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CS340 Machine learning
QMR
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Quick Medical Reference

• Probabilistic expert system encoded as a DGM.

• Nodes are binary. Parameters hand-coded.
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Inference in QMR

• Infer probability of each disease given observations 
on subset of symptoms

p(Zk = +|X1 = +, X2 = +, X4 = −)
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Complexity of inference

• The disease nodes become dependent in the 
posterior due to explaining away. Thus exact 
inference takes O(2w) time, where w is (lower 
bounded by) the size of the largest clique of the 
moralized graph. 
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Moral graph
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Complexity of inference

• The disease nodes become dependent in the 
posterior due to explaining away. Thus exact 
inference takes O(2w) time, where w is (lower 
bounded by) the size of the largest clique of the 
moralized graph.

• For QMR, w ~ 151, so exact inference is 
intractable.
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Barren nodes

• We can remove leaves with no evidence, since 
their CPDs sum to one:

∑

x3

p(x3|z1, z2, z3) = 1

This can reduce the size of the cliques in the moral graph.
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Quickscore algorithm

• The quickscore algorithm exploits the special 
structure (noisy-OR: see later) of the symptom 
CPDs, but still takes O(2p) time, where p = 
#positive findings. For QMR, p > 20.

• Many approximate methods have been developed 
for this model.

• In HW5, you will use exact inference on a small 
model.
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Parameters of the QMR model
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Parameter estimation

• Let D = (Xij,Zik)i=1:n,j=1:d,k=1:K be the training data.

• Let us assume no missing data.
• By global parameter independence, the posterior 

factorizes

p(θ,π|D) ∝

K∏

k=1

p(πk)p(D|πk)

d∏

j=1

p(θj)p(D|θj)
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Root CPDs in QMR

• CPDs = conditional probability distribution, 
P(node|parents)

• Root nodes have Bernoulli distribution, 
representing base rate of the disease.

• Likelihood

• Prior

• Posterior

p(Zk = 1) = πk

p(πk) = Beta(πk|ak, bk)

p(D|πk) =

n∏

i=1

π
I(zik=1)
k (1− πk)

I(zik=0)

p(π|D) =
∏

k

Beta(πk|ak +N(Zk = 1), bk +N(Zk = 0))
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Leaf CPDs in QMR

• Let θj be the parameters of p(Xj|pa(Xj)).
• Representing p(Xj|pa(Xj)) as a table would need 

2#parents parameters. Instead we use a noisy-OR 
parameterization, which has #parents parameters. 
(Could also use logistic regression.)
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Noisy-ORs

• If parent Zk is on, it will turn on its child Xj.

• But with probability qkj, the “wire” from Zk to Xj may 
fail, and the on parent will be inhibited.

• We assume such failures occur independently.
• Deterministic OR corresponds to all qkj=0.

p(Xj = 0|Zπj ) =
∏

k∈πj

q
I(Zk=1)
kj =

∏

k∈πj :Zk=1

qkj

Z1 Z2 P (Xj = 0|Z1, Z2) P (Xj = 1|Z1, Z2)
0 0 1 0
1 0 q1j 1− q1j
0 1 q2j 1− q2j
1 1 q1jq2j 1− q1jq2j
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Leak nodes

• Sometimes a child is on even if all its parents are 
off, since there may be some other “hidden” cause.

• To explain this, we assume every child has an extra 
“leak” or background parent that is always on. This 
will turn the child on unless it is inhibited w.p. q0j.

B Z1 Z2 P (Xj = 0|Z1, Z2) P (Xj = 1|Z1, Z2)
1 0 0 q0j 1− q0j
1 1 0 q0jq1j 1− q0jq1j
1 0 1 q0jq2j 1− q0jq2j
1 1 1 q0jq1jq2j 1− q0jq1jq2j

p(Xj = 0|Zπj ) = q0j
∏

k∈πj

q
I(Zk=1)
kj
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Alternative parameterization

• qkj = prob k fails to cause j.

• Let wkj = 1-qkj = prob k causes j. Then

p(Xj = 1|Zπj ) = 1−
∏

k∈πj

q
I(Zk=1)
kj

= 1−
∏

k∈πj

(1− wkj)
I(Zk=1)
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Parameter estimation for noisy-ORs

• Consider the case of a single cause and a single 
effect.

• We want to estimate w from a contingency table of 
counts. 

Effect absent E = 0 Effect present E = 1
Cause absent C = 0 N(E = 0, C = 0) N(C = 0, E = 1)
Cause present C = 1 N(E = 0, C = 1) N(C = 1, E = 1)

B C P (E = 0|C,w) P (E = 1|C,w)
1 0 1− w0 1− (1− w0)
1 1 (1− w0)(1− w1) 1− (1− w0)(1− w1)
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Maximum likelihood estimation

• Let p(e|c) be the empirical probabilities (derived 
from the counts N(e,c)).

• Let p(e|c,w) be the model-predicted probabilities.

• The MLE is gotten by finding the w that minimizes 
the KL divergence 

• Hence we require
w = argmin

w
KL(p(e|c)||p(e|c,w))

p(e = 1|c = 1,w) = p(e = 1|c = 1)

p(e = 1|c = 0,w) = p(e = 1|c = 0)

“Structure and strength in causal induction”, Griffiths and Tenenbaum,
Cognitive Psychology, 51:334-384, 2005
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MLE for w0

• Recall

• Set

• Then

w0 = p(e = 1|c = 0) =
N(e = 1, c = 0)

N(e = 1, c = 0) +N(e = 0, c = 0)

p(e = 1|c = 0,w) = 1− (1− w0)

= 1− (1− p(e = 1|c = 0)) = p(e = 1|c = 0)

p(e = 1|c,w) = 1− (1− w0)(1− w1)
I(c=1)
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MLE for w1

• Recall

• Set

• Then

p(e = 1|c = 1,w) = 1− (1− w0)(1− w1)

= p(e = 1|c = 1)

p(e = 1|c,w) = 1− (1− w0)(1− w1)
I(c=1)

Derivation left as homework exercise

w1 =
p(e = 1|c = 1)− p(e = 1|c = 0)

1− p(e = 1|c = 0)

“causal power”
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Bayesian parameter estimation
• Since 0 ≤ wj ≤ 1, a suitable prior is

• Likelihood

• Not conjugate �

p(w) = Beta(w0|a0, b0)Beta(w1|a1, b1)

C P (E = 0|C,w) P (E = 1|C,w)
0 θ00 = 1− w0 θ01 = 1− (1− w0)
1 θ10 = (1− w0)(1− w1) θ11 = 1− (1− w0)(1− w1)

p(D|w) =

n∏

i=1

1∏

e=0

1∏

c=0

θI(ci=c))I(ei=e)ec

=

1∏

e=0

1∏

c=0

θN(e,c)ec
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Gridding

• We can compute p(w0,w1|D) by gridding up the 
space.

• This is only tractable for 2 parameters.
• In general, need to use Monte Carlo or variational

methods.


