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1 Stochastic processes

A stochastic processs an indexed collection of random variabl¢X; }, ¢ € 7. If the index set is discrete, we will
often writet € {1,2,...}, to represent discrete time steps. For a finite number odbbes, we will assumee 1 : d
as usual, wherd is the length of the sequence. If the state sp#ds finite, we will write X; € {1,2,..., K}, where
K is the number of states. If the state space is countably efinie will write X; € {0,1,2,...}. If the state space
is continuous, we will writeX; € R, althoughX; could also be a vector.

Here are some examples of stochastic processes:

e A finite sequence of i.i.d. discrete random variable¥,, X»,..., X,,}, whereX; € {1,...,K}. Thisis
discrete (finite) time and discrete (finite) state.

e Aninfinite sequence of noni.i.d. random variab{es;, Xo, ...}, X; € R, representing, for example, the daily
temperature or stock price. This is discrete time but comtirs state.

e Aninfinite sequence of non i.i.d. random variab{es;, X, ...}, X; € {0,1,2,...}, representing, for exam-
ple, the number of people in a queue at tim&his is discrete time and discrete state.

e Brownian motion, which models a particle performing a Gaussian random wialkgathe real line. This is
continuous-time and continuous-state.

For the rest of this Chapter, we shall restrict attentionisoreéte-time, discrete-state stochastic processes.
2 Markov chains

Recall that for any set of random variabl&s, . .., X;, we can write the joint density using the chain rule as

d
p(X1, ., Xa) = p(X3) [ [ (Xt X11) @)

t=2
A (first order, discrete-timeylarkov chain is a stochastic process in whi¢hy only depends otX;_ 1, not the whole
past:
p(Xe|Xq, ..., Xeo1) = p(Xe| Xo—1) 2
We say thatX;_ is a sufficient statistic of the past history for predictikig Under this assumption, the joint becomes

d

P(X1.4) = p(X1)p(Xa| X1)p(X5| X2) ... = p(X1) [ [ p(Xe| Xe 1) (3)
t=2

Definep(X, = j) = =; is theinitial state distribution andp(X, = k| X;—1 = j) = Tj(,? is thestate transition
kernel attimet. If the state space is finitd, can be represented agax K matrix called theransition matrix . Each
row of the matrix sums to oné, ,. Tj(,? = 1, so this is called atochastic matrix. If we assume the transition matrix

T® is independent of time, then the chain is caleanogeneousstationary, or time-invariant.. This assumption is
illustrated in Figure 1, where we see that th@arameter node is a parent of all tNg; nodes fort > 1; this is called

parameter tying. (Recall that = 1 : n indexes the training sequences.) A stationary, finiteedtédrkov chain is
equivalent to astochastic automaton



Figure 1: Markov chain as a DGMr is the initial state distribution and is the (tied) transition matrixd; is the length of the’'th
sequence.
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Figure 2: State transition diagrams for some simple Markov chaint: be2-state chain. Right: a 3-state left-to-right chain.
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2.1 Examples of Markov chains

The state transition matrix is often visualized by drawingtate transition diagram, where nodes represent states
and arrows represent legal transitions, i.e., non-zenmehs of . The weights associated with the arcs are the
probabilities. For example, the following 2-state chain

1—a a
T:< ; 1_5> (4)

is illustrated in Figure 2(left). The following 3-state ¢ha

Tiw T2 O
T=|0 Ty T (5)
0 0 1

is called aleft-to-right transition matrix , and is illustrated in Figure 2(right). This is commonly dge speech
recognition: the states represephonemes and the sequence of phonemes defines a word. Finally, tlwsving
6-state chain

L1090 0 0 0

i 3
0 0 0 0
iilloo

r=(1t 45 t t 1 (6)

40440
11
000 0 % 3
00 0 0 0 1

is illustrated in Figure 3. We will use this example later.



Figure 3: State transition diagram for a 6-state Markov chain.

2.2 Multi-step transition matrix

The T}, element of the transition matrix specifies the probabilitygetting fromj to £ in one step. The:-step
transition matrix 7'(n) is defined as

Tik(n) = p(Xegn = k| Xy = j) (7)
which is the probability of getting fromj to & in exactlyn steps. Obviousl{’(1) = 7. TheChapman-Kolmogorov
equations state that

Tjr(m +n) Z Tji(m)Ty(n (8)

In words, the probability of getting fromto & in m +n steps is just the probability of getting frojrto [ in m steps,
and then from to &k in n steps, summed up over all (Exercise?? asks you to prove this result.) We can write the
above as a matrix multiply
T(m+n)=T(m)T(n) 9)
Hence
Tn)=TTn—-1)=TTTn-2)=---=T" (10)

Hence we can simulate multiple steps of a Markov chaipdyering up the matrix.
2.3 Stationary distribution
The probability distribution over states at times given by
m(k) = p(Xp=k)=> p(X;=kXo=j)p(Xo=j) (11)
J

= Z mo(5)Tjk(t) (12)

or, in matrix-vector notation,
w = mwoT! (13)

where we have assumed is a row vector. A natural question is: what distribution de @nd up with ag—oco? We
shall study this issue below.

Let us start with some examples. Consider the 2-state exampligure 2(left). Suppose = 7 = 1. Itis clear
that this chain will continually oscillate between stateentl 2. On average it will spend 50% of its time in each state.
Thusm,, = (0.5,0.5). Now consider the 3-state example in Figure 2(right). Qyeae will eventually end up in state
3, and once there, we will never leave; this is calledbsorbing state Thusw, = (0,0, 1).

We define thestationary distribution (also called thénvariant distribution or equilibrium distribution ) of a
Markov chain to be a probability distributian that satisfies

™= 7TT, i.e.,ﬂ'j = ZﬂiTij (14)



Once we enter the stationary distribution, we will neveréegFrom the above definition, we haxe= =7 for all
n >0.)

2.4 Finding the stationary distribution

Since the stationary distribution satisfie$ = 7, or, taking transpose$,” w7 = 7T, we can solve for the stationary
distribution by finding the principaigenvectorand renormalizing. In Matlab this becomes

[evecs,evals]=eig(T");

pi = normalize(evecs(:;,1))’;

Unfortunately this can be numerically unstable, since é@sloot explicitly take the constraipt, 7, = 1 into account.
An alternative method exploits the fact [Res92, p138] thiat « x = 11« x, Since the rows sum to one. Hence

livxg = (7T—7TT)+7T1K><K (15)
= 7(I -T +1gxk) (16)

We can solve this in Matlab as follows.
pi = ones(1,K) / (eye(K)-T+ones(K,K));

Another closely related approach is to sotw@l — T') = 0 using Gaussian elimination (see [GTH85] for details).
For large, but sparse, transition matrices, a more efficregthod is to use thpower methodto solve form. We
simply start with a random vector and pass it through thesttemm matrix a large number of times. Eventually this

will converge to the stationary distribution.Tf is a sparse matrix, this only také€g 1 K') time, whereX is the number
of states and is the number of iterations, where we assume that each matdor multiply take<D(K) time. For
example, we can implement this in one line of Matlab, stgrfiom an arbitrary initial row vector, and using just 20
iterations:
pi = rand(1,K);
for i=1:20
pi = normalize(pi *T);

end
This method is used b§oogles Pagerankalgorithm: see Section 3. All of these methods are impleptkirt the
functionmcStatDist

Finally, we give a more intuitive method for finding For a distribution to be stationary, we must have that the
net probability flow across any cut-set in the state tramsitliagram is 0. For example, consider a simple two-state

chain with transition matrix
11—« «
Tr= 17
(5% %) a7)

as in Figure 2(left). The zero net flow condition gives
T = 7T2ﬁ (18)

Sincer; + m = 1, we have
& - (19)
™ = , Ty = s
! a+p 2 a+p

2.5 Conditions under which a stationary distribution exists

(The following section is rather technical, and may be ocedittvithout loss of continuity.)

Consider the 6-state example in Figure 3. If we start in §ate6, we will end up in 6, and never leave. Hence one
possible stationary distribution s = (0,0, 0,0, 0, 1). However, if we start in state 1 or 2, we will oscillate betwee
them forever. Hence another possible stationary distdhus = = (%, %, 0,0,0,0). If we start in states 3 or 4, we
may either end up in state 6, or end up oscillating betwedassfiaand 2.

We see from this example that there is not always a uniqusséay distribution. However, it is possible to
characterize when a unique stationary distribution exidtss will be useful for several applications that we wiligy

later. Unfortunately, precisely characterizing this ctind requires a lot of definitions and theorems. We sumneariz



Term Meaning

Recurrent/ persistent Will return to self w.p.1

Transient Prob. of returnis 1

Null recurrent Infinite expected time to return to self
Non-null recurrent/ positive recurrent  Finite expectedkito return to self

Periodic Periodi(i) > 1, whered = gcd{n : T;;(n) > 0}
Aperiodic Periodi(:) = 1

Ergodic Recurrent, non-null and aperiodic

Table 1: Summary of kinds of states in a Markov chain.

some of the definitions in Table 1, and state the main theobstwsy, but we omit the proofs. (See e.g., [GS92] for
proofs.) We mostly follow the presentation of [Was04, ch23]

Let us first examine the topology of the state transition grayfe say that statéreaches; (or j is accessible
from4) if T;;(n) > 0 for somen, and we writei—j. If i—j andj—s1, then we writei < j, and we say thatand
communicate

Theorem 2.1. The communication relation is aquivalence relationand hence satisfies the following properties:
o Reflexivei « i
e Symmetric: Ifi—j thenj«—i
e Transitive: ifi<j andj«k theni—k

Furthermore, the set of states can be written as a disjoimdmuof communicating classeswhere two states and
j communicate iff they are in the same class. (These corresjootine connected components of the state transition
graph.)

If all states communicate with each other (so the transitjraph is a single connected component), then the
chain is calledrreducible. A set of states iglosedif, once you enter that set of states, you never leave. A dlose
set consisting of a single state is calledadsorbing state In our 6-state example, the communicating classes are
C1 ={1,2},Cy = {3,4}, C3 = {5} andC, = {6}. C1 andC, are irreducible closed sets. State 6 is an absorbing
state.

Now we introduce more definitions. States recurrent or persistentif

P(X, =iforsomet > 1| Xy =1i)=1 (20)

In otherwords, you will definitely return to state Otherwise the state tsansient. In our 6-state example, states 3,
4 and 5 are all transient, because of the gathi—5—6 and because once you enter 6, you cannot return. However,
1,2 and 6 are all recurrent. A chain in which all states aramreat is called recurrent; a chain in which all states are
transient is called transient.

We have the following theorem.

Theorem 2.2. A state; is recurrent iff >~ | 73 (¢) = .

The intuition behind the proof is that ;- , 7;;(t) counts the expected number of times you will return to state
Formally, if I, = I(X,; = i) indicates whether we are in statat time¢ or not, then

o0

ED LIXy=i]=) P(X;=i|X; =i) =Y Tult) (21)
t=1 t=1

t=1

If the state is recurrent, you will definitely returniinsteps, so you will visit the state an infinite number of times.



Theorem 2.3. Here are some facts about recurrence.
e If i is recurrent and—j, thenj is recurrent.
e If 7is transient and—j, thenj is transient.
o A finite-state Markov chain must have at least one recurretes

e The states of a finite-state, irreducible Markov chain ateedurrent.

We also have the following useful theorem.
Theorem 2.4(Decomposition theorem)The state spac&’ can be partitioned as follows
X=XrUX UXy--- (22)
whereX 1 are the transient states antl; are closed, irreducible sets of recurrent states.

These facts should all seem intuitively reasonable. In, face might wonder how it is possible to only have
transient states, since surely you have to return to som@®hBut consider the following example. Suppose we
perform arandom walk on the integers X = {...,-2,-1,0,1,2,...}. LetT; ;41 =p, ;-1 = q¢=1—p. All
states communicate, hence either all states are recurralhiaoe transient. To see which, suppose we staki;at 0.
Now

To(en) = () " 23

since the only way to get back to 0 is to taksteps to the right and steps to the left. We can approximate this using
Stirling’s formula

n! ~n"\/ne” "V 2r (24)
Hence (4 )
pq)"
Too(2n) ~ 2
00( TL) \/ﬁ ( 5)

It is easy to check tha}, Too(t) < oo iff ), Tpo(2t) < co. Moreover,y , Tyo(2t) = oo iff p = ¢ = 5. By
Theorem 2.2, the chain is recurrenpif= 1, otherwise it is transient. This should be intuitively ateif p > 1, the
system will wander off toroo; if p < % it will wander off to —oo.

It should be obvious that a transient chain will not have #atary distribution. Does that mean that a recurrent
chain will have a stationary distribution? For example,sidar Figure 2(left): this is irreducible (so long as> 0
andg > 0), and hence, by Theorem 2.3, is recurrent. It also has @s#atyi distribution ofr = (0.5,0.5),as we saw
above. Also, the random walk on the integers we consideredeais irreducible and recurrentf= % But does it
have a stationary distribution? In fact it does not. Theitivtei reason is that the distribution keeps spreading oat ov
a larger and larger set of the integers, and never converges.

This motivates the following definitions. Let

fzg(n) - P(Xl # j7X2 # j7 cee 7Xn71 #37XTL :j|X0 - Z) (26)
be the probability that the first visit to statestarting fromi, takes place at the'th step. Define

N |=

fii=>_ fij(n) (27)
n=1

to be the probability that the chain ever visjtstarting fromi. Obviously; is recurrentiff f;; = 1. Define themean
recurrence time y; of a state as
Hi = Z nfm(n) (28)
if 4 is recurrent; we defing; = o if i is transient. Finally, define a recurrent stasgsnull if ;1; = oo, and asion-null
or positiveif u; < oo.
We have the following important theorem.



Theorem 2.5. An irreducible chain has a stationary distributien iff all the states are non-null recurrent. In this
case,r; = 1/u;, wherep; is the mean recurrence time.

It can be shown (e.g., [GS92, p143]) that for the random walkhe integersy; = oo if p = 3. (Intuitively, it
takes infinitely long, on average, to return to where yousthay Hence ifpp = % all the states are recurrent, but null.
(If p # % all states are transient.) Thus this Markov chain does ae¢ la stationary distribution. However, one can
show that for a finite-state Markov chain, all recurrentegtadre non-null. By Theorem 2.3, all states of a finite-state

irreducible Markov chain are recurrent; hence we have
Corollary 2.1. Every finite-state irreducible Markov chain has a uniqueistzary distribution.

Now consider the example of Figure 2(left) again, where 5 = 1. If we start att = 1 in state 1, then on every
odd time step (1,3,5,...) we will be in state 1; but it at 1 we start in state 2, then on every odd time step we will be
in state 2. Thus although the chain has a unique stationafyldition7 = (0.5,0.5), it does not “forget” about the
initial starting state. This motivates the following defion.

Let us say that a chain hadimiting distribution if

" | (29)
s

for somer. Thatis,m; = lim,— 17 exists and is independentofif this holds, then the long-run distribution over
states will be independent of the starting state:

P(X; = j) =Y P(Xo = i)T;(t)—7; ast—oo (30)

3

Let us now characterize when a limiting distribution exifgfine theperiod of statei to be
d(i) = gcd{t : Ty (t) > 0} (31)

where gcd stands fagreatest common divisor i.e., the largest integer that divides all the members efsit. (For
example, gcd(6,8,10) = 2, and gcd(6,7,8)=1.) In our 2-sthten witha. = 3 = 1, each state has period 2. We say
a statei is aperiodic if d(i) = 1. (A sufficient condition to ensure this is if statdas a self-loop, but this is not a
necessary condition.) Finally, define a stateggdic if it is recurrent, non-null and aperiodic. Define a chain & b
ergodic if all its states are ergodic. We can now state ounrtegorem.

Theorem 2.6. An irreducible, ergodic Markov chain has a limiting distuition, which is equal tar, its unique
stationary distribution.
2.6 Time reversibility

We say that a Markov chaifi is time reversible, or satisfiedetailed balance if there exists a distributiom such
that
mi Ly = 7Ty (32)

Detailed balance guarantees thais a stationary distribution. To see this, note that
ZﬂiﬂjZZWjTji:WjZTﬂ:Wj (33)

and hencerT = m. Hence if we can construct a chain with detailed balance, aveaensure that by simulating
the chain, we can draw samples frem This is the basis oMonte Carlo Markov chain (MCMC) methods: see
Chapter??.



3 Application: Google’s PageRank algorithm

We will now see how the concept of stationary distributionsged inGoogleés PageRankalgorithm to determine the
importance of web pages. We follow the presentation of [Molh2]. In particular, in this subsection, we assume
T is a stochastic matrix in whicbolumnssum to one, and in which is acolumnvector. This simplifies the Matlab
implementation.

Consider the 6 web pages linked together as shown in FigiWie4an represent this as a sparse adjacency matrix,
whereG,; = 1iff there is a link fromj to . In Matlab we can type

which creates a sparsex n matrix with 1's in specified positions, whereis the number of nodes (web pages). (In
May 2002, the number of web pages that could be reached lopfioly) a series of hyperlinks starting at Google was
about 2.7 billion.)

Imagine performing a random walk on this graph, where atyetiere step, with probability = 0.85 you follow
one of the outlinks uniformly at random, and with probailit — p you jump to a random node, again chosen
uniformly at random. If there are no outlinks, you just juro@trandom page. (These random jumps ensure the chain
is irreducible, i.e., you can get from every node to everyeotiode. This is sufficient to ensure there is a unique
stationary distribution, by Corollary 2.1.) This defines fbllowing transition matrix:

pGij/Cj—F(S |fC]750

Ti‘:{ 1/n if ¢; =0 9

whered = (1—p)/n is the probability of jumping from one page to another wittfmliowing a link andc; = >, G;
represent the out-degree of pageNe can write this more compactly as follows. Define the diegonatrix D with

entries / .
o 1 Cj | Cj 7é 0
dij = { 0 ife, =0 (35)
Define the vectoz with components
o (5 |f Cj 7é 0
%= { 1/n ifc; =0 (36)

Then we can rewrite Equation 34 as follows:
T = pGD + 127 (37)

The matrix1 is not sparse, but it is a rank one modification of a sparseixnafiost of the elements df’ are equal
to the small constant. We can use any of the methods in Section 2.4 to find the staiiatistribution of this chain.
The resulting entries will be the PageRank scores of eaclpagb.

Let us first findr by solving the linear system (I — T + 1,,x») = lux1:

sum(G,1);

find(c™=0); % non zero outdegree

sparse(k,k,1./c(k),n,n);
ones(n,1);

o X o

1p) *(c™=0) + (c==0))/n; % r ow vect or
*GD + exz;
|-T+ones(n,n))\e;

We find

~
=

T HANT —®

g
w
=}
@
<
- @
2
=3
=)
2

—~T

7 = (0.3209,0.1706, 0.1065, 0.1368, 0.0643, 0.2008) (38)

So a random surfer will visit site 1 about 32% of the time. We &t node 1 has a higher PageRank than nodes 4 or
6, even though they all have the same number of in-links.
Let us now use thpower method We simply iterate

7w =Tm = pGDw + ez’ w (39)



alpha(l) delta(4)

gamma(3)

Figure 4: A very small world wide web. Produced IpagerankDemo , written by Tim Davis. Based on the example in Section
2.11 of [Mol04].

In this example, we will start from the uniform distributidsut in general, we can start from the distribution computed
using last month’s web graph. (See [LMO06] for details.)
pi = eln;
for i=1:10
pi = normalize((p *GD)xpi + e *(z *pi));

end
This rapidly converges to the solution (within 10 or so itenas). SeepagerankDemoKPM for the script file.
It is also possible to implement the power method withouhgsiny matrix multiplication, by simply sampling
from the transition matrix and counting how often you visiich state: sepagerankpow , by Cleve Moler, and
pagerankDemo , by Tim Davis, for illustrations.

Note that PageRank is only one of several factors that Gagge to determine relevancy of a web page. Clearly
the most important one is that it contains theery terms thay you specified. It is easy to find all pages that contain a
given word using a data structure callediaverted index.

4 Application: language modeling

Another important application of Markov models is to makaisticallanguage models we simply define the state
space to be all the words in English (or some other language) we then get a probability distribution over word
sequences of any lengih(z.;|0), wheref = (7, T).

The marginal probabilitiep(X; = k) are calledunigram statistics. If we use a first-order Markov model, then
p(X; = k| X,—1 = 7) is called abigram model. If we use asecond-order Markov mode| thenp(X; = k|X;—1 =
j, Xi—o = 1) is called arigram model. And so on. In general these are caltedram models

We can reduce the size of the vocabulary (state-space) doabdy mapping rare words to the special symbol
unk, which stands for “unknown”. This is particularly helpfuhen the test set contains words (e.g., proper nouns)
that have never been seen before.

Language models can be used for several things, such as

e Sentence completion A language model can predict the next word given the previgards in a sentence
by evaluatingp(z¢|z1.4—1) = p(x¢|x¢—1). This can be used to reduce the amount of typing required;twiki
particularly important for disabled users (see e.g., DMatkay’sDashersysten).

e Data compression Any density model can be used to define an encoding schem€tspter??). The more
accurate the predictive model, the fewer the number of bitjuires to store the data.

e Text classification Any density model can be used as a class-conditional geasd hence turned into a
(generative) classifier: see Exerci&efor an example. Note that using a 0-gram class-conditioeasity (i.e.,
only unigram statistics) would be equivalent to a naive Baglassifier (see Chapte®).

http://www.inference.phy.cam.ac.uk/dasher/



When In the course of human Events, it becomes necessary for o ne

People to dissolve the Political Bands which have connected them with
another, and to assume among the Powers of the Earth, the sepa rate and
equal Station to which the Laws of Nature and of Natures God en title
them, a decent Respect to the Opinions of Mankind requires th at they

should declare the causes which impel them to the Separation

our Emigrations hitherefore, That the Life, Liberty, all ot her
Legislature Separalleled totally unwarrantablishing War fare, acquiesce

in Warfare, transporting his Government. The History of our Laws for
absolved for these right their Safety and Usurpation. He has marked by

these Oppresent ought a ...

Figure 5: Example output from an-gram letter model. Top: input (training) text (Declaratiaf Independence for the USA, 4 July,
1776). Bottom: output sample from a 5-gram model. Sountig://jonathanwellons.com/n-grams/index.cgi

e Automatic essay writing. One can sample from(x;.+) to generate artificial text. This is one way of assessing
the quality of the model. In Figure 5, we give an example of ggnerated from a 5-gram model, trained on a
relatively short piece of historical text.

e Speech recognition Often the acoustic signal is ambiguous, so it can be cordbiith a prior,p(x1.;), over
possible sentences to come up with plausible interpretatid the signal. In this case the sequence of words is
unobserved, so we need to uskidden Markov model (HMM): see Sectior??.

e Spelling correction. We often make typing mistakes. We can make an HMM in whichtyiped characters
are treated as noisy observations of the true charactechwbi “meant” to type. We can then infer the most
probable spelling of a word.

4.1 Perplexity

The quality of a language model is often measured ugarglexity. For a fixed probability distributiop, perplexity
is defined as
perplexity(p) = 217(P) = 9= 2. P(@) log, p(2) (40)

whereH (p) is theentropy. If p = (1/K,...,1/K) is the uniform distribution, then
perplexlt}(p) =92~ Z.f‘,{:l % 10g2 % = 2_ 10g2 % = K (41)

Thus a perplexity of{ means we are equally confused betwéépossible choices.
We can obviously achieve a perplexity of 1 using a degeneligtebution with O entropy. So we define the
perplexity of a probability mode},,,.q.;(x) relative to a true or empirical distributign,,,,, as follows:

perplexn}(pmodel) —  9H(pemp,Pmodet) (42)
whereH (p, q) is thecross entropy(see Sectiof??):

H(p,q) == > _p(x)log, q(x), (43)

Thus log-perplexity (relative to the empirical distriburi is equivalent to negative log likelihood (nll). We udyal
compute this on a per-word basis. Suppose the nll for 100@svavas 7950. Then we would say the model has a
perplexity of27-%5 = 247. In other words, the model is as confused on test data asafitit choose uniformly and
independently among 247 possibilities for each word.

10



STATE
|

OBSERVATION, t

Figure 6: The trellis of states vs time for a Markov chain. Source: [8a4ib

4.2 Maximum likelihood estimation
The probability of any particular sequence is given by

p(x1.q|T,7) = 7w(x)T (21, 22) ... T(x4-1,%q) (44)
K d K K L
I(x1=j I(zi=k,xi_1=3
_ Hﬂ—j(lj)HHHlef 1=5) (45)
j=1 t=2 j=1 k=1

This is often visualized in terms of paths throughedlis diagram, which illustrates the set of legal trajectories through
state space, i.e., the set of possible joint assignmgnis This is shown in Figure 6, where each row corresponds to
a state, and each column to a time step.

Of course, the probability of any particular path is liketylie very small, so for numerical reasons we would
usually compute the log-likelihood:

log p(x1.q4|T,7) = ZI(xl = j)logm; + Z Nji log Ty, (46)
J ik

whereN;;, = ZfZQ I(xi—1 = j,z; = k) is the number ofji—k transitions. Hence the log-likelihood of a set of

sequence® = (xi,...,Xy,), Wherex; = (z;1,...,x;,q,) for a sequence of lengty, is given by
logp(D|mw,T) = Z logp(x;|mw,T) = Z le logm; + Z Z N log Ty, 47)

i=1 J Jj k

N} o= ) I(xza =) (48)
=1
n d,;—l

Nji = Z Z (i = j, i1 = k) (49)
=1 t=1

We now discuss how to optimize this wrt the parameteedT .

11



SinceX; ~ Mu(m, 1), we can immediately write down its mle as
#;=Nj/n (50)

which is just the fraction of times we started in statédowever, we often set to be uniform or to be the steady state
distribution of 7', since we typically are not able to predict the first word oéatsnce very reliably. Indeed, we will
often work with conditional density models of the fop{ws.¢ |21 ), which does not require that we specify

For the transition matrix, recall that each row defines aidision over next states given the current state. Hence
we haveX;|X; 1 = j ~ Mu(T7}..,1), so the mle of the transition matrix is given by

Tjr = Njr/N; (51)
n (ii—l

Nj o= Y Nj=)_ ) I(za=j) (52)
k =1 t=1

wherelV; is the number of times we made a transition out of sfate
4.3 Hierarchical Bayesian model

If we have K ~ 50,000 words in our vocabulary, then a bi-gram model will have atihgtbillion free parameters,
corresponding to all possible word pairs. In general, amamgmodels ha® (K ™) parameters. It is hard to reliably
estimate the probability of so many n-tuples from reasamalphounts of training data. For example, in a bigram
model, many of theV,; counts might be zero, even though it is possible that waah be followed by word. This
is just another example of theparse data problemthat we first encountered in Secti@®. Even if the counts are
not exactly zero, our estimates of their probabilties wélléa high variance if the sample size is small. We shall now
investigate a hierarchical Bayesian solution to this peobl

A commonheuristic used to fix this problem is callegdkleted interpretation [CG96]. This defines the transition
matrix as a convex combination of the bigram coufits= N;; /N; and the unigram count§ = N; /N

Tij = (1= N fij + Afj (53)

The term)\ is usually set byross validation There is also a closely related technique cafladkoff smoothing the
idea is that iff;; is too small, we “back off” to a more reliable estimate, nayngl

We will now show that the deleted interpolation heuristi@aisapproximation to a simple hierarchical Bayesian
model [MP95]. First, let us use an independent Dirichlebpoin each row of the transition matrix:

T, ~ Dir(amy,...,amg) = Dir(am) (54)

whereT; is row i of the transition matrixm is the prior mean (satisfyiny_, m; = 1) anda is the prior strength.
We will use the same prior for each row: see Figure 7. The piosts given byT; ~ Dir(am + N;), where
N, = (Na, ..., N;x) is the vector which records the number of times we have tianged out of staté to each of
the other states. From Equati®f, the posterior mean parameters for the transition mate>garen by

Nij + am; fijNZ‘ + am;

Ty = = =1 =X\)fi; + \im; 55
J N, + o N, + o ( )fij + Aimy (55)
where o
Ai = 56
N o (56)
And from Equatior??, the posterior predictive density is
p(Xt—l-l = ]|Xf = i, D) = Tij = (1 — )‘z)fu + /\7mJ (57)

Equation 57 is similar to Equation 53 but not identical. We ascontext-dependent weight to combinem; with
the empirical frequency;;. This is like adaptivedeleted interpolation. Furthermore, rather than backifigoothe
empirical marginal frequencigf§, we back off to the (learned) model parametey.

To learn then andm parameters, we can optimize the marginal likelihood usingerical methods (see below);
since these are hyper-parameters, this technique is ettgdrical Bayesor type Il maximum likelihood .
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Figure 7: A Markov chain in which we put a different Dirichlet prior onery row of the transition matrif’, but the hyperparam-
eters of the Dirichlet are shared.

4.4 Fitting the hierarchical Bayesian model

In order to derive the expression for; above, we proceed as follows. In the empirical Bayes appraee maximize
the marginal likelihood (evidence)

Hj F(NU +amj) P(a)
u = arg m&xp(D|u) = arg m&xl?[ T(N; T o) T, T(am,) (58)
whereu = am. First we compute derivatives of the log evidence:
0
8—ujlogp(D|u Z\I} (Nyj + uj) — U(N; +Zul + 0 Zul — (59)
where we define thdigamma function as
U(z) = % logI'(z) (60)

We can now use e.g., conjugate gradients to find a local optinMarious approximations to these expressions yield

Equation??. see [MP95] for details.

5 Testing for Markovianity

We can test whether a sequence of data is better modeled bykawthain or as an iid sequence by using Bayesian

hypothesis testing.Let M, be the independence model, whefe(; = i) = 0; andp(0.x) = Dir(B1.x). Then,

using Equatior??, the marginal likelihood of a sequendg. underM is

(xl) F(Zj 6]) F(Nj +ﬁj)
DN =1+232;8) 55 T(5)

The marginal likelihood under a Markov chain is the proddcmultinomial evidences, one per state:

2 ij) T(Nij + aij)
PX|M) = pla) H I'(N;. — 1 +Z aij) < anz‘j) ] ©2)

whereN;_is the number of transitions leaving statddence if we use uniform priors;;; = 3; = 1, the Bayes factor
for the independence model is

p(X|Mo) 1, T(N;. + K) HH (N; +1) ©3)

p(X|M;)  T(E)EI(N-1+K) T(N;; +1)

p(X|Mo) =p (61)

2This section is based on [Min03], although we use slightffednt notation (we reverse the subscripts).
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For example, supposE = (1,2,1,2,...,1,2). The counts are
(0 N/2-1 _(N/2-1

I'(N/2+ K)['(N/2 -1+ K)
[(K)K-IT(N — 1 + K)
which rapidly becomes very small & and N increase, implying the variables must be dependent.
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