CS340 Machine learning

QMR




Quick Medical Reference

* Probabillistic expert system encoded as a DGM.
 Nodes are binary. Parameters hand-coded.
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Inference in QMR

 Infer probabillity of each disease given observations
on subset of symptoms
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Complexity of inference

 The disease nodes become dependent in the
posterior due to explaining away. Thus exact
Inference takes O(2%) time, where w Is (lower

bounded by) the size of the largest cligue of the
moralized graph.



Moral graph




Complexity of inference

 The disease nodes become dependent in the
posterior due to explaining away. Thus exact
Inference takes O(2%) time, where w Is (lower

bounded by) the size of the largest cligue of the
moralized graph.

e For QMR, w ~ 151, so exact inference Is
Intractable.



Barren nodes

e We can remove leaves with no evidence, since
their CPDs sum to one:E p(x3|z1,29,23) =1
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This can reduce the size of the cliques in the moral graph.



Quickscore algorithm

* The guickscore algorithm exploits the special
structure (noisy-OR: see later) of the symptom
CPDs, but still takes O(2P) time, where p =
#positive findings. For QMR, p > 20.

 Many approximate methods have been developed
for this model.

* In HWS5, you will use exact inference on a small
model.
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Parameter estimation

* Let D = (Xj,Zi)i=1:nj=1.dk=1.x P€ the training data.
e Let us assume no missing data.

* By global parameter independence, the posterior
factorizes

d
p(0, | D) Hpﬁk (D7) H p(D|6;)
71=1
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Root CPDs in QMR

 CPDs = conditional probability distribution,
P(node|parents)

 Root nodes have Bernoulli distribution,
representing base rate of the disease.

i =1) =
. Likelihood A= =m

* Prior p(Dlmy) = Hﬂé(zikzl)(l — ) Fir=0)
1=1

p(ﬂ'k) — Beta(wk|ak, bk)
e Posterior

p(w|D) = | | Beta(milay + N(Zy = 1),bx + N(Zi = 0))
k 11



Leaf CPDs in QMR

* Let 6, be the parameters of p(Xj[pa(Xy)).

 Representing p(Xj|pa(X;)) as a table would need
2#parents narameters. Instead we use a noisy-OR
parameterization, which has #parents parameters.
(Could also use logistic regression.)
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Noisy-ORs

* If parent Z, is on, it will turn on its child X;.

* But with probabllity qy;, the “wire” from Z, to X; may
fail, and the on parent will be inhibited.

 We assume such failures occur independently.
« Deterministic OR corresponds to all q,;=0.

_ _ I(Zx=1) _
p(X;=01Ze) =[] @y "= 1]
kem; kem;:Zp=1
AR, P(Xj = O‘Zl,Zg) P(Xj = l‘Zl,Zg)
i 0 0 1 0
X/ I 0 q1; 1 —qi;
V 0 1 q2; 1 — qo;
X 1 1 q1;92; 1 — q1;92;
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 Sometimes a child is on even if all its parents are
off, since there may be some other “hidden” cause.

e To explain this, we assume every child has an extra
“leak” or background parent that is always on. This
will turn the child on unless it is inhibited w.p. g

p(X; =0Zs,) = q0; [] a15”"

kEﬂ'j

B Z Zs | P(X;=01Z1,2s) P(X;=1Z1,%)
1 0 0 qu 1 — qu

I 1 0 q0;91; I — qo;q1;

I 0 1 q0592; I — qo;924

I 1 1 907915925 1 — qojq1;92;
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Alternative parameterization

* Qy = prob k fails to cause |.
* Letwy =1-q, = prob k causes |. Then

I(Z=1
p(X;=1Zr,) = 1= ] a5
kEﬂ'j

= 1- H (1 — wkj)I(Zkzl)

kEﬂ'j
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Parameter estimation for noisy-ORs

e Consider the case of a single cause and a single
effect.

 We want to estimate w from a contingency table of

counts.
| Effect absent £ =0 Effect present £ =1
Cause absent C' = 0 N(E=0,C=0) N(C=0,E=1)
Cause present C =1 | N(E=0,C=1) N(C=1E=1) 16




Maximum likelihood estimation

e Let p(e|c) be the empirical probabilities (derived
from the counts N(e,c)).

* Let p(e|c,w) be the model-predicted probabillities.

 The MLE is gotten by finding the w that minimizes
the KL divergence

w = argmin K L(p(elc)||p(elc, w))

e Hence we require
ple=1llc=1,w) = ple=1llc=1)
ple=1lc=0,w) = ple=1lc=0)

“Structure and strength in causal induction”, Griffiths and Tenenbaum,
Cognitive Psychology, 51:334-384, 2005 17



MLE for w0

e Recall
ple=1le,w) = 1—(1—w)(l—w)/e=Y
Set
N(e=1,c=0)
0 p(e |C ) N(ez]_’CZO)—|— (GZO,C:O)
e Then
p(€:1|C:0,W) — 1—(1—’(1)0)
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MLE for w1l

e Recall
ple=1le,w) = 1—(1—wp)(l—wp)ie=D
¢ Set
P — ple=1lc=1)—p(e=1lc=0) “causal power”
L L —p(e=1jc=0)
 Then
ple=1lc=1,w) = 1—(1—-wo)(l—w)

= ple=1le=1)

Derivation left as homework exercise
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Bayesian parameter estimation

« Since 0 <w,; <1, a suitable prior is

p(w) = Beta(wglag,bg)Beta(w|ai,by)
e Likelihood
C | P(E =0|C,w) P(E =1|C,w)
0 000:1—’(1}0 001:1—(1—w0)
1 Hloz(l—wo)(l—wl) 011 :1—(1—w0)(1—w1)

n 1 1
p(DIw) = [T ]]eLc= =

1—=1 e=0 c=0

SINICE

e=0 c=0
* Not conjugate ®
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Gridding

* We can compute p(wy,w,|D) by gridding up the

Space.
//\//\ dWy / _ ﬂ

e This Is only tractable for 2 parameters.

* In general, need to use Monte Carlo or variational
methods.
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