(u) sop(p) = const. Note that this is an improper prior.
3.3.3 Jeffreys prior for a scale parameter
The log-likelihood (using = o?) is

L = —ilogv—3(z—p)?/v+ const (152)

So

%1}_2 — (x —p)?/v? (153)



SinceE|[(z — p)?] = v, we have
Iv) = —3v24v/0®=1072 (154)

so the Jeffreys prior ig(v) o 1/v.
In general, if a density has the forpiz|o) = 1 f(z/0) whereo > 0, theno is called ascale parameter If the
density satisfies

i 1,2
p(zlo) = = f(%) (155)
g g
wherez = cx andé = co, then it is calledscale invariant We would like our prior foro? to be scale invariant , so
we require
B B/c B 51
[ wtorio = [ piorda = [ p(%)zas (156)
A Afc A cc
Hencep(o) = p(2)1 sop(o) o« 1/o will work, since then we have: = <£1. Note that this is equivalent to
p(logo) o 1, since
do

p(logo) = p(o) =(1/o)o =1 (157)

dlogo
So the reference prior for the variance will b@r?) o o~2. For the precision, the Jeffrey’s prior is

p(A) oc A1 (158)
which can be approximated usidg:(A|0, 0) (but see [Gel06] for discussion).
3.3.4 Reference prior for the NG model
The reference prior ig(, 0%) o (%)~ which can be modeled by, = 0, ag = —1/2, by = 0, since then we get

p(p, A) oc A (159)
With the reference prior, the posterior is
fn = T (160)
Kkn = n (161)
an = (n—1)/2 (162)
Bo = 1> (2i-7)? (163)
=1
The posterior marginals are
n—1 (x; —T)2
pID) = Ga('t, ZlE T, (164
_ _ 2w —@)?
PEID) = ol S (165)

which are very closely related to the sampling distributtéthe MLE. The posterior predictive is

p(ID) = tu_s <f (L ng(%i_(xf)— #)

(166)

4 Summaries of the posterior

The posteriop(6|D) contains all the information we need for summarizing ourdfgland for making optimal deci-
sions. However, oftedl is high dimensional, so representing and compufif§yD) can be difficult. It is common to
summarize the full posterior using various measures. Trie formalized using Bayesian decision theory. However,
for now we just informally summarize some standard sumrsarie
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Figure 10: A \/(0, 1) distribution with thez,, ,» = ®~" («/2) cutoff points shown, wheré is the cdf of the Gaussian. The central
non shaded area contaihs- « of the probability mass. ifv = 0.05, thenz, /2 = 1.96 ~ 2.

4.1 Point estimates
The most common summaries are point estimates at the meae, ononedian:

émean = E[9|D] (167)
Oriap = arg mgxp(9ID) (168)
brmedian = t:p(0>1D) =05 (169)

For simple distributions, these can be computed in closed.fo
4.2 Bayesian credible intervals

Itis common to specify a measure of uncertainty in additioa point estimate. A credible interval is a (contiguous)
regionC of parameter space such th&é € C|D) = a. Often we usex = 0.95 centered on the posterior mean (see
Figure 10). This is also calledaentral interval. We can find the rang€ using the cumulative distribution function
of p(8|D): if 6 has cdfF, thenP (6 < o) = F~!(«) is called then quantile or critical value of distributionf’. To
find interval (¢, v) such thatP(l < 6 < u|D) > awe use/ = F~!(a/2) andu = F~(1 — a/2). For example, if
p(0) = Be(1,1) and we observé = 47 heads out ofV = 100 trials, then the posterior i0|D) = Be(a, b), where

a =47+ 1 andb = 100 — 47 + 1; a 95% posterior credible interval can be computed in Ma&llows:

% betaCrediblelnt

S = 47; N = 100; a = S+1; b = (N-S)+1; alpha = 0.05;

| = betainv(alpha/2, a, b);

u = betainv(1-alpha/2, a, b);
Cl = [lu] % 0.3749 0.5673

An alternative summary to the central interval is to retur@5&o high posterior density (HPD) region; this is
defined as the smallest region which contains 95% of the postaass, which is more probable than any points
outside the region. If the posterior is multimodal, the HPBymmot be the same as a central posterior region: see
Figure 11. However, summarizing multimodal posteriordugags difficult.

4.3 Posterior sampling

In many cases, the posterior over the quantity of interest@gbe computed in closed form. In general, we may want
to compute the expected value of various features of theegost

Elf(0)D] = / F(0)p(6D) (170)
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Figure 11: Central vs high posterior density intervals. Based on [GEG8Rigure 2.2.

We can approximate such quantities usingnte Carlo integration:

S
1
0)|D] = /f p(0|D) ~ 52 (171)
wheref® ~ p(0|D) is a sample from the posterior.
For example, suppose we toss two independent coins a bunichesf, so the posterior is
p(01,92|D) = Be(91|a1,b1)Be(92|a2,b2) (172)

for some values oy, by, as, bo. Suppose we want to know if coin 2 is more likely to producedseaan coin 1. This
is simply

P@>0D) = | 1 / 1(6 > 0,001 [D)p(6s| D) 0 (173)
01 ’ 2
- /0 [ /O p(01|D)d91] p(62]D)d6s (174)
Thusf(0) = I(62 > 61). We can approximate this as follows
1 S
P(:>0) ~ ¢ Z (05 > 63) (175)

In Matlab, this becomes

% betaMCdemo
S = 1000;

pl = betarnd(al,bl,S,1);
p2 = betarnd(a2,b2,S,1);
dif = (p2-pd);
mean(dif > 0)
In generalMonte Carlo integration means approximating integrals of the form

X) =1= / h(@)p()dz (176)

using
1 S
i ; h(z®) 177)
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This can be shown to converge to the true integraf-asx. Thestandard error of the estimate is

)

se & % (178)

) 1< 712

67 = 53 > (h(ze) = 1) (179)
s=1

So al — « confidence interval of is I + Za /28, Wherez, is theq'th quantile of a standard/(0, 1) variable. If we
want to approximate the probability of a binary event: P(X € A), for some setd, we can use

SN

X
0|~
M

I(z* € A) (180)

@
I
—

with standard error
q(1—q)

S (181)

4.4 Posterior predictive checks

The most fundamental way to check model fit is to sample data fts posteriorD’ ~ p(x|D), and plot it. In cases
where the data is high dimensional, and is hard to visuatize,must devise one dimensiomes$t statistics 7'(D’),

and compare them to the test statistic on the actual dgqt&,). These statistics should measure features of interest
(since it will not, in general, be possible to capture evexyext of the data). If there is a large difference between the
distribution of T'(D’) across differenD’ and the value of (D), it suggests the model is not a good one and/or the
posterior has not been well estimated. We illustrate thievihe

4.4.1 Worked example: Newcomb'’s speed of light data

Here we consider an example from [GCSR04]. In 1882, Newcomdsured the speed of light using a certain method

and obtained the distribution in Figure 12. There are gjgmr outliers in the left tails, suggesting that the disitibn

is not Gaussian. Let us none the less fit a Gaussian to it, asioginformative prior. We can test our fit by sampling

from the posterior:

(1+ Kyp)o?
Kn

x ~ p(x|D) = ty, (z|pn, ) (182)
Let D’ be thes'th dataset of sizes = 66 generated in this way. The histogramBf for s = 1 : 20 is shown in
Figure 13. Itis clear that the model is not capable of gemegdhe large negative examples that were seen in the real
data. (We are assuming these are scientifically interestimgnot noise that we want to eliminate.)

A more formal way to test fit is to define a test statistic. Siweeare interested in small values, let us use

T (D) = min{z : x € D} (183)

For the real datal'(D) = —44, but the distribution of'(D’) for s = 1 : 1000 is shown in Figure 14. It is clear that
T(D) is very unlikely according to our fitted model.
The code to generate these plots is shown below.

% newcomb.m
% Example from Gelman04 p77 - see if Newcomb’s speed of light d ata is Gaussian

seed = 0; randn(’state’, seed); rand('state’, seed);

% Data from http://www.stat.columbia.edu/"gelman/book/ data/light.asc

D = [28 26 33 24 34 -44 27 16 40 -2 29 22 24 21 25 30 23 29 31 19 ..
24 20 36 32 36 28 25 21 28 29 37 25 28 26 30 32 36 26 30 22 ..
36 23 27 27 28 27 31 27 26 33 26 32 32 24 39 28 24 25 32 25 ..
29 27 28 29 16 23];

% uninformative prior
k0O = 0; vO = -1; sO = 0; mu0 =0;
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Newcombs speed of light data
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0
-50 0 50

Figure 12: Histogram of Newcomb’s data. We plot the measured time #gdight to travel 7442n minus24, 800ns.
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data.
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% suff stat
xbar = mean(D); n = length(D); s2 = mean( (D-xbar)."2);

% posterior

kn = kO+n;
mun = (kO * muO+n+ xbar)/kn;
vn = vO+n;

s2n = (VO *sO + n*s2 + kO+*mu0™2 + n=*xbar'2 -kn *mun“2)/vn;

% credible interval for mu
low = mun + tinv(0.025, vn) * sqrt(s2n/kn) %23.5706

high = mun + tinv(1-0.025, vn) * sgrt(s2n/kn) %28.8537
% generate posterior samples

S = 1000;

sigma2 = (1+kn) =*s2n/kn;

rep = trnd(vn, S, n) *sqrt(sigma2) + mun;

figure(1); clf
hist(D); title(Newcombs speed of light data’)

figure(1); clf
for i=1:20
subplot(5,4,i)
hist(rep(i,:))
set(gca,’xlim’,[0 50])
%title(sprintf('synth %d’, i))
end
suplabel(’posterior samples’, 't’)
% compute distribution of test statistic
test=inline('min(x)’,’x’);
for s=1:S
testVal(s) = test(rep(s,:));
end
testValTrue = test(D);
figure(2);clf
hist(testVal);
title(sprintf(posterior of min(%s), true min=%d’, 'x’, t estValTrue))
hold on
line([testValTrue, testValTrue], get(gca,’ylim’))

5 Approximate inference

Often it is difficult to computep(6|D) in closed form. One approach is to try to approximate thegs@stusing a
simpler kind of parametric distribution, such as a Gaussfarother approach is to represent the posterior implicitly
in terms of a set of samplé$ ~ p(0| D). Note that generating such samples can be difficult, but aeceave them,

it becomes easy to compute arbitrary posterior feathilgg6)] as we saw above. This topic is beyond the scope of
this chapter. However, we introduce one very simple apprbatow.

5.1 Laplace approximation

ThelLaplace approximationis to approximate (6| D) by a multivariate Gaussian. (In physics, this is calleshddle
point approximation.) See Figure 15 for an example.
Supposé € R, Letp(d|D) = %f(a). Performing a Taylor series expansion around a ntgdee get

In f(6) ~ In f(6) + %(9 —00) H(0 — 6) (184)
where 5 log (6)
def 0" 108
a= 00007 lo=0 (185)
is the Hessian dfog p(6). Hence
§(0) = F(00)exp | =50 — 00)7C 0 — 00) (186)
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Figure 15: Laplace approximation (red) to the functierp(—xz2/2)o(20x + 4). From [Bis06] Figure 4.14.

whereC = —H~1. So

B0) = 54(0) = N (6160, ) (187)
2z = [ ie=senencr? (188)

We will use the ternZ when we derive the BIC score below.

Since the Laplace approximation assumes the posteriopi®gimately Gaussian, it is often necessary to trans-
form the parameters so that this is a reasonable assumt@rexample, when estimating a positive term, we can
take logs. We will see an example of this below.

5.1.1 Worked example

Let us consider the following example from [GCSR04, p102pn§lder estimating the mean and variance of a 1D
Gaussian using a non-informative prigi, log o) o< 1. Define

1
st =~ ;@ -7)° (189)
The log posterior is given by
log p(u,logo|D) = const—nlogo — T;[nSQ +n(g — p)?] (190)
For brevity, let\ = log 0. The first derivatives are
a% logp(p, A|D) = 7”@05 4 (191)
% logp(u, AID) = —n+ e’ 4l T;(zy —H) (192)
from which the posterior mode is easily seen to be
o= (193)
logs = 1ilog (232) (194)

The Hessian matrix is given by

2 2
g <%10gp(u,AID) a,‘%logp(u,AID)>

([ = —2n (195)
2 2 = 7=
a5z 0gp(k, AID) - 5555 log p(u, A|D) —onElt 2 (s 4 (7 — p)?)
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Evaluating this at the mode we have

—n 0
H|, = (5 _2n> (196)

Hence the approximate posterior is

p(u,logo|D) z./\/((loz&), (% i)) (197)
2

6 Bayesian model selection

Suppose we havE possible models for our data. Let us writeD|M;) to represent the data generated from madel
fori =1: K. We can express our belief in which model is correct using

(198)

where
p(DIM;) = / p(D|8, My)p(6]M;)d6 (199)

is the marginal likelihood, also called tegidencefor model);. We cannot use the “standard” likelihopD|);, 0)
for model selection, becaugés unknown; and we cannot uséD|M;, 6,,1) since the maximum likelihood model is
always the most complex one (since the most complex modedleays fit the training data the best).
Notice that the normalizing constant used for parametématibn becomes the likelihood for the next level up
the modeling hierarchy:
p(D|6, M;)p(6|M;)
p(D|M;)

The termp(M;) is our prior preference for modéel Sometimes we explicitly encode a preference for simpledeis
by penalizing models with many parameters, although, as Weee in Section 6.2, this is not strictly necessary.
If we just want to compare two models, we can compute {hesterior odds ratio

p(6|1D, M;) =

(200)

_ p(M;|D)  p(D|M;)p(M;)

O;; = _ (201)
7 p(M;ID)  p(DIM;)p(Mj)
where]% is called theprior odds ratio and
p(D|M;) — p(M;|D) ,p(M;)
BF(M;, M;) = = (202)
W ML) = S Dg) = pa D) p(y)
is called theBayes factor(posterior to prior odds ratio). For two models, we write
P(D|H,)
BF(1,2) = ———% 203
U2 = poim,) 209

This is like alikelihood ratio, except we integrate out the parameters. If we hayefor all pairs, we can infer the
distribution over modelp(M;|D) using the fact tha} , p(M;|D) = 1. For example, for 2 models, we have

p(Mi|D) = Onap(Ms|D) (204)
= On(l-p(M|D)) (205)
. O12
14012 (206)
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6.1 Worked example: is the coin biased?

Consider the problem of determinining if a coin is biased. A_be the probability of heads. We want to compare two
hypotheses or models], thatd = 0.5, andH; thaté # 0.5. In fact, since the probability thatis exactly equal to 0.5
is zero (becausg(0) is a density function), we can Iéf; be the hypothesis théte [0, 1], without worrying about
excluding 0.5.

For Hy, there is no free parameter, so the marginal likelihood is

P(D|Hy) = 0.5 (207)

whereN is the number of coin tosses in. For Hy, we need to integrate odt
1
P(DIH) = | P(DIO, Hy)P(O|H)ds (208)
0

For simplicity, let us use &eta(ay, o) prior onf, wherea; = as = .
Suppose, following [Mac03], that we toss a cdin= 250 times, and observ&; = 141 heads andVy = 109
tails. Then
P(D|H1) B(Ozl-f—Nl,Oéo-i-No) 1

BF(1,0) = P(D|Hy) B(a, o) 0.5N (209)

To test theobustnessof our conclusion to our prior, we compul-'(1, 0) for a range of prior strengths The results

are shown in Figure 16. For a uniform prier= 1, igg;}g; = 0.48, (weakly) favoring the fair coin hypothesig,.
At best, fora = 50, we can make the biased hypothesis twice as likely. A Bayaorfaf 2 is not evidence in favor of
a hypothesis.

The code to implement Figure 16 is shown below. Note behln is the log-beta function; we must work in

log domain to avoid underflow.

% modelSelCoinDemo

alphas = [0.37 1 2.7 7.4 20 55 148 403 1096];

Nh = 140; Nt = 110; N = Nh+Nt;

figure(1);clf

logBF = betaln(Nh+alphas, Nt+alphas) - betaln(alphas, alp has) - N *log(0.5);
plot(alphas, exp(logBF), 'o-');

6.2 Bayesian Occam’s razor

A simple approach to model selection is to pick the one withl#rgesipenalized likelihood where the penalty is
proportional to the number of parameters in the model (seéd®e6.4). However, simply counting parameters is a
rather blunt instrument. It turns out that, for many mod#ie magnitudeof the parameters is at least as important as
the number of parameters. To see why, consider linear rgigreg = 07 f(x) + ¢, wheref(z) is a basis function
expansion oft, such as a polynomial expansion.dif =~ 0 for the featureg that represent higher order terms, then
the function will be fairly linear, but ifd; is large for such terms, the function will be very “wiggly”. edce the
parameter priop(6|M;) turns out to control model complexity as well. In the Bayasi@proach, by integrating over
all parameters, we are seeking a model that is good, no mdttmparameters it uses. This discourages picking models
that only fit the data well at a particulér(by chance). Thus the mere act of integrating dveull automatically pick
simpler models. This is called the Bayesfancam’s razor. (Occam’s razor says: “if two models are equally good at
predicting, pick the simpler one”.) In other words, even & thhave no explicit penalty on complex models {3Q/;)
is uniform), merely by integrating over all possible paraenevalues (i.e., by using’(D|M;) = [ P(D, 6|M;)db),
we automatically prefer models that are not too complexyoiex they fit the data well).

An overly simple modelM; has lowP(D|M;) since it has poor fit to the data. An overly complex mogi&)
has lowerP(D) than a medium model/,, since a complex model spreads its probability mass ovee possible
datasets, but this mass must sum to aumn§ervation of beliej. Put another way, we trust an expert who predicts a
few specific(and correct!) things more than an expert who predicts miaimg$. See Figure 17.
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Figure 16: Bayes factor in favor of biased coin versus strenght of syirimeBeta hyperparameter. Produced by
modelSelCoinDemo.m

D

Figure 17: An illustration of the Bayesian Occam’s razor. The broaeé€m) curve corresponds to a complex model, the narrow
(blue) curve to a simple model, and the middle (red) curvassiight. Source: Figure 3.13 [Bis06].
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6.2.1 Worked example: is the coin biased?

Let us consider a simple example. Consider comparing theehldg that a coin is unbiased, = 0.5, to the model
M, that says the coin may be biaséd~ Be(1,1). (Note thatd/; includesMy, but only assigns infinitessimal
probability mass to the evefit= 0.5.) The marginal likelihood undeY/, is simply
1 N
p(D|My) = 3 (210)

whereN is the number of coin tosses. The marginal likelihood undetris

B(1+ Ny, 1+ Nop)
B(1,1)

We plot this vs the number of head§ in Figure 18 (assuming/ = 5). We see is that if we observe 2 or 3 heads, the
unbiased coin hypothesid is more likely, since it is simpler (has no free parametdys);if we observe 0, 1, 4, or
5 heads, the biased coin hypothesis is more likely. It would be auspicious coincidencé the coin were biased
but happened to produce almost exactly 50/50 heads/tailsegdiscount model/; for the data in the middle of the
curve.

Another interesting feature of this plot is the strong piuliy of getting all heads or all tails undev/;. To
understand this, let us use the chain rule to write

p(DIM:) = / p(D]0)p(0)do = / Bin(N:|N, ) Beta(6[1,1)d0 — (211)

p(D) = p(z1.x) = p(w1)p(w2]r1)p(23]21:2) - - - (212)
Now, the posterior predictive distribution is

N1+ oy def N1+ o
p( | LN) N1+Oé1+N0+OéQ N+«

(213)

whereD;. is the data seen so far and= oy + «;. So a sequence of all 0 heads, say, is much more likely than a
sequence with 1 head or 2 heads:

ag ap+1 ag+2 ag+3 ayg+4

p(0,0,0,0,0) a a+l a+2 a+3 a+4 01667 (214)
ag ap+1 ag+2 ag+3 aq

1 = —. . . . = 0. 215

r(0,0,0,0,1) a o+l a+2 a+3 a+4 0.0333 (215)
1 2 1

p(0,0,0,1,1) = Lo L doF2 D MFL_ g g67 (216)

a a+1 a+2 .a—l—S. a—+4

Note that the order of the data does not matter. Also, theesbfiie curve is not very sensitive &0
The code to produce Figure 18 is shown below.

%joshCoins4

theta = 0.7; N = 5; alpha = 1;
alphaH = alpha; alphaT = alpha;
for i=1:(2°N)
flips(i,:) = ind2subv(2 +ones(1,N), i); % convert i to bit vector
Nh(i) = length(find(flips(i,:)==1));
Nt(i) = length(find(flips(i,:)==2));
nh = Nh(i); nt = Nt(i);
margLik(i) = exp(betaln(alphaH+nh, alphaT+nt) - betaln(a IphaH, alphaT));
end

% sort in order of number of heads
[Nh, ndx] = sort(Nh);
margLik = margLik(ndx);

figure(1); clf

hold on

p0 = (1/2)'N;

h=plot(margLik, 'o-");

h = line([0 2°N], [p0 p0]); set(h,’color’, kK, linewidth’ ,3);
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Marginal likelihood for Beta—Bernoulli model, [ p(D|6) Be(6|1,1) d6
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Figure 18: Marginal likelihood for different data sets under two difat models: horizontal black line assefts- 0.5; other blue
line asserts only that € [0, 1]. Produced byoshCoins4

set(gca,’xtick’, 1:2°N)

set(gca,’xticklabel’,Nh)

xlabel('num heads’)

title(sprintf(Marginal likelihood for Beta-Bernoulli m odel, %s p(D|%s) Be(%s|1,1) d%s’, ...
\int’, "\theta’, '\theta’, '\theta’))

6.3 Lindley’s paradox

Problems can arise when we use improper priors for modedtiahé hypothesis testing. For example, consider testing
the hypothesefl : § € ©gvs H; : 0 € O;. Letpg be the priorHy, andp; = 1 — pg be the prior ofH,. To define
the priordensityon 8, we use the following mixture model

p(0) = p(0|Ho)p(Ho) + p(0|H1)p(H1) = mo(0)p1 + m1(8)po (217)

The mixing weights, p1 are only meaningful ifry andw, are proper (normalized) density functions. In this case,
the posterior is given by
pop(z|Ho)
Hylz) = 218
pUole) = T Ho) + pup(al ) (218)
Po Jo, P(x]0)m0(6)d0

_ 219
oo Jo PO 8)d0 + (1~ po) [ P B ()8 (219)
Now suppose we use improper priofg{#) o ¢y andm; (0) x ¢1. Then
PocCo p(x|0)do
p(Holz) = o, (220)
Poco fo, P(x]0)d0 + (1 = po)er [o, p(x]0)do
_ Pocoly (221)

pocolo + (1 — po)cily
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wherel; = [ p(z|0)dd is the integrated likelihood. Now lgh = p; = 3. Hence

COKO
H = — 222
p(Holz) = = (222)
Lo
= — - 223
(0 + (61/60)61 ( )

Thus we can change the posterior arbitrarily by choosingndc,. Note that using proper, but very vague, priors can
cause the same problem. In particular, the Bayes factoravithys favor the simpler model. This is callethdley’s
paradox. Thus choosing the hyper-parameters of a prior is a way dfaliing the complexity of the chosen model.

Note that, if H, and H; share the same prior over certain parameters, this paregdribr can be improper, since
the normalization constant will cancel out.

6.4 Bayesian information criterion (BIC)

We can approximate the marginal likelihood in the large dansptting as follows. Let us apply the Laplace ap-
proximation (Section 5.1) to the posterior, §(7) = p(D|6)p(6), andZ = p(D). From Equation 188, the Laplace
approximation to the marginal likelihood is

p(D) =~ p(D|0)p(6o)(2m)"?|C|3 (224)

wheref, is a posterior mode.

TheBayesian information criterion (BIC) is an approximation to the above approximation in vahiee assume
p(0) < 1 and|H| ~ n?, wheren is the number of data points adds the number of parameters (length®f Since
C = —H~!, we have

logp(D) = logp(D|éA1LE)—%dlogn (225)

dropping additive constants.
TheAkaike Information Criterion (AIC) is derived from a different framework, but the final ares is similar:

log P(D) ~ log P(D|0y15) — d (226)

Note that determining the “effective number of parametéris’a difficult problem in general, especially in latent
variable models.

References

[Arc05] C. Archamebau.Probabilistic models in noisy environment®hD thesis, U. Catholique de Louvain,
Machine learning group, 2005.

[Ber85] J. BergerStatistical Decision Theory and Bayesian AnalySipringer-Verlag, 1985.

[Bis06] C. Bishop.Pattern recognition and machine learningpringer, 2006.

[DMP*06] F. Demichelis, P. Magni, P. Piergiorgi, M. Rubin, and RalIBzzi. A hierarchical Naive Bayes model
for handling sample heterogeneity in classification protdean application to tissue microarragviC
Bioinformatics 7:514, 2006.

[GCSRO4] A. Gelman, J. Carlin, H. Stern, and D. RubBayesian data analysisChapman and Hall, 2004. 2nd
edition.

[GelO6] Andrew Gelman. Prior distributions for variancegaeters in hierarchical modelBayesian Analysjs
2006.
[Jay03] E. T. Jaynesrobability theory: the logic of scienc&€ambridge university press, 2003.
[Mac03] D. MacKay.Information Theory, Inference, and Learning Algorithr@ambridge University Press, 2003.
[Mur07] K. Murphy. Conjugate bayesian analysis of the géarsdistribution. Technical report, UBC, 2007.
[ZLO4] M. Zhu and A. Lu. The counter-intuitive non-informag prior for the bernoulli family. J. Statistics
Education 2004.

31



