
CS 340 Fall 2007: Homework 6

1 Bivariate Gaussians

Let X ∼ N (µ, Σ) whereX ∈ IR2 and

Σ =

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

(1)

whereρ is the correlation coefficient. Show that the pdf is given by

p(x1, x2) =
1

2πσ1σ2

√

1 − ρ2
exp

(

− 1

2(1 − ρ2)

(

(x1 − µ1)
2

σ2
1

+
(x2 − µ2)

2

σ2
2

− 2ρ
(x1 − µ1)

σ1

(x2 − µ2)

σ2

))

(2)

Hint: The determinant for a2 × 2 matrix

A =

(

a b
c d

)

(3)

is given by
|A| = detA = ad − bc (4)

and its inverse is given by

A−1 =
1

|A|

(

d −b
−c a

)

(5)

2 Mutual information for correlated normals

(Source: Exercise 9.3 of [?])
Find the mutual informationI(X, Y) where

(

X
Y

)

∼ N 2

(

0,

(

σ2 ρσ2

ρσ2σ2 σ2

))

(6)

EvaluateI(X, Y) for ρ = 1, ρ = 0 andρ = −1 and comment. Hint: The (differential) entropy of ad-dimensional
Gaussian is

h(X) = 1
2 log

[

(2πe)d detΣ
]

(7)

3 A measure of correlation (normalized mutual information)

(Source: Exercise 2.20 of [?])
Let X andY be identically distributed (soH(X) = H(Y)) but not necessarily independent. Define

r = 1 − H(Y |X)

H(X)
(8)

1. Showr = I(X,Y)
H(X)

1

2. Show0 ≤ r ≤ 1

3. When isr = 0?

4. When isr = 1?

4 Gaussian decision Boundaries

Suppose we have two 1D normal distributions with the same variance, but with different means:N(µ1, σ
2) and

N(µ2, σ
2). Explain the effect on the decision boundary of changing theclass priorp(Y = 1).

5 More Gaussian decision boundaries

Let p(x|y = j) = N (x|µj , σj) wherej = 1, 2 andµ1 = 0, σ2
1 = 1, µ2 = 1, σ2

2 = 106. Let the class priors be equal,
p(y = 1) = p(y = 2) = 0.5.

1. Find the decision region
R1 = {x : p(x|µ1, σ1) ≥ p(x|µ2, σ2)} (9)

Sketch the result. Hint: draw the curves and find where they intersect. Findboth solutions of the equation

p(x|µ1, σ1) = p(x|µ2, σ2) (10)

Hint: recall that to solve a quadratic equationax2 + bx + c = 0, we use

x =
−b ±

√
b2 − 4ac

2a
(11)

2. Now supposeσ2 = 1 (and all other parameters remain the same). What isR1 in this case?

6 Gibbs sampling from an Ising model (Matlab)

The goal of this exercise is to draw samples from an Ising model, at different temperatures. Specifically, the goal is
to reproduce Figure 1. To make this, you can modify the functiongibbsDemoDenoising. Simplify this function
by removing all the parts that depend on local evidence (we want to sample from the prior and ignore the likelihood).
You can choose an initial sample randomly, rather than by thresholding pixels.

7 Language identification using Markov models (Matlab)

(Source: Jaakkola, modified by Murphy)
In this problem, we will will construct a language classifierby usingn’th order Markov models as class-conditional
distributions. In other words, we will train a separate Markov model to represent each of the chosen languages (En-
glish, German, Spanish, and Italian), and then compute the likelihood of a novel sentence under each of these models.
The training data is given in the filescnn.eng, cnn.ger, cnn.spa, cnn.ita, which contain several news
articles (same articles in different languages), one article per line. (The data files are in themarkovLanguageData
subdirectory.)
We will compute the statistics of individual letters or sequences of letters for each language; these are calledn-gram
statistics. Ifn = 1, we are using unigrams (marginal letter frequencies), soc1(i) is the number of times letteri
appears; ifn = 2 (a first order Markov model), we are counting bigram frequencies, soc2(i, j) is the number of times
letteri is followed by letterj; and so on.

2

trial 1 temp 5.00

trial 2 temp 5.00

trial 3 temp 5.00

trial 1 temp 2.50

trial 2 temp 2.50

trial 3 temp 2.50

trial 1 temp 0.10

trial 2 temp 0.10

trial 3 temp 0.10

Figure 1: Samples from an100×100 Ising model at decreasing temperatures. We use a coupling strength ofW = 1/T ,
whereT is the temperature. We useT = 5, T = 2.5 andT = 0.1 from left to right. We show 3 samples at each
temperature, drawn after 50,000 single site updates using Gibbs sampling, applied to a random initial state. Produced
by gibbsDemoIsing.

3

For simplicity, our representation of text will include only 27 symbols: the 26 letters of the Latin alphabet, and the
space symbol. All characters outside of this set are replaced by a space symbol. This representation naturally looses
quite a bit of information compared to the original ASCII text. This ’handicap’ is in part intentional to make the
classification task a bit more challenging.
You will need the following functions.

stream = text2stream(string) Converts a string (a line of text) into a row vector of numbersin the range{1, . . . , 27}.

streams = readlines(filename)Reads a named text file, returning a cell array of the lines in the file, with letters
converted to numbers as above.

(counts1, counts2) = getCountsMarkovLanguageEx()Computes the unigram and bigram counts from all the train-
ing files. counts1(i, c) is the number of times wordi occurs in languagec. counts2(i, j, c) is the number of
times wordi is followed by wordj in languagec.

Now answer the following questions.

1. Write a functionll = naiveLL(stream, counts1) which takes a text stream (represented as a vector
of numbers) and the unigram counts and evaluates the log-likelihood of the text stream by plugging in the
maximum likelihood estimateŝπi derived from the counts:

p(x1:T |θ̂) =

T
∏

t=1

K
∏

i=1

π̂
I(xt=i)
i (12)

log p(x1:T |π̂) =

T
∑

t=1

K
∑

i=1

I(xt = i) log π̂i (13)

=

K
∑

i=1

Mi(x1:T) log π̂i (14)

wherex1:T is the test stream,Mi(x1:T) is the number of times symboli occurs in the test stream,K is the
number of symbols in the alphabet, and the MLE derived from counts1 is

π̂i = Ni/N (15)

whereNi is the number of times symboli occurs in the training streams (i.e.,Ni = count1(i)). Turn in your
code.

As a check, if you evaluate the log-likelihood of ’This is an example sentence’ using the English 1-counts from
cnn.eng, you’ll get -76.9307, while the log-likelihood of the same sentence under the Spanish parameters is
-77.5193. You can test as follows:

eng = 1; ger = 2; spa = 3; ita = 4;
str = ’this is an example sentence’;
stream = text2stream(str);
ll = naiveLL(stream, counts1(:,eng)) % -76.9307
ll = naiveLL(stream, counts1(:,spa)) % -77.5193

2. Write a functionyhat=naiveLanguageClassifier(stream, counts1) where stream is a numeric
vector and counts1 is as above. Return the most probable class (language) yhat, where 1=english, 2=german,
3=spanish, 4=italian. Turn in your code. It should usenaiveLL as a subroutine. You can assume the prior over
classes is uniform.

3. Now we want to apply the trained model to classify some novel text. The filessong.eng, song.ger,
song.spa, song.ita contain additional text in the four languages. We will use these as the test set:

4

test_sentences = [readlines(’song.eng’) ; ...
readlines(’song.ger’) ; ...
readlines(’song.spa’) ; ...
readlines(’song.ita’)] ;

test_labels = [ones(17,1) ; ones(17,1)*2 ; ones(17,1)*3 ; ones(17,1)*4]

We will study the performance of the classifier as a function of the length of test strings by classifying all
prefixes of the lines in the test files. The provided routinetestLanguageClassifier.m calculates the
success probability of the classification, for each prefix length, over all the streams or strings in a given cell-
array. You can call this function as follows:

probs = testLanguageClassifier(test_sentences, test_labels, ...
’naiveLanguageClassifier’,counts1);

This calls your functionnaiveLanguageClassifierwith each line of testsentences and with thecounts1
argument, and compares it to testlabels. Use this function to plot the success probability asa function of the
length of the string. It should look like Figure 2(left). Turn in your code and plot.

4. We will now move on to modeling the languages with first-order Markov models.
Write down an equation similar to Equation 14 for the log-likelihood of a test sentence given known parameters
π (initial state distribution) andA (transition matrix).

5. Write a functionmarkovLL(stream,counts2,counts1) that estimatesπ andA from the specifed bi-
gram and unigram statistics,1 and returns the log-likelihood of the sentence. Use the MLE for πi = P (X1 = i)
(derived from counts1 as above), but use the posterior mean estimate forA(i, j) = P (Xt = j|Xt−1 = i),
derived from counts2 and a Dirichlet prior with pseudocounts ofα = 1 to avoid problems with 0 counts. Hint:
you may find the provided functionA=mk stochastic(M) useful; this converts a matrix of countsM(i, j)
into a stochastic matrixA(i, j), whereA(i, j) = M(i, j)/(

∑

j′ M(i, j′)). Hint 2: as a sanity check, you should
get the following

str = ’this is an example sentence’;
stream = text2stream(str);
markovLL(stream, counts2(:,:,eng), counts1(:,eng)) % -64.2469
markovLL(stream, counts2(:,:,spa), counts1(:,spa)) % -66.7015

Note that these numbers are higher than the unigram model, indicating a better fit to the training data. Turn in
your code.

6. Write a functionc=markovLanguageClassifier(stream, counts2, counts1). Return the most
probable class (language), where 1=english, 2=german, 3=spanish, 4=italian. (Use a uniform prior over classes.)
Turn in your code.

7. Use

probs = testLanguageClassifier(test_sentences, test_labels, ...
’markovLanguageClassifier’, counts2, counts1);

to test the performance of Markov-based classification on the test set. testLanguageClassifier calls your function
markovLanguageClassifier with each line of testsentences and with thecounts2 andcounts1
arguments, and compares it to testlabels. This returns the success probability for each stream length. Plot the
correct classification probability as a function of the textlength. It should look like Figure 2(right). We see that
this model needs much less data at test time to come up with theright classification. Turn in your code and plot.

1You can derive the unigram counts from the bigram counts by marginalizing, but there is an ambiguity which arises depending on whether
you sum counts2 over the first or 2nd dimension. Example: 2-counts: ”ab”, ”ba”, each once. Was the sequence ”aba” or ”bab”?For the first,
counts1(a)=2, for the second, counts1(a)=1. Hence we require you pass in count1 as a separate argument.

5

0 50 100 150 200

0.4

0.5

0.6

0.7

0.8

0.9

1

text length

P
(c

or
re

ct
)

0 50 100 150 200

0.4

0.5

0.6

0.7

0.8

0.9

1

text length

P
(c

or
re

ct
)

Figure 2: Performance vs number of test symbols for (left) Naive Bayes model and (right) first order Markov model.
We see that the Markov model correctly classifies the document more quickly than the naive model (i.e., it needs to
see less data). For example, to reach 95% correct, the naive model needs about 59 characters, whereas the Markov
model nees only 17 characters.

6

