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1 Stochastic processes
A stochastic processis an indexed collection of random variables,{Xt}, t ∈ T . If the index setT is discrete, we will
often writet ∈ {1, 2, . . .}, to represent discrete time steps. For a finite number of variables, we will assumet ∈ 1 : d
as usual, whered is the length of the sequence. If the state spaceX is finite, we will writeXt ∈ {1, 2, . . . , K}, where
K is the number of states. If the state space is countably infinite, we will writeXt ∈ {0, 1, 2, . . .}. If the state space
is continuous, we will writeXt ∈ IR, althoughXt could also be a vector.

Here are some examples of stochastic processes:

• A finite sequence of i.i.d. discrete random variables,{X1, X2, . . . , Xn}, whereXt ∈ {1, . . . , K}. This is
discrete (finite) time and discrete (finite) state.

• An infinite sequence of non i.i.d. random variables{X1, X2, . . .}, Xt ∈ IR, representing, for example, the daily
temperature or stock price. This is discrete time but continuous state.

• An infinite sequence of non i.i.d. random variables{X1, X2, . . .}, Xt ∈ {0, 1, 2, . . .}, representing, for exam-
ple, the number of people in a queue at timet. This is discrete time and discrete state.

• Brownian motion, which models a particle performing a Gaussian random walk along the real line. This is
continuous-time and continuous-state.

For the rest of this Chapter, we shall restrict attention to discrete-time, discrete-state stochastic processes.

2 Markov chains
Recall that for any set of random variablesX1, . . . , Xd, we can write the joint density using the chain rule as

p(X1, . . . , Xd) = p(X1)

d
∏

t=2

p(Xt|X1:t−1) (1)

A (first order, discrete-time)Markov chain is a stochastic process in whichXt only depends onXt−1, not the whole
past:

p(Xt|X1, . . . , Xt−1) = p(Xt|Xt−1) (2)

We say thatXt−1 is a sufficient statistic of the past history for predictingXt. Under this assumption, the joint becomes

p(X1:d) = p(X1)p(X2|X1)p(X3|X2) . . . = p(X1)

d
∏

t=2

p(Xt|Xt−1) (3)

Definep(X1 = j) = πj is theinitial state distribution andp(Xt = k|Xt−1 = j) = T
(t)
jk is thestate transition

kernel at timet. If the state space is finite,T can be represented as aK×K matrix called thetransition matrix . Each
row of the matrix sums to one,

∑

k T
(t)
jk = 1, so this is called astochastic matrix. If we assume the transition matrix

T (t) is independent of time, then the chain is calledhomogeneous, stationary, or time-invariant . This assumption is
illustrated in Figure 1, where we see that theT parameter node is a parent of all theXit nodes fort > 1; this is called
parameter tying. (Recall thati = 1 : n indexes the training sequences.) A stationary, finite-state Markov chain is
equivalent to astochastic automaton.
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Figure 1: Markov chain as a DGM.π is the initial state distribution andT is the (tied) transition matrix.di is the length of thei’th
sequence.

Figure 2: State transition diagrams for some simple Markov chains. Left: a 2-state chain. Right: a 3-state left-to-right chain.

2.1 Examples of Markov chains

The state transition matrix is often visualized by drawing astate transition diagram, where nodes represent states
and arrows represent legal transitions, i.e., non-zero elements ofT . The weights associated with the arcs are the
probabilities. For example, the following 2-state chain

T =

(

1 − α α
β 1 − β

)

(4)

is illustrated in Figure 2(left). The following 3-state chain

T =





T11 T12 0
0 T22 T23

0 0 1



 (5)

is called aleft-to-right transition matrix , and is illustrated in Figure 2(right). This is commonly used in speech
recognition: the states representphonemes, and the sequence of phonemes defines a word. Finally, the following
6-state chain

T =

















1
2

1
2 0 0 0 0

1
4

3
4 0 0 0 0

1
4

1
4

1
4

1
4 0 0

1
4 0 1

4
1
4 0 1

4
0 0 0 0 1

2
1
2

0 0 0 0 0 1

















(6)

is illustrated in Figure 3. We will use this example later.
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Figure 3: State transition diagram for a 6-state Markov chain.

2.2 Multi-step transition matrix

The Tjk element of the transition matrix specifies the probability of getting from j to k in one step. Then-step
transition matrix T (n) is defined as

Tjk(n) = p(Xt+n = k|Xt = j) (7)

which is the probability of getting fromj to k in exactlyn steps. ObviouslyT (1) = T . TheChapman-Kolmogorov
equations state that

Tjk(m + n) =
K

∑

l=1

Tjl(m)Tlk(n) (8)

In words, the probability of getting fromj to k in m + n steps is just the probability of getting fromj to l in m steps,
and then froml to k in n steps, summed up over alll. (Exercise?? asks you to prove this result.) We can write the
above as a matrix multiply

T (m + n) = T (m)T (n) (9)

Hence
T (n) = T T (n − 1) = T T T (n− 2) = · · · = T n (10)

Hence we can simulate multiple steps of a Markov chain bypowering up the matrix.

2.3 Stationary distribution

The probability distribution over states at timet is given by

πt(k) = p(Xt = k) =
∑

j

p(Xt = k|X0 = j)p(X0 = j) (11)

=
∑

j

π0(j)Tjk(t) (12)

or, in matrix-vector notation,

πt = π0T
t (13)

where we have assumedπt is a row vector. A natural question is: what distribution do we end up with ast→∞? We
shall study this issue below.

Let us start with some examples. Consider the 2-state example in Figure 2(left). Supposeα = β = 1. It is clear
that this chain will continually oscillate between states 1and 2. On average it will spend 50% of its time in each state.
Thusπ∞ = (0.5, 0.5). Now consider the 3-state example in Figure 2(right). Clearly we will eventually end up in state
3, and once there, we will never leave; this is called anabsorbing state. Thusπ∞ = (0, 0, 1).

We define thestationary distribution (also called theinvariant distribution or equilibrium distribution ) of a
Markov chain to be a probability distributionπ that satisfies

π = πT, i.e.,πj =
∑

i

πiTij (14)
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Once we enter the stationary distribution, we will never leave. (From the above definition, we haveπ = πT n for all
n ≥ 0.)

2.4 Finding the stationary distribution

Since the stationary distribution satisfiesπT = π, or, taking transposes,T T
π

T = π
T , we can solve for the stationary

distribution by finding the principaleigenvectorand renormalizing. In Matlab this becomes

[evecs,evals]=eig(T’);
pi = normalize(evecs(:,1))’;

Unfortunately this can be numerically unstable, since it does not explicitly take the constraint
∑

k πk = 1 into account.
An alternative method exploits the fact [Res92, p138] thatπ1K×K = 11×K , since the rows sum to one. Hence

11×K = (π − πT ) + π1K×K (15)

= π(I − T + 1K×K) (16)

We can solve this in Matlab as follows.

pi = ones(1,K) / (eye(K)-T+ones(K,K));

Another closely related approach is to solveπ(I − T ) = 0 using Gaussian elimination (see [GTH85] for details).
For large, but sparse, transition matrices, a more efficientmethod is to use thepower method to solve forπ. We

simply start with a random vector and pass it through the transition matrix a large number of times. Eventually this
will converge to the stationary distribution. IfT is a sparse matrix, this only takesO(IK) time, whereK is the number
of states andI is the number of iterations, where we assume that each matrix-vector multiply takesO(K) time. For
example, we can implement this in one line of Matlab, starting from an arbitrary initial row vector, and using just 20
iterations:

pi = rand(1,K);
for i=1:20

pi = normalize(pi * T);
end

This method is used byGoogle’s Pagerankalgorithm: see Section 3. All of these methods are implemented in the
functionmcStatDist .

Finally, we give a more intuitive method for findingπ. For a distribution to be stationary, we must have that the
net probability flow across any cut-set in the state transition diagram is 0. For example, consider a simple two-state
chain with transition matrix

T =

(

1 − α α
β 1 − β

)

(17)

as in Figure 2(left). The zero net flow condition gives

π1α = π2β (18)

Sinceπ1 + π2 = 1, we have

π1 =
β

α + β
, π2 =

α

α + β
, (19)

2.5 Conditions under which a stationary distribution exists

(The following section is rather technical, and may be omitted without loss of continuity.)
Consider the 6-state example in Figure 3. If we start in state5 or 6, we will end up in 6, and never leave. Hence one

possible stationary distribution isπ = (0, 0, 0, 0, 0, 1). However, if we start in state 1 or 2, we will oscillate between
them forever. Hence another possible stationary distribution is π = (1

3 , 2
3 , 0, 0, 0, 0). If we start in states 3 or 4, we

may either end up in state 6, or end up oscillating between states 1 and 2.
We see from this example that there is not always a unique stationary distribution. However, it is possible to

characterize when a unique stationary distribution exists. This will be useful for several applications that we will study
later. Unfortunately, precisely characterizing this condition requires a lot of definitions and theorems. We summarize
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Term Meaning
Recurrent/ persistent Will return to self w.p.1
Transient Prob. of return is< 1
Null recurrent Infinite expected time to return to self
Non-null recurrent/ positive recurrent Finite expected time to return to self
Periodic Periodd(i) > 1, whered = gcd{n : Tii(n) > 0}
Aperiodic Periodd(i) = 1
Ergodic Recurrent, non-null and aperiodic

Table 1:Summary of kinds of states in a Markov chain.

some of the definitions in Table 1, and state the main theoremsbelow, but we omit the proofs. (See e.g., [GS92] for
proofs.) We mostly follow the presentation of [Was04, ch23].

Let us first examine the topology of the state transition graph. We say that statei reachesj (or j is accessible
from i) if Tij(n) > 0 for somen, and we writei→j. If i→j andj→i, then we writei ↔ j, and we say thati andj
communicate.

Theorem 2.1. The communication relation is anequivalence relationand hence satisfies the following properties:

• Reflexive:i ↔ i

• Symmetric: Ifi↔j thenj↔i

• Transitive: ifi↔j andj↔k theni↔k

Furthermore, the set of states can be written as a disjoint union of communicating classes, where two statesi and
j communicate iff they are in the same class. (These correspond to the connected components of the state transition
graph.)

If all states communicate with each other (so the transitiongraph is a single connected component), then the
chain is calledirreducible . A set of states isclosedif, once you enter that set of states, you never leave. A closed
set consisting of a single state is called anabsorbing state. In our 6-state example, the communicating classes are
C1 = {1, 2} , C2 = {3, 4}, C3 = {5} andC4 = {6}. C1 andC4 are irreducible closed sets. State 6 is an absorbing
state.

Now we introduce more definitions. Statei is recurrent or persistent if

P (Xt = i for somet ≥ 1|X0 = i) = 1 (20)

In otherwords, you will definitely return to statei. Otherwise the state istransient. In our 6-state example, states 3,
4 and 5 are all transient, because of the path3→4→5→6 and because once you enter 6, you cannot return. However,
1,2 and 6 are all recurrent. A chain in which all states are recurrent is called recurrent; a chain in which all states are
transient is called transient.

We have the following theorem.

Theorem 2.2. A statei is recurrent iff
∑

∞

t=1 Tii(t) = ∞.

The intuition behind the proof is that
∑

∞

t=1 Tii(t) counts the expected number of times you will return to statei.
Formally, if It = I(Xt = i) indicates whether we are in statei at timet or not, then

E[

∞
∑

t=1

It|X1 = i] =

∞
∑

t=1

P (Xt = i|X1 = i) =

∞
∑

t=1

Tii(t) (21)

If the state is recurrent, you will definitely return inn steps, so you will visit the state an infinite number of times.
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Theorem 2.3. Here are some facts about recurrence.

• If i is recurrent andi→j, thenj is recurrent.

• If i is transient andi→j, thenj is transient.

• A finite-state Markov chain must have at least one recurrent state.

• The states of a finite-state, irreducible Markov chain are all recurrent.

We also have the following useful theorem.

Theorem 2.4(Decomposition theorem). The state spaceX can be partitioned as follows

X = X T ∪ X 1 ∪ X 2 · · · (22)

whereX T are the transient states andX i are closed, irreducible sets of recurrent states.

These facts should all seem intuitively reasonable. In fact, one might wonder how it is possible to only have
transient states, since surely you have to return to somewhere? But consider the following example. Suppose we
perform arandom walk on the integers, X = {. . . ,−2,−1, 0, 1, 2, . . .}. Let Ti,i+1 = p, Ti,i−1 = q = 1 − p. All
states communicate, hence either all states are recurrent or all are transient. To see which, suppose we start atX1 = 0.
Now

T00(2n) =

(

2n
n

)

pnqn (23)

since the only way to get back to 0 is to taken steps to the right andn steps to the left. We can approximate this using
Stirling’s formula

n! ≈ nn
√

ne−n
√

2π (24)

Hence

T00(2n) ≈ (4pq)n

√
nπ

(25)

It is easy to check that
∑

t T00(t) < ∞ iff
∑

t T00(2t) < ∞. Moreover,
∑

t T00(2t) = ∞ iff p = q = 1
2 . By

Theorem 2.2, the chain is recurrent ifp = 1
2 , otherwise it is transient. This should be intuitively clear: if p > 1

2 , the
system will wander off to+∞; if p < 1

2 , it will wander off to−∞.
It should be obvious that a transient chain will not have a stationary distribution. Does that mean that a recurrent

chain will have a stationary distribution? For example, consider Figure 2(left): this is irreducible (so long asα > 0
andβ > 0), and hence, by Theorem 2.3, is recurrent. It also has a stationary distribution ofπ = (0.5, 0.5),as we saw
above. Also, the random walk on the integers we considered above is irreducible and recurrent ifp = 1

2 . But does it
have a stationary distribution? In fact it does not. The intuitive reason is that the distribution keeps spreading out over
a larger and larger set of the integers, and never converges.

This motivates the following definitions. Let

fij(n) = P (X1 6= j, X2 6= j, . . . , Xn−1 6= j, Xn = j|X0 = i) (26)

be the probability that the first visit to statej, starting fromi, takes place at then’th step. Define

fij =

∞
∑

n=1

fij(n) (27)

to be the probability that the chain ever visitsj, starting fromi. Obviouslyj is recurrent iff fjj = 1. Define themean
recurrence timeµi of a statei as

µi =
∑

n

nfii(n) (28)

if i is recurrent; we defineµi = ∞ if i is transient. Finally, define a recurrent statei asnull if µi = ∞, and asnon-null
or positive if µi < ∞.

We have the following important theorem.
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Theorem 2.5. An irreducible chain has a stationary distributionπ iff all the states are non-null recurrent. In this
case,πi = 1/µi, whereµi is the mean recurrence time.

It can be shown (e.g., [GS92, p143]) that for the random walk on the integers,µi = ∞ if p = 1
2 . (Intuitively, it

takes infinitely long, on average, to return to where you started.) Hence ifp = 1
2 , all the states are recurrent, but null.

(If p 6= 1
2 , all states are transient.) Thus this Markov chain does not have a stationary distribution. However, one can

show that for a finite-state Markov chain, all recurrent states are non-null. By Theorem 2.3, all states of a finite-state
irreducible Markov chain are recurrent; hence we have

Corollary 2.1. Every finite-state irreducible Markov chain has a unique stationary distribution.

Now consider the example of Figure 2(left) again, whereα = β = 1. If we start att = 1 in state 1, then on every
odd time step (1,3,5,...) we will be in state 1; but if att = 1 we start in state 2, then on every odd time step we will be
in state 2. Thus although the chain has a unique stationary distributionπ = (0.5, 0.5), it does not “forget” about the
initial starting state. This motivates the following definition.

Let us say that a chain has alimiting distribution if

T n→







π

...
π






(29)

for someπ. That is,πj = limn→∞ T n
ij exists and is independent ofi. If this holds, then the long-run distribution over

states will be independent of the starting state:

P (Xt = j) =
∑

i

P (X0 = i)Tij(t)→πj ast→∞ (30)

Let us now characterize when a limiting distribution exists. Define theperiod of statei to be

d(i) = gcd{t : Tii(t) > 0} (31)

where gcd stands forgreatest common divisor, i.e., the largest integer that divides all the members of the set. (For
example, gcd(6,8,10) = 2, and gcd(6,7,8)=1.) In our 2-statechain withα = β = 1, each state has period 2. We say
a statei is aperiodic if d(i) = 1. (A sufficient condition to ensure this is if statei has a self-loop, but this is not a
necessary condition.) Finally, define a state asergodic if it is recurrent, non-null and aperiodic. Define a chain to be
ergodic if all its states are ergodic. We can now state our main theorem.

Theorem 2.6. An irreducible, ergodic Markov chain has a limiting distribution, which is equal toπ, its unique
stationary distribution.

2.6 Time reversibility

We say that a Markov chainT is time reversible, or satisfiesdetailed balance, if there exists a distributionπ such
that

πiTij = πjTji (32)

Detailed balance guarantees thatπ is a stationary distribution. To see this, note that

∑

i

πiTij =
∑

i

πjTji = πj

∑

i

Tji = πj (33)

and henceπT = π. Hence if we can construct a chain with detailed balance, we can ensure that by simulating
the chain, we can draw samples fromπ. This is the basis ofMonte Carlo Markov chain (MCMC) methods: see
Chapter??.
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3 Application: Google’s PageRank algorithm
We will now see how the concept of stationary distribution isused inGoogle’s PageRankalgorithm to determine the
importance of web pages. We follow the presentation of [Mol04, ch2]. In particular, in this subsection, we assume
T is a stochastic matrix in whichcolumnssum to one, and in whichπ is acolumnvector. This simplifies the Matlab
implementation.

Consider the 6 web pages linked together as shown in Figure 4.We can represent this as a sparse adjacency matrix,
whereGij = 1 iff there is a link fromj to i. In Matlab we can type

i = [ 2 6 3 4 4 5 6 1 1];
j = [ 1 1 2 2 3 3 3 4 6];
n = 6;
G = sparse(i,j,1,n,n);

which creates a sparsen × n matrix with 1’s in specified positions, wheren is the number of nodes (web pages). (In
May 2002, the number of web pages that could be reached by following a series of hyperlinks starting at Google was
about 2.7 billion.)

Imagine performing a random walk on this graph, where at every time step, with probabilityp = 0.85 you follow
one of the outlinks uniformly at random, and with probability 1 − p you jump to a random node, again chosen
uniformly at random. If there are no outlinks, you just jump to a random page. (These random jumps ensure the chain
is irreducible, i.e., you can get from every node to every other node. This is sufficient to ensure there is a unique
stationary distribution, by Corollary 2.1.) This defines the following transition matrix:

Tij =

{

pGij/cj + δ if cj 6= 0
1/n if cj = 0

(34)

whereδ = (1−p)/n is the probability of jumping from one page to another without following a link andcj =
∑

i Gij

represent the out-degree of pagej. We can write this more compactly as follows. Define the diagonal matrixD with
entries

djj =

{

1/cj if cj 6= 0
0 if cj = 0

(35)

Define the vectorz with components

zj =

{

δ if cj 6= 0
1/n if cj = 0

(36)

Then we can rewrite Equation 34 as follows:
T = pGD + 1z

T (37)

The matrixT is not sparse, but it is a rank one modification of a sparse matrix. Most of the elements ofT are equal
to the small constantδ. We can use any of the methods in Section 2.4 to find the stationary distribution of this chain.
The resulting entries will be the PageRank scores of each webpage.

Let us first findπ by solving the linear systemπ(I − T + 1n×n) = 1n×1:

c = sum(G,1);
k = find(c˜=0); % non zero outdegree
D = sparse(k,k,1./c(k),n,n);
e = ones(n,1);
I = speye(n,n);
p = 0.85;
z = ((1-p) * (c˜=0) + (c==0))/n; % row vector
T = p* G* D + e* z;
pi = (I-T+ones(n,n))\e;

We find
π = (0.3209, 0.1706, 0.1065, 0.1368, 0.0643, 0.2008) (38)

So a random surfer will visit site 1 about 32% of the time. We see that node 1 has a higher PageRank than nodes 4 or
6, even though they all have the same number of in-links.

Let us now use thepower method. We simply iterate

π = Tπ = pGDπ + ez
T
π (39)
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alpha(1)

beta(2)

gamma(3)

delta(4)

rho(5)sigma(6)

Figure 4: A very small world wide web. Produced bypagerankDemo , written by Tim Davis. Based on the example in Section
2.11 of [Mol04].

In this example, we will start from the uniform distribution, but in general, we can start from the distribution computed
using last month’s web graph. (See [LM06] for details.)
pi = e/n;
for i=1:10

pi = normalize((p * G* D) * pi + e * (z * pi));
end

This rapidly converges to the solution (within 10 or so iterations). SeepagerankDemoKPM for the script file.
It is also possible to implement the power method without using any matrix multiplication, by simply sampling
from the transition matrix and counting how often you visit each state: seepagerankpow , by Cleve Moler, and
pagerankDemo , by Tim Davis, for illustrations.

Note that PageRank is only one of several factors that Googleuses to determine relevancy of a web page. Clearly
the most important one is that it contains thequery terms thay you specified. It is easy to find all pages that contain a
given word using a data structure called aninverted index.

4 Application: language modeling
Another important application of Markov models is to make statisticallanguage models: we simply define the state
space to be all the words in English (or some other language),and we then get a probability distribution over word
sequences of any length,p(x1:t|θ), whereθ = (π, T ).

The marginal probabilitiesp(Xi = k) are calledunigram statistics. If we use a first-order Markov model, then
p(Xi = k|Xi−1 = j) is called abigram model. If we use asecond-order Markov model, thenp(Xi = k|Xi−1 =
j, Xi−2 = l) is called atrigram model . And so on. In general these are calledn-gram models.

We can reduce the size of the vocabulary (state-space) somewhat by mapping rare words to the special symbol
unk, which stands for “unknown”. This is particularly helpful when the test set contains words (e.g., proper nouns)
that have never been seen before.

Language models can be used for several things, such as

• Sentence completion. A language model can predict the next word given the previous words in a sentence
by evaluatingp(xt|x1:t−1) = p(xt|xt−1). This can be used to reduce the amount of typing required, which is
particularly important for disabled users (see e.g., DavidMackay’sDashersystem1).

• Data compression. Any density model can be used to define an encoding scheme (see Chapter??). The more
accurate the predictive model, the fewer the number of bits it requires to store the data.

• Text classification. Any density model can be used as a class-conditional density and hence turned into a
(generative) classifier: see Exercise?? for an example. Note that using a 0-gram class-conditional density (i.e.,
only unigram statistics) would be equivalent to a naive Bayes classifier (see Chapter??).

1http://www.inference.phy.cam.ac.uk/dasher/
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When in the course of human Events, it becomes necessary for o ne
People to dissolve the Political Bands which have connected them with
another, and to assume among the Powers of the Earth, the sepa rate and
equal Station to which the Laws of Nature and of Natures God en title
them, a decent Respect to the Opinions of Mankind requires th at they
should declare the causes which impel them to the Separation ....

our Emigrations hitherefore, That the Life, Liberty, all ot her
Legislature Separalleled totally unwarrantablishing War fare, acquiesce
in Warfare, transporting his Government. The History of our Laws for
absolved for these right their Safety and Usurpation. He has marked by
these Oppresent ought a ...

Figure 5: Example output from ann-gram letter model. Top: input (training) text (Declaration of Independence for the USA, 4 July,
1776). Bottom: output sample from a 5-gram model. Source:http://jonathanwellons.com/n-grams/index.cgi

• Automatic essay writing. One can sample fromp(x1:t) to generate artificial text. This is one way of assessing
the quality of the model. In Figure 5, we give an example of text generated from a 5-gram model, trained on a
relatively short piece of historical text.

• Speech recognition. Often the acoustic signal is ambiguous, so it can be combined with a prior,p(x1:t), over
possible sentences to come up with plausible interpretations of the signal. In this case the sequence of words is
unobserved, so we need to use ahidden Markov model (HMM): see Section??.

• Spelling correction. We often make typing mistakes. We can make an HMM in which thetyped characters
are treated as noisy observations of the true characters which you “meant” to type. We can then infer the most
probable spelling of a word.

4.1 Perplexity

The quality of a language model is often measured usingperplexity. For a fixed probability distributionp, perplexity
is defined as

perplexity(p) = 2H(p) = 2−
P

x
p(x) log

2
p(x) (40)

whereH(p) is theentropy. If p = (1/K, . . . , 1/K) is the uniform distribution, then

perplexity(p) = 2−
P

K
x=1

1

K
log

2

1

K = 2− log
2

1

K = K (41)

Thus a perplexity ofK means we are equally confused betweenK possible choices.
We can obviously achieve a perplexity of 1 using a degeneratedistribution with 0 entropy. So we define the

perplexity of a probability modelpmodel(x) relative to a true or empirical distributionpemp as follows:

perplexity(pmodel) = 2H(pemp,pmodel) (42)

whereH(p, q) is thecross entropy(see Section??):

H(p, q) = −
∑

x

p(x) log2 q(x), (43)

Thus log-perplexity (relative to the empirical distribution) is equivalent to negative log likelihood (nll). We usually
compute this on a per-word basis. Suppose the nll for 1000 words was 7950. Then we would say the model has a
perplexity of27.95 = 247. In other words, the model is as confused on test data as if it had to choose uniformly and
independently among 247 possibilities for each word.
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Figure 6: The trellis of states vs time for a Markov chain. Source: [Rab89].

4.2 Maximum likelihood estimation

The probability of any particular sequence is given by

p(x1:d|T, π) = π(x1)T (x1, x2) . . . T (xd−1, xd) (44)

=

K
∏

j=1

π
I(x1=j)
j

d
∏

t=2

K
∏

j=1

K
∏

k=1

T
I(xt=k,xt−1=j)
jk (45)

This is often visualized in terms of paths through atrellis diagram , which illustrates the set of legal trajectories through
state space, i.e., the set of possible joint assignmentsx1:d. This is shown in Figure 6, where each row corresponds to
a state, and each column to a time step.

Of course, the probability of any particular path is likely to be very small, so for numerical reasons we would
usually compute the log-likelihood:

log p(x1:d|T, π) =
∑

j

I(x1 = j) log πj +
∑

jk

Njk log Tjk (46)

whereNjk =
∑d

t=2 I(xt−1 = j, xt = k) is the number ofj→k transitions. Hence the log-likelihood of a set of
sequencesD = (x1, . . . ,xn), wherexi = (xi1, . . . , xi,di

) for a sequence of lengthdi, is given by

log p(D|π, T ) =
n

∑

i=1

log p(xi|π, T ) =
∑

j

N1
j log πj +

∑

j

∑

k

Njk log Tjk (47)

N1
j =

n
∑

i=1

I(xi1 = j) (48)

Njk =

n
∑

i=1

di−1
∑

t=1

I(xi,t = j, xi,t+1 = k) (49)

We now discuss how to optimize this wrt the parametersπ andT .
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SinceX1 ∼ Mu(π, 1), we can immediately write down its mle as

π̂j = N1
j /n (50)

which is just the fraction of times we started in statej. However, we often setπ to be uniform or to be the steady state
distribution ofT , since we typically are not able to predict the first word of a sentence very reliably. Indeed, we will
often work with conditional density models of the formp(x2:t|x1), which does not require that we specifyπ.

For the transition matrix, recall that each row defines a distribution over next states given the current state. Hence
we haveXt|Xt−1 = j ∼ Mu(Tj,·, 1), so the mle of the transition matrix is given by

T̂jk = Njk/Nj (51)

Nj =
∑

k

Njk =

n
∑

i=1

di−1
∑

t=1

I(xit = j) (52)

whereNj is the number of times we made a transition out of statej.

4.3 Hierarchical Bayesian model

If we haveK ∼ 50, 000 words in our vocabulary, then a bi-gram model will have about2.5 billion free parameters,
corresponding to all possible word pairs. In general, an n-gram models hasO(Kn) parameters. It is hard to reliably
estimate the probability of so many n-tuples from reasonable amounts of training data. For example, in a bigram
model, many of theNij counts might be zero, even though it is possible that wordi can be followed by wordj. This
is just another example of thesparse data problemthat we first encountered in Section??. Even if the counts are
not exactly zero, our estimates of their probabilties will have high variance if the sample size is small. We shall now
investigate a hierarchical Bayesian solution to this problem.

A commonheuristic used to fix this problem is calleddeleted interpretation [CG96]. This defines the transition
matrix as a convex combination of the bigram countsfij = Nij/Ni and the unigram countsfj = Nj/N :

Tij = (1 − λ)fij + λfj (53)

The termλ is usually set bycross validation. There is also a closely related technique calledbackoff smoothing; the
idea is that iffij is too small, we “back off” to a more reliable estimate, namely fj.

We will now show that the deleted interpolation heuristic isan approximation to a simple hierarchical Bayesian
model [MP95]. First, let us use an independent Dirichlet prior on each row of the transition matrix:

Ti ∼ Dir(αm1, . . . , αmK) = Dir(αm) (54)

whereTi is row i of the transition matrix,m is the prior mean (satisfying
∑

k mk = 1) andα is the prior strength.
We will use the same prior for each row: see Figure 7. The posterior is given byTi ∼ Dir(αm + Ni), where
Ni = (Ni1, . . . , NiK) is the vector which records the number of times we have transitioned out of statei to each of
the other states. From Equation??, the posterior mean parameters for the transition matrix are given by

T ij =
Nij + αmj

Ni + α
=

fijNi + αmj

Ni + α
= (1 − λi)fij + λimj (55)

where
λi =

α

Ni + α
(56)

And from Equation??, the posterior predictive density is

p(Xt+1 = j|Xt = i, D) = T ij = (1 − λi)fij + λimj (57)

Equation 57 is similar to Equation 53 but not identical. We use a context-dependent weightλi to combinemj with
the empirical frequencyfij . This is likeadaptivedeleted interpolation. Furthermore, rather than backing off to the
empirical marginal frequenciesfj , we back off to the (learned) model parametermj .

To learn theα andm parameters, we can optimize the marginal likelihood using numerical methods (see below);
since these are hyper-parameters, this technique is calledempirical Bayesor type II maximum likelihood .
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am

Figure 7: A Markov chain in which we put a different Dirichlet prior on every row of the transition matrixT , but the hyperparam-
eters of the Dirichlet are shared.

4.4 Fitting the hierarchical Bayesian model

In order to derive the expression formj above, we proceed as follows. In the empirical Bayes approach, we maximize
the marginal likelihood (evidence)

u = argmax
u

p(D|u) = argmax
u

∏

i

∏

j Γ(Nij + αmj)

Γ(Ni + α)

Γ(α)
∏

j Γ(αmj)
(58)

whereu = αm. First we compute derivatives of the log evidence:

∂

∂uj

log p(D|u) =
∑

i

Ψ(Nij + uj) − Ψ(Nj +
∑

i′

ui′) + Ψ(
∑

i′

ui′) − Ψ(uj) (59)

where we define thedigamma function as

Ψ(x) =
∂

∂x
log Γ(x) (60)

We can now use e.g., conjugate gradients to find a local optimum. Various approximations to these expressions yield
Equation??: see [MP95] for details.

5 Testing for Markovianity
We can test whether a sequence of data is better modeled by a Markov chain or as an iid sequence by using Bayesian
hypothesis testing.2 Let M0 be the independence model, wherep(Xt = i) = θi andp(θ1:K) = Dir(β1:K). Then,
using Equation??, the marginal likelihood of a sequenceX1:N underM0 is

p(X |M0) = p(x1)
Γ(

∑

j βj)

Γ(N − 1 +
∑

j βj)

∏

j

Γ(Nj + βj)

Γ(βj)
(61)

The marginal likelihood under a Markov chain is the product of multinomial evidences, one per state:

p(X |M1) = p(x1)
∏

i

Γ(
∑

j αij)

Γ(Ni. − 1 +
∑

j αij)

∏

j

Γ(Nij + αij)

Γ(αij)
(62)

whereNi. is the number of transitions leaving statei. Hence if we use uniform priors,αij = βj = 1, the Bayes factor
for the independence model is

p(X |M0)

p(X |M1)
=

∏

i Γ(Ni. + K)

Γ(K)K−1Γ(N − 1 + K)

∏

j

Γ(Nj + 1)
∏

i Γ(Nij + 1)
(63)

2This section is based on [Min03], although we use slightly different notation (we reverse the subscripts).
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For example, supposeX = (1, 2, 1, 2, . . . , 1, 2). The counts are

Nij =

(

0 N/2 − 1
N/2 0

)

, Nj =

(

N/2 − 1
N/2

)

(64)

so the evidence ratio is
Γ(N/2 + K)Γ(N/2 − 1 + K)

Γ(K)K−1Γ(N − 1 + K)
(65)

which rapidly becomes very small asK andN increase, implying the variables must be dependent.
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