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Fundamental principle of Bayesian statistics

* |In Bayesian stats, everything that is uncertain (e.g.,
0) is modeled with a probability distribution.

 We incorporate everything that is known (e.g., D) Is
by conditioning on Iit, using Bayes rule to update
our prior beliefs into posterior beliefs.

p(8|D) o< p(6)p(D]6)



In praise of Bayes

« Bayesian methods are conceptually simple and
elegant, and can handle small sample sizes (e.g.,
one-shot learning) and complex hierarchical
models without overfitting.

 They provide a single mechanism for answering all
guestions of interest; there iIs no need to choose
between different estimators, hypothesis testing
procedures, etc.

 They avoid various pathologies associated with
orthodox statistics.

 They often enjoy good frequentist properties.




Why isn't everyone a Bayesian?

 The need for a prior.
e Computational issues.



The need for a prior

e Bayes rule requires a prior, which is considered
“subjective”.

 However, we know learning without assumptions is
Impossible (no free lunch theorem).

e Often we actually have informative prior knowledge.

e If not, it Is possible to create relatively
“uninformative” priors to represent prior ignorance.

 We can also estimate our priors from data
(empirical Bayes).

 We can use posterior predictive checks to test
goodness of fit of both prior and likelihood.




Computational issues

 Computing the normalization constant requires
Integrating over all the parameters

p(0)p(D]0)
6|D
plOID) = [ p(6")p(D|0")do’
 Computing posterior expectations requires
Integrating over all the parameters

/f p(6|D)do




Approximate inference

 We can evaluate posterior expectations using
Monte Carlo integration

/f p(0|D)db ~ — Zf (0°) where 6° ~ p(6|D)

s=1
« Generating posterior samples can be tricky
— Importance sampling
— Particle filtering
— Markov chain Monte Carlo (MCMC)

 There are also deterministic approximation
methods
— Laplace
— Variational Bayes
— EXpectation Propagation

Not on exam



Conjugate priors

« For simplicity, we will mostly focus on a special kind
of prior which has nice mathematical properties.

e A prior p(9) is said to be conjugate to a likelihood
pP(D|0) if the corresponding posterior p(6|D) has the
same functional form as p(9).

e This means the prior family is closed under
Bayesian updating.

e S0 we can recursively apply the rule to update our
beliefs as data streams in (online learning).

A natural conjugate prior means p(0) has the same
functional form as p(D|0).




Example: coin tossing

e Consider the problem of estimating the probability

of heads 6 from a sequence of N coin tosses, D =
(X1, ooy X\)

* First we define the likelihood function, then the
prior, then compute the posterior. We will also
consider different ways to predict the future.



Binomial distribution

e Let X = number of heads in N trials.
 We write X ~ Binom(0, N).
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Bernoulli distribution

 Binomial distribution when N=1 is called the
Bernoulli distribution.

 We write X ~ Ber(0)
p(X)=0"(1-0)"""

e Sop(X=1) =0, p(X=0) =1-6
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Fitting a Bernoulli distribution

e Suppose we conduct N=100 trials and get data
D=(1,0,1,1,0,....) with N; heads and N, talls.
What is 0?

* A reasonable best guess Is the value that
maximizes the likelihood of the data

éMLE — arg ngX L((g)

L(0) = p(D|0)




Bernoulli likelihood function

e The likelihood is
L(#) = p(D|0) =

::12

p(z,|0)

H Hl(ajn—l H)I(:BnZO)

_ ezn I@n=1) (] _ )2, [(#n=0
= 0V (1—-0)""
We say that N, and N, are sufficient statistics of D for 6

This is the same as the Binomial likelihood function, up to constant factors.



Bernoulli log-likelihood

 We usually use the log-likelihood instead

((0) = logp(D|0) = Zlogp T,|0)
— NllogH—I—Nolog(l—G)

* Note that the maxima are the same, since log is a
monotonic function

arg max L(0) = arg max £(0)



Computing the Bernoulli MLE

 We maximize the log-likelihood

¢(0) = Nilogf+ Nylog(l— 6)
@ N, N-N
a6 1—6

= 0
=

9 — 1 Empirical fraction of heads eg. 47/100



Black swan paradox

e Suppose we have seen N=3 white swans. What is
the probability that swan Xy, 1s black?

 |f we plug In the MLE, we predict black swans are
Impossible, since N,=N;=0, N,=N,=3

Ny, 0

— — p(X =100 —0 —0
N, + N, N’ p( | MLE) MLE

OrviLE =

 However, this may just be due to sparse data.

« Below, we will see how Bayesian approaches work
better in the small sample setting.



The beta-Bernoulli model

e Consider the probability of heads, given a
sequence of N coin tosses, X, ..., Xy-

e Likelihood

N
p(DIo) = [] 6% (1 —6)' X = oM (1 — )
n=1

 Natural conjugate prior is the Beta distribution
p(0) = Be(f|a1, ag) oc 91 71(1 — §)*—!
e Posterior Is also Beta, with updated counts

p(0|D) = Be(fay + N1, a9 + Nog) oc §21 71N (1 — g)o—1+No

Just combine the exponents in 8 and (1-8) from the prior and likelihood



The beta distribution

 Beta distribution  ,4a;, aq) = = L pa-iq — gyoo-
a1 Oz

e The normalization constant IS the beta function

' ['(aq)I' (o)
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Updating a beta distribution

e Prioris Beta(2,2). Observe 1 head. Posterior is
Beta(3,2), so mean shifts from 2/4 to 3/5.

plB)=Be(2,2) pix=1/8) pio)x=1)=Be(3,2)
2
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* Prior is Beta(3,2). Observe 1 head. Posterior Is
Beta(4,2), so mean shifts from 3/5 to 4/6.

pib)=Be(2,2) plx=1[8) plBjx=1)=Ba(4,2)
2 2
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Setting the hyper-parameters

The prior hyper-parameters a,, a, can be
Interpreted as pseudo counts.

The effective sample size (strength) of the prior Is
a,+0,.
The prior mean is a,/(a,+0,).

If our prior belief is p(heads) = 0.3, and we think
this belief is equivalent to about 10 data points, we
just solve

a1
4] -+ 871)

= 0.3

a1 + g = 10,



Point estimation

* The posterior p(8|D) Is our belief state.

 To convert it to a single best guess (point estimate),
we pick the value that minimizes some loss
function, e.g., MSE -> posterior mean, 0/1 loss ->
posterior mode

) = arg min / L(¢', 0)p(0|D)do

e There i1s no need to choose between different
estimators. The bias/ variance tradeoff Is irrelevant.



Posterior mean

* Let N=N; + N, be the amount of data, and
M=a,+a, be the amount of virtual data.

The posterior mean Is a convex combination of prior

mean a,/M and MLE N,/N

a1 + Ny a1 + Ny
E\6 N1, N, = =
9]0, o, N1, No) a1 F Ny +ap+ Ny N+M
M Oé1+ N N1
N+MM N+MN

o3 Ny
— w2 (] — w2
wap T -w)g

w = M/(N+M) is the strength of the prior relative to the total amount of data

We shrink our estimate away from the MLE towards
the prior (a form of regularization).



MAP estimation

|t Is often easier to compute the posterior mode
(optimization) than the posterior mean (integration).

 This Is called maximum a posteriori estimation.

Orr4p = arg max p(0| D)

e This Is equivalent to penalized likelihood
estimation.

Orrap = arg maxlog p(D|6) + logp(6)
 For the beta distribution,

vap— 91— 1
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Posterior predictive distribution

 We Integrate out our uncertainty about 6 when
predicting the future (hedge our bets)

p(X|D) = / p(X|0)p(0|D)do

* |If the posterior becomes peaked

p(0|D) — §(6 — 6)
we get the plug-in principle.

p(x|D) = / p(210)6(0 — 6)do = p(z|d)



Posterior predictive distribution

* Let o, = updated hyper-parameters.

 |n this case, the posterior predictive Is equivalent to
nlugging In the posterior mean parameters

p(X =1|D) = / p(X = 110)p(6D)d#

a

/ /
0 +

1
/ 6 Beta(f|ay, ap)df = E[0] =
0

» If a,=0,=1, we get Laplace’s rule of succession
(add one smoothing)

N, +1
p(X = 1|Ny, Ny) = !

N1+ Ny + 2




Solution to black swan paradox

 If we use a Beta(1,1) prior, the posterior predictive

IS
N; +1

Ny + Ng +2

p(X = 1|N1, No) =

so we will never predict black swans are
Impossible.

e However, as we see more and more white swans,
we will come to believe that black swans are pretty
rare.



