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Fundamental principle of Bayesian statistics

• In Bayesian stats, everything that is uncertain (e.g., 
θ) is modeled with a probability distribution.

• We incorporate everything that is known (e.g., D) is 
by conditioning on it, using Bayes rule to update 
our prior beliefs into posterior beliefs.

p(θ|D) ∝ p(θ)p(D|θ)



In praise of Bayes

• Bayesian methods are conceptually simple and 
elegant, and can handle small sample sizes (e.g., 
one-shot learning) and complex hierarchical 
models without overfitting.

• They provide a single mechanism for answering all 
questions of interest; there is no need to choose 
between different estimators, hypothesis testing 
procedures, etc.

• They avoid various pathologies associated with 
orthodox statistics.

• They often enjoy good frequentist properties.



Why isn’t everyone a Bayesian?

• The need for a prior.

• Computational issues.



The need for a prior

• Bayes rule requires a prior, which is considered 
“subjective”.

• However, we know learning without assumptions is 
impossible (no free lunch theorem).

• Often we actually have informative prior knowledge.
• If not, it is possible to create relatively 

“uninformative” priors to represent prior ignorance.

• We can also estimate our priors from data 
(empirical Bayes).

• We can use posterior predictive checks to test 
goodness of fit of both prior and likelihood.



Computational issues

• Computing the normalization constant requires 
integrating over all the parameters

• Computing posterior expectations requires 
integrating over all the parameters

p(θ|D) =
p(θ)p(D|θ)∫
p(θ′)p(D|θ′)dθ′

Ef(Θ) =

∫
f(θ)p(θ|D)dθ



Approximate inference

• We can evaluate posterior expectations using 
Monte Carlo integration

• Generating posterior samples can be tricky
– Importance sampling
– Particle filtering
– Markov chain Monte Carlo (MCMC)

• There are also deterministic approximation 
methods
– Laplace
– Variational Bayes
– Expectation Propagation

Ef(Θ) =

∫
f(θ)p(θ|D)dθ ≈

1

N

N∑

s=1

f(θs) where θs ∼ p(θ|D)

Not on exam



Conjugate priors

• For simplicity, we will mostly focus on a special kind 
of prior which has nice mathematical properties.

• A prior p(θ) is said to be conjugate to a likelihood 
p(D|θ) if the corresponding posterior p(θ|D) has the 
same functional form as p(θ).

• This means the prior family is closed under 
Bayesian updating.

• So we can recursively apply the rule to update our 
beliefs as data streams in (online learning).

• A natural conjugate prior means p(θ) has the same 
functional form as p(D|θ).



Example: coin tossing

• Consider the problem of estimating the probability 
of heads θ from a sequence of N coin tosses, D = 
(X1, …, XN)

• First we define the likelihood function, then the 
prior, then compute the posterior. We will also 
consider different ways to predict the future.



Binomial distribution

• Let X = number of heads in N trials.

• We write X ~ Binom(θ, N).

0 1 2 3 4 5 6 7 8 910
0

0.1

0.2

0.3

0.4
theta=0.500

0 1 2 3 4 5 6 7 8 910
0

0.1

0.2

0.3

0.4
theta=0.250

0 1 2 3 4 5 6 7 8 910
0

0.1

0.2

0.3

0.4
theta=0.750

0 1 2 3 4 5 6 7 8 910
0

0.1

0.2

0.3

0.4
theta=0.900

P (X = x|θ,N) =

(
N

x

)
θx(1− θ)N−x



Bernoulli distribution

• Binomial distribution when N=1 is called the 
Bernoulli distribution.

• We write X ~ Ber(θ)

• So p(X=1) = θ, p(X=0) = 1-θ

p(X) = θX(1− θ)1−X



Fitting a Bernoulli distribution

• Suppose we conduct N=100 trials and get data 
D = (1, 0, 1, 1, 0, ….) with N1 heads and N0 tails. 
What is θ?

• A reasonable best guess is the value that 
maximizes the likelihood of the data
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Bernoulli likelihood function

• The likelihood is

L(θ) = p(D|θ) =
N∏

n=1

p(xn|θ)

=
∏

n

θI(xn=1)(1− θ)I(xn=0)

= θ

∑
n
I(xn=1)(1− θ)

∑
n
I(xn=0)

= θN1(1− θ)N0

We say that N0 and N1 are sufficient statistics of D for θ

This is the same as the Binomial likelihood function, up to constant factors.



Bernoulli log-likelihood

• We usually use the log-likelihood instead

• Note that the maxima are the same, since log is a 
monotonic function

argmaxL(θ) = argmax ℓ(θ)

ℓ(θ) = log p(D|θ) =
∑

n

log p(xn|θ)

= N1 log θ +N0 log(1− θ)



Computing the Bernoulli MLE

• We maximize the log-likelihood

ℓ(θ) = N1 log θ +N0 log(1− θ)

dℓ

dθ
=

N1

θ
−
N −N1
1− θ

= 0

⇒

θ̂ =
N1

N
Empirical fraction of heads eg. 47/100



Black swan paradox

• Suppose we have seen N=3 white swans. What is 
the probability that swan XN+1 is black?

• If we plug in the MLE, we predict black swans are 
impossible, since Nb=N1=0, Nw=N0=3

• However, this may just be due to sparse data. 
• Below, we will see how Bayesian approaches work 

better in the small sample setting.

θ̂MLE =
Nb

Nb +Nw
=
0

N
, p(X = b|θ̂MLE) = θ̂MLE = 0



The beta-Bernoulli model

• Consider the probability of heads, given a 
sequence of N coin tosses, X1, …, XN.

• Likelihood

• Natural conjugate prior is the Beta distribution

• Posterior is also Beta, with updated counts

p(D|θ) =
N∏

n=1

θXn(1− θ)1−Xn = θN1(1− θ)N0

p(θ) = Be(θ|α1, α0) ∝ θ
α1−1(1− θ)α0−1

p(θ|D) = Be(θ|α1 +N1, α0 +N0) ∝ θ
α1−1+N1(1− θ)α0−1+N0

Just combine the exponents in θ and (1-θ) from the prior and likelihood



The beta distribution

• Beta distribution

• The normalization constant is the beta function 
p(θ|α1, α0) =

1

B(α1, α0)
θα1−1(1− θ)α0−1

E[θ] =
α1

α1 + α0

B(α1, α0) =

∫ 1

0

θα1−1(1− θ)α0−1dθ =
Γ(α1)Γ(α0)

Γ(α1 + α0)



Updating a beta distribution

• Prior is Beta(2,2). Observe 1 head. Posterior is 
Beta(3,2), so mean shifts from 2/4 to 3/5.

• Prior is Beta(3,2). Observe 1 head. Posterior is 
Beta(4,2), so mean shifts from 3/5 to 4/6.



Setting the hyper-parameters

• The prior hyper-parameters α1, α0 can be 
interpreted as pseudo counts.

• The effective sample size (strength) of the prior is 
α1+α0.

• The prior mean is α1/(α1+α0).
• If our prior belief is p(heads) = 0.3, and we think 

this belief is equivalent to about 10 data points, we 
just solve

α1 + α0 = 10,
α1

α1 + α0
= 0.3



Point estimation

• The posterior p(θ|D) is our belief state.
• To convert it to a single best guess (point estimate), 

we pick the value that minimizes some loss 
function, e.g., MSE -> posterior mean, 0/1 loss -> 
posterior mode

• There is no need to choose between different 
estimators. The bias/ variance tradeoff is irrelevant.

θ̂ = argmin
θ′

∫
L(θ′, θ)p(θ|D)dθ



Posterior mean

• Let N=N1 + N0 be the amount of data, and
M=α0+α1 be the amount of virtual data.

The posterior mean is a convex combination of prior 
mean α1/M and MLE N1/N 

We shrink our estimate away from the MLE towards 
the prior (a form of regularization).

w = M/(N+M) is the strength of the prior relative to the total amount of data

E[θ|α1, α0, N1, N0] =
α1 +N1

α1 +N1 + α0 +N0
=
α1 +N1
N +M

=
M

N +M

α1

M
+

N

N +M

N1

N

= w
α1

M
+ (1− w)

N1

N



MAP estimation

• It is often easier to compute the posterior mode 
(optimization) than the posterior mean (integration).

• This is called maximum a posteriori estimation.

• This is equivalent to penalized likelihood 
estimation.

• For the beta distribution,

θ̂MAP = argmax
θ

p(θ|D)

θ̂MAP = argmax
θ

log p(D|θ) + log p(θ)

MAP =
α1 − 1

α1 + α0 − 2



Posterior predictive distribution

• We integrate out our uncertainty about θ when 
predicting the future (hedge our bets)

• If the posterior becomes peaked

we get the plug-in principle.

p(θ|D)→ δ(θ − θ̂)

p(X|D) =

∫
p(X|θ)p(θ|D)dθ

p(x|D) =

∫
p(x|θ)δ(θ − θ̂)dθ = p(x|θ̂)



Posterior predictive distribution

• Let αi’ = updated hyper-parameters.
• In this case, the posterior predictive is equivalent to 

plugging in the posterior mean parameters

• If α0=α1=1, we get Laplace’s rule of succession
(add one smoothing)

p(X = 1|D) =

∫ 1

0

p(X = 1|θ)p(θ|D)dθ

=

∫ 1

0

θ Beta(θ|α′1, α
′

0)dθ = E[θ] =
α′1

α′0 + α
′

1

p(X = 1|N1, N0) =
N1 + 1

N1 +N0 + 2



Solution to black swan paradox

• If we use a Beta(1,1) prior, the posterior predictive 
is

so we will never predict black swans are 
impossible.

• However, as we see more and more white swans, 
we will come to believe that black swans are pretty 
rare.

p(X = 1|N1, N0) =
N1 + 1

N1 +N0 + 2


