
CS 340 Fall 2007: Homework 2

1 The Monty Hall problem
On a game show, a contestant is told the rules as follows:

There are three doors, labelled 1, 2, 3. A single prize has been hidden behind one of them. You get to
select one door. Initially your chosen door will not be opened. Instead, the gameshow host will open one
of the other two doors, and he will do so in such a way as not to reveal the prize. For example, if you first
choose door 1, he will then open one of doors 2 and 3, and it is guaranteed that he will choose which one
to open so that the prize will not be revealed.

At this point, you will be given a fresh choice of door: you can either stick with your first choice, or you
can switch to the other closed door. All the doors will then be opened and you will receive whatever is
behind your final choice of door.

Imagine that the contestant chooses door 1 first; then the gameshow host opens door 3, revealing nothing behind
the door, as promised. Should the contestant (a) stick with door 1, or (b) switch to door 2, or (c) does it make no
difference? You may assume that initially, the prize is equally likely to be behind any of the 3 doors. Hint: use Bayes
rule.

2 Reject option in classifiers
In many classification problems one has the option either of assigning x to class j or, if you are too uncertain, of
choosing the reject option. If the cost for rejects is less than the cost of falsely classifying the object, it may be the
optimal action. Let αi mean you choose action i, for i = 1 : C + 1, where C is the number of classes and C + 1 is the
reject action. Let Y = j be the true (but unknown) state of nature. Define the loss function as follows

λ(αi|Y = j) =





0 if i = j and i, j ∈ {1, . . . , C}
λr if i = C + 1
λs otherwise

(1)

In otherwords, you incur 0 loss if you correctly classify, you incur λr loss (cost) if you choose the reject option, and
you incur λs loss (cost) if you make a substitution error (misclassification).

1. Show that the minimum risk is obtained if we decide Y = j if p(Y = j|x) ≥ p(Y = k|x) for all k (i.e., j is the
most probable class) and if p(Y = j|x) ≥ 1− λr

λs
; otherwise we decide to reject.

2. Describe qualitatively what happens as λr/λs is increased from 0 to 1 (i.e., the relative cost of rejection in-
creases).

3 Fun with entropy
Consider the joint distribution p(X,Y )
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x
1 2 3 4

1 1/8 1/16 1/32 1/32
y 2 1/16 1/8 1/32 1/32

3 1/16 1/16 1/16 1/16
4 1/4 0 0 0

1. What is the joint entropy H(X,Y )?

2. What are the marginal entropies H(X) and H(Y )?

3. The entropy of X conditioned on a specific value of y is defined as

H(X|Y = y) = −
∑

x

p(x|y) log p(x|y) (2)

Compute H(X|y) for each value of y. Does the posterior entropy on X ever increase given an observation of
Y ?

4. The conditional entropy is defined as

H(X|Y ) =
∑

y

p(y)H(X|Y = y) (3)

Compute this. Does the posterior entropy on X increase or decrease when averaged over the possible values of
Y ?

5. What is the mutual information between X and Y ?

4 Bayesian concept learning
In this question, you will implement the Bayesian concept learning framework for the “number game” we discussed
in class. You are provided the following functions

• hypSpace = mkHypSpace()which creates the hypothesis space (a structure). To extract the set of integers
defined by the h’th hypothesis (this is called the support or extension of the hypothesis), and its name, use the
following:

hypSpace.hyps{h}
hypSpace.names{h}

There are hypSpace.Nmath=23 mathematical hypotheses, and hypSpace.Nint =5050 interval hy-
potheses, stored in order in order of increasing size. For example,

hypSpace.hyps{2} = [1 3 5 ... 99]; hypSpace.names{2} = ’evens’;
hypSpace.hyps{24} = 1; hypSpace.names{24}= ’interval 1..1’;
hypSpace.hyps{25} = 2; hypSpace.names{25}= ’interval 2..2’;
hypSpace.hyps{124} = [1,2]; hypSpace.names{124}= ’interval 1..2’;

etc.

• prior = mkPrior(hypSpace), which creates a (row) vector, in which prior(h) = p(h), for h=1:5073.
This assigns probability λ/|Hmath| = 0.029 to the mathematical hypotheses, and 1 − λ/|Hint| = 6.6 × 10−5

to the interval hypotheses, where λ = 2/3. (This distribution is a mixture of two uniform distributions (over
different ranges), where λ is the mixing weight.)
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Figure 1: Computation of the likelihood function. In this example, D = [1, 1, 3], so the count vector is [2, 0, 1, 0, ...].
The condLik matrix has 1/100 in every row of column 1, 1/50 in even rows of column 2, 1/50 in odd rows of column
3, 1/25 in column 4 in locations [2, 3, 5, 7, 11, ..., 89, 97], representing the prime numbers, etc.

0 5 10 15 20 25 30 35
0

0.005

0.01

0.015

0.02

0.025

0.03
prior p(h)

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
prior predictive p(x), entropy=6.369

Figure 2: Prior and prior predictive distributions.

• cl = mkCondLik(hypSpace) generates a 100 × 5072 matrix, where cl(x, h) = p(x|h) is the likelihood
assigned to integer x by hypothesis h, given by

p(x|h) =
{ 1

|size(h)| if x ∈ h

0 if x 6∈ h

• loglik = mkLogLik(hypSpace, D) which computes

loglik(h) = log p(D|h) =
N∑

n=1

log p(xn|h)

where N is the number of examples in D. This can be computed using a vector-matrix multiply, as shown in
Figure 1.

Use these to answer the following questions

1. Plot the prior over the first 30 hypotheses. The result should look like Figure 2(left). Turn in your code and plot.

2. Write a function to compute the prior predictive distribution

pred(x) = p(y(x) = 1) =
∑

h∈H
p(y(x) = 1|h)p(h)
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where pred(x) is a vector, with one element for each x = 1 : 100, Plot pred(x) as a histogram. What is its
entropy? (Use log base 2.) The result should look like Figure 2(right). Turn in your code and plot. Hint: you
can use the mkCondLik function.

3. Write a function post = mkPost(hypSpace, D) which computes

post(h) =
p(D|h)p(h)∑
h′ p(D|h′)p(h′)

where post is a vector. Turn in your code.

4. Suppose D = [32]. Compute the posterior post(h) = p(h|D). Plot the posterior over the mathematical
hypotheses, post(1 : 23), as a histogram. Turn in your plot.

5. Sort the hypotheses into decreasing order of posterior probability. What are the top 5 most probable hypotheses?
Return their names and their probabilities.

6. Compute the posterior predictive distribution

pred(x) = p(y(x) = 1|D) =
∑

h∈H
p(y(x) = 1|h)p(h|D)

(Obviously y(x) = 1 for all x ∈ D; the goal is to generalize beyond the training set, i.e., to predict which other
numbers are in the concept class.) Plot pred(x) as a histogram. What is its entropy? Turn in your code and plot.

7. Write a function to compute the maximum likelihood estimate

ĥML = arg max
h

p(D|h)

Turn in your code. What is ĥML?

8. Write a function to compute the plug-in estimate

predML(x) = p(y(x) = 1|ĥML(D))

Plot predML(x) as a histogram. Turn in your code and plot.

9. Now repeat steps 4–8 using D = [32, 24]. Turn in your new plots and numbers. What are the main qualitative
differences?

10. Now repeat steps 4–8 using D = [32, 16, 2]. Turn in your new plots and numbers. What are the main qualitative
differences?
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