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Prior p(h)

X={60,80,10,30}

Why prefer “multiples of 10” over “even
numbers”?

— Size principle (likelihood)

Why prefer “multiples of 10” over
“multiples of 10 except 50 and 20"?

— Prior

Cannot learn efficiently if we have a uniform prio
over all 299]ogically possible hypotheses



Need for prior (inductive bias)

» Consider all Z = 16 possible
binary functions on 2 binary inputs

Boolean functions.
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 |f we observe (0, %=1, y=0), this

removes B hg, hy, by, hyg, hyy, s Ny
o Still leaves exponentially many hypotheses!

e Cannot learn efficiently without
assumptions (no free lunch theorem)



Hierarchical prior

Total probability mass = Zh pth) = 1
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Computing the posterior

 |n this talk, we will not worry about
computational issues (we will perform brute
force enumeration or derive analytical

expressions).

p(X [1) p(h)
h|X) =
PEDES pxime)
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Generalizing to new objects

Givenp(h|X), how do we computg(yLIC| X)
the probability thaC applies to some new
stimulusy?



Posterior predictive distribution

Compute the probability th&t applies to some new
objecty by averaging the predictions of all
hypothese$, weighted byp(h|X)

(Bayesian model averaging):

p(ydC|X)= ¥ p(yC|h) p(h| X)
hH {1;1Cth

0 if yOh

= 2, p(h|X)

hi{y, X}
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+ Examples

Human generalization Bayesian Model
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Rules and exemplars in the

number game

 Hyp. space Is a mixture of sparse
(mathematical concepts) and dense
(Intervals) hypotheses.

e If data supports mathematical rule (eg
X={16,8,2,64}), we rapidly learn a rule
(“ahal!” moment), otherwise (eg
X={6,23,19,20}) we learn by similarity, and
need many examples to get sharp boundary.




Summary of the Bayesian approach

EKampIes

Hyp. space Size Hypothesis . .
[ + Prior principle averaging Generalize

1. Constrained hypothesis space H
2. Prior p(h)

3. Likelihood p(X|h)

4. Hypothesis (model) averaging:

ply € C X)=Y ply € Clh)p(h|X)
h



MAP (maximum a posterior) learning

* |Instead of Bayes model averaging, we can find the
mode of the posterior, and use it as a plug-in.
h = argm}?xp(h|X) = argm}?xp(X|h)p(h)
ply € CIX) = p(y € Clh)
 As N— oo, the posterior peaks around the mode,

so MAP and BMA convergeﬂiw l

ply € CIX)=> ply € Clh)p(h|X) — > p(y € C|h)5(h,h)) = p(y € C|h)
h h

e Cannot explain transition from similarity-based
(broad posterior) to rule-based (narrow posterior)



Relation between MAP and MDL

« MAP (penalized likelihood) estimation:

P(h| X) O P(X |h) P(h)

 Minimum description length (MDL):
—logP(h| X)=-logP(X |h) + -logP(h) + Const

Total encoding Cost to encode  Cost to encode
cost the data given  the hypothesis
the hypothesis



Model selection using MDL
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Bayesian Occam’s Razor

 Which hypothesis is better supported by the
examples {54, 6, 22}?
— “even numbers”
— “numbers between 6 and 54"

 Intuition: simpler hypotheses come from smaller
(more constrained) hypothesis spaces.

— “Entities should not be multiplied without necégsi
— Prefer models with fewer free parameters.

 Both prior and likelihood contribute to this, senc
p(h|X) oc p(h) p(X|h)



Maximum likelihood

ML = no prior, no averaging.
Plugs-in the I\/ILE for prediction:

h = argmaxp(X|h)
p(y € CIX) = plyeClh)

X={16} -> h="powers of 4"
X={16,8,2,64} -> h= "powers of 2".

So predictive distribution gets broader as
we get more data, in contrast to Bayes.

ML is initially very conservative.



Large sample size behavior

* As the amount of data goesdo, ML,

MAP and BMA all converge to the same
solution, since the likelihood overwhelms
the prior, since p(X|h) grows with N, but

p(h) Is constant.

o If truth Is Iin the hypothesis class, all
methods will find It; thus they are consistent
estimators.



