CS 340 Fall 2007: Homework 5

1 BayesBall

Here we compute some global independence statements framdicected graphical models. You can use the “Bayes
ball” algorithm, the d-separation criterion, or the metleddonverting to an undirected graph (all should give theessam
results).

1. Consider the DAG in Figure 1(a). List all variabl&ss.t., X | A|B, i.e., variables that are independentbf
given evidence om3.

2. Consider the DAG in Figure 1(b). List all variabl&ss.t., X [ A|J, i.e., variables which depend ohgiven
evidence onJ.

(b)

Figure 1: Bayes nets

2 Bayesnetsfor arainy day

In this question you must model a problem with 4 binary vdgabG ="gray”, V' ="Vancouver”, R ="rain” and
S ="sad". You are given the following graphical model desaripthe relationship between these variables:



R

VG 0 1
00| 06| 04
01| 03| 0.7
10| 0.2 | 0.8
11 0.1 | 0.9

1. Write down an expression fé*(S = 1|V = 1) in terms of«, 3,7, d.

2. Write down an expression fd?(S = 1|V = 0). Is this the same or different t8(S = 1|V = 1)? Explain
why.

3. Find maximum likelihood estimates of 3, v using the following data set, where each row is a training@cas
(You may state your answers without proof.)
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3 Fishing nets

Consider the Bayes net shown in Figure 2. Here, the nodesseptrthe following variables

X1 € {winter, spring, summer, auturhn
X2 € {salmon, sea baks

Xs € {light, medium, dark

X, € {wide, thin}

The corresponding conditional probability tables are

plz)=( .25 25 .25 25)

p(zalz1) =
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Season

Lightness Thicknes:

Figure 2: Fish Bayes net

p(ealze) = ( .945 .665 )

Note that inp(z4|z2), the rows represent, and the columns, (so each row sums to one and represents the child of
the CPD). Thu®(z4 = thin|z. = sea bags= 0.05, p(x4 = thin|zy = salmor) = 0.6, etc.
Answer the following queries. You may use matlab or do it bgchdn either case, show your work.

1. Suppose the fish was caught on December 20 — the end of aatuhthe beginning of winter — and thus let
p(xz1) = (.5, 0, 0, .5) instead of the above prior. (This is callsaft evidence, since we do not know the exact
value of X, but we have a distribution over it.) Suppose the lightnessrot been measured but it is known
that the fish is thin. Classify the fish as salmon or sea bass.

2. Suppose all we know is that the fish is thin and medium ligegn What season is it now, most likely? Use
p(z1)=( .26 25 .25 .25 )

4 LearningtouseBNT

BNT (the Bayes Net Toolbox) is a Matlab package | wrote thatesat easy to do Bayesian inference about discrete
random variables in directed graphical models with fixedpeaters. In this exercise, you will learn how to use some
of its most basic functions.

1. Download BNT.zip fromhttp://www.cs.ubc.ca/ ~murphyk/Software/BNT/bnt.html
2. Install according to the instructionstdtp://www.cs.ubc.ca/ ~murphyk/Software/BNT/install.
html
3. Read the manual attp://www.cs.ubc.ca/ ~murphyk/Software/BNT/usage.html . In particu-

lar, read the sections entitled “Creating your first Bayd’ aed “Inference”.

4. Load the filelBNT/examples/static/sprinklerl.m , Which illustrates how to do inference in the water
sprinkler example. Modify this file to compuigS = true|W = false) (hint: should be 0.0621) ang S =
true|W = false, R = false). (Note: false is state 1, and true is state 2; the value of @isatiowed as
evidence in BNT.) Turn in your probability estimates andeod
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Figure 3: A small QMR Bayes net with 3 diseases and 5 symptdrhe.small blue numbers in the top left next to
each node are the topological numbers.

5 QMRIinBNT

As discussed in class, the QMR (Quick Medical ReferenceBayes net designed by doctors to model the domain
of internal medicine. Here we will consider a highly sim@diversion with 3 diseases nodes and 5 symptom nodes
(see Figure 3). We will let the probability of inhibition beob all arcs, so that the child nodes (symptoms) will be
deterministic ORs of their parents. Also, we will initiakyet the probability of inhibiting the leak nodes to 1.0, thus
essentially turning off the leaky parents.

1. Load the filegmrStub . This sets up the Bayes net in the way we have just descrilmeStgb shows how you

can create an evidence vector indicating that= + (nodesS; is in state 2) but that all the other symptoms/ test
results are unobserved/ unknown, perhaps because thasasttbeen done yet; we denote thisy="7, .53 =
7,5, =7,S5 =7 in the table below, and insert an empty array as evidencénécorresponding nodes. If the
test result was negative, we would write = — (nodesS; is in state 1). After calling the inference engine, you
need to extract the marginal probabilities on each diseade,rand then computg D, = +|ev), fori =1 : 3,
whereev means all the observed evidence (data). These marginalpitities are shown in the columns labeled
Dy, D, and D3 in the first row of the table below. We see that, sisgds on, its only parentD,, must also be
on; however, the other diseases are at their baseline pgiitleal{0.1), since we have no evidence about their
status. In addition, we shoisg p(ev), the log likelihood of the data. Note thialg(e) = —36.0437, wherec is

the smallest representable number in Matlab, which mg@ans ~ 0 for the fourth case (see discussion below).
Your goal is to finish writing thegmrStub function so it computes the remainimgentries in the table. Turnin
your numbers and code.

S1,S2,S3,54,S5 | D1 D2 D3 LogLik
+ ? 2 ? ? | 1000 0.100 0.100 | -2.303
?2 0+ 2?2 ?2 2?2 | X X X | -1.661
+ + ? + ? | X X X | -2.303
+ + ? - ? | 0.000 0.000 0.000 | -36.044

. In the example above, we see that in the fourth c8sés on, so its parenD; must also be on; howeveb);’s
other child,S4, is off. This is a logical contradiction, alev) = 0. The deterministic model cannot explain
why D is on yetS, is off. We can handle such noisy data by using the noisy OR in@ie option would be

to assume the “wires” in the OR gate occasionally flip +'s 8 this could explain whys, is off even though

D, is on. An alternative is to add leak nodes, which allow chitdi@s to turn on even if all their parents are
off; this could explain whys; is on even ifD; is off. We will follow the latter strategy here. Modify youode

so the probability of inhibiting the leak is 0.999; thus lggdarents are enabled. Now recompute the posterior
marginals using the 4 evidence cases above, and fill in the lebow. Turn in your numbers and code.



S1,52,S3,54,S5 | D1 D2 D3 LogLik
+ ? ? ? 2 | 0991 0.100 0.100 | -2.294

? + ? 2?2 2?2 | x X X | -1.656
+ + ? + ? | X X X | -2.302
+ + ? - ? | 0000 0.991 0.000 | -9.413

We see that the behavior of this model is similar to the detd@stic model, except this stochastic model does
not “crash” when it encounters the “logically contradigtocase 4. Instead, we infer thal, is (probably) on,
causingSs, but thatD, is off, s0.5; was caused b§,’'s leak parent. D; cannot be on, sincg, is off, and there

is no mechanism to turn children off if all the inhibition frabilities are zero.)



