CS340 Machine learning

Decision theory




From beliefs to actions

 We have briefly discussed ways to compute p(y|x),
where y represents the unknown state of nature (eg.
does the patient have lung cancer, breast cancer or no
cancer), and x are some observable features (eg.,
symptoms)

 We now discuss: what action a should we take (eg.
surgery or no surgery)?

« Define a loss function L(y,a)

None Lung Breast
3 Surgery 100 20 10
No surgery 0 (0] 50

* Pick the action with minimum expected loss (risk)

a*(z) = argmin ) p(y|z)L(y, a)



Loss/ utility functions, policies

e |Nn statistics, we use loss functions L. In economics,
we use utility functions U. Clearly U=-L.

* The principle of maximum expected utility says the
optimal (rational) action Is

a*(z) = argmax » p(ylz)U(y, a)
a
e A decision procedure o(X) orypolicy T(X) Is a
mapping from X to A, which specifies which action
to perform for every possible observed feature
vector X.



Bayes decision rule

 The conditional risk (expected loss conditioned on

X) IS
R(alz) = Zp yla)L

 The optimal strategy (Bayes decision rule) Is
7(x) = arg min R(a|z)

 The Bayes risk Is the expected performance of the
optimal strategy

r = /deL(y,w(x))p(x,y)



Sequential decision problems

* In general we need to reason about the
consequences of our actions.

e This Is beyond the scope of this class (see e.qg.
CS422). We focus on one-shot decision problems.
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Classification problems

* In classification problems, the action space A is usually
taken to be the same as the label space Y.

 We interpret the action a as our best guess about the
true label y. The loss matrix defines the penalties for

getting the answer wrong.

N

Y
None Lung Breast
None 0 100 100
Lung 50 0 10
Breast 50 10 0




Binary classification problems

 Let Y=1 be ‘positive’ (eg cancer present) and Y=2 be
‘negative’ (eg cancer absent).

e The loss/ cost matrix has 4 numbers:

state Y
1 2
_ 1 True positive False positive
action A1 Ao
Y |2 False negative | True negative
A21 A22




Optimal strategy for binary classification

 We should pick class/ label/ action 1 if

olx) > R(ai]x)
Ao1p(Y = 1|x) + daop(Y =2|x) > Aip(Y = 1|x) + A2p(Y = 2|x)
1x) > (A2 — A22)p(Y = 2[x)

>

where we have assumed A,; (FN) >A;, (TP)
« As we vary our loss function, we simply change the
optimal threshold 6 on the decision rule

(o) — 1 i P = 1)

> ¢
p(Y = 2|x)




 If the loss function penalizes misclassification
errors equally

state Y

1 0 1

action 4
Yy 12 1 0

* then we should pick the most probable class

p(Y = ].|X) )\12 — )\22 1—20
m(r) =1 < > — _
( ) p(Y == Z‘X) )\21 - )\11 1—-0

1

* In general, for 0-1 loss and multiple classes,
m(z) = argmaxp(Y = j|z)
J



Reject option

e Suppose we can choose between incurring loss A, if we
make a misclassification (label substitution) error and
loss A, if we declare the action “don’t know”

0 ifi=jandi,je{l,...,C}
MalY =) =< A\, if i =C+1

Ag otherwise

* In HWZ2, you will show that the optimal action is to pick
“don’t know” if the most probable class is below a
threshold 1-A /A

reject region 10

Bishon 1.26



Discriminant functions

 The optimal strategy 11(x) partitions X into decision
regions R;, defined by discriminant functions g;(x)

=" A
m(z) = arg max g;()

Ri = {z : gi(x) = max gu(x)}

In general

i(x) = ~R(a = il)

reject

C

) -
But for 0-1 loss we have i A :
. /\
gi(x) = p(Y =i|x) A JAN A
= logp(Y =i|x) . . . .
= logp(z|Y =1i) + logp(Y =) X,
/ 11

Class prior merely shifts decision boundary by a constant



Binary discriminant functions

e |n the 2 class case, we define the discriminant in
terms of the log-odds ratio

g(x)
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Do we need probabilistic classifiers?

* One popular approach to ML is to learn the
classification function 1i(x) = f(x,w) directly,
bypassing the need to estimate p(y|x)

w* = arg %HZL(yna f(xnaw))

 However, having access to p(y|x) is useful because
— Modular — no need to relearn if change L
— Can use reject option
— Can combine different p(y|x)’s
— Can compensate for different class priors p(y)

— Scientific discovery (inference) often involves examining
typical samples from p(y|x), rather than decision making.
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e The optimal threshold for a binary detection

problem depends on the loss function
p(Y =1|x) - A12 — oo
p(Y =2|x) © A1 — Apg
* Low threshold will give rise to many false positives

(Y=1) and high threshold to many false negatives.

e A receive operating characteristic (ROC) curves
plots the true positive rate vs false positive rate as

we vary 6 ‘/\'t r

m(r)=1 <=
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* Declare x, to be a positive If p(y=1|x,)>6, otherwise
declare it to be negative (y=2)

Un =1 < p(y = 1|z,) >0

* Define the number of true positives as
TP =3 I =1Aya = 1)

o Similarly for FgP, TI\T, ~N — all functions of 6

| 2
AT ~F FP:TPJrFP
{ ] NV




Performance measures

2

precision = positive
predictive value (PPV) = TP / P-hat

no P
J 2| v | Twn /9

SN
Sensitivity = recall =

True pos rate = hit rate False pos rate = false acceptance =
=TP/P = 1-FNR = type | error rate = FP / N = 1-spec

False neg rate = false rejection =

type Il error rate = FN /P = 1-TPR Specificity = TN/ N = 1-FPR
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Performance measures

« EER- Equal error rate/ cross over error rate (false
pos rate = false neg rate), smaller is better

« AUC - Area under curve, larger Is better
e Accuracy = (TP+TN)/(P+N)

PR A
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Precision-recall curves

« Useful when notion of “negative” (and hence FPR)
IS not defined

 Used to evaluate retrieval engines
« Recall = of those that exist, how many did you find?
* Precision = of those that you found, how many

2
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ROC vs PR curves
T}OQ: T r)f@C.(J;ba: T
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Loss functions for regression

 Regression means predicting y € R ; classification
means predicting a discrete output v €11,2,...,C}

 The most common loss Is squared error
L(y, f(x]0)) = (y — f(210))
* The residual sum of squares Is

HTF 2.10 20



Minimizing squared error

 The expected loss is

BL= [ [t 1) pla,y)dsdy

* Let us discretize x and optimize this wrt f,
OBl = - /dy > (- f)’p(2,y)

Ofs 0fe
_ /dy 2(y — fo)p(,y)
- 0=
fap(z) = / dy y p(z,y)
fe = Elylz]

®* Hence to minimize squared error, we should compute the
posterior mean E[y|X] 21



Robust loss functions

e Square error (L2) is sensitive to outliers
e |tis common to use L1 instead.

* |In general, Lp loss Is defined as
Lp(ya@) = |y — g|”

2
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Minimizing robust loss functions

 For L2 loss, mean p(y|x)
e For L1 loss, median p(y|x)
e For LO loss, mode p(y|x)
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