CS340 Machine learning

Naive Bayes classifiers




Document classification

¢ LetY €{1,...,C} be the class label and x € {0,1}¢
e eg Y € {spam, urgent, normal},
X; = I(word I Is present in message)

e Bag of words model
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Words = {john, mary, sex, money, send, meeting, unk}
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Bayes rule for classifiers
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Class conditional density p(x|y=c)

 What is the probability of generating a d-
dimensional feature vector for each class c?

 Let us assume we generate each feature
Independently (naive Bayes assumption)

plrly=c) = Hp z;|ly = c)

e E.g., prob of seeing “send” IS assumed to be
Independent of seeing “money” given that we know
this Is a spam email

« Allows us to use 1 dimensional density models
p(x;]y). Can combine features of different types.



Count features (multivariate Poisson)
* Suppose X, € {0,1,2,...} counts the number of times

word | occurs.
e A suitable class-conditional density Is
Xily=c~ Poz'()\z-c)d
* The likelihood is p(zly =) o« [[ e A%
1=1
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Count features (multinomial model)

. Let (X4,...Xy) | y=¢, N ~ Mult(8,, N)

N d
P(ajl)"'?ajd‘ecaN) — (331 xd)Hefcz

1=1
Xi's no longer conditionally — | | 91'7,
independent since 2., x, = N 1 1332 '
We also require 2., 6, = 1. (9:131

— szvﬂ

where N=2. X; is the number of words in the
document (assumed independent of Y=c).




Binary features (multivariate Bernoulli)
* Let X|y=c ~ Ber(8,.) so p(Xi=1|y=c) =6

IC
p(xly =c) = H@ (@3 ) : )I(QCz 0)
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Which class-conditional density?

e For document classification, the multinomial model
Is found to work best. However, we will mostly
focus on the multivariate Bernoulli (binary features)
model, for simplicity.

 We can easily handle features of different types, eg
X; € {0,1}, x, € R, X3 € R*, x, € {0,1,2,...}

e We can use mixtures of Gaussians/ Gammas/
Bernoullis etc. to get more accurate models (see

later).



Class prior

o Let (Yy,..,Ye) ~ Mult(mt, 1) be the class prior.

P(y1,...,yc|m) = ng(yczl) Srot

» Since 2. Y.=1, only one bit can be on. This is
called a 1-of-C encoding. We can write Y=c

instead.  v= = (v,,v,,Y,) = (0,1,0)

P(y|n) = H Wf(y c) _

e e.g., p(spam)=0.7, p(urgent)—O.l, 03 =
p(normal)=0.2 0y




Class posterior

¢ ayes rule T )
p(y = clz) = ply =c)p(zly =c) . HZ L 0: (1—6;,)

p(x) - p(z)
e Since numerator and denominator are very small
number, use Iogs to avoid underflow

log p(y = ¢, z) = log T + Z I(z; = 1)logbic + I(z; = 0)log(1 — 6;.) — log p(z)

« How compute the normalization constant?

log p(z) = log Zp )] = log[z mefel



Log-sum-exp trick

e Define
logp(z) = log[» mcfe]

b. = logm.+ log f.

logp(z) = logZebc = log [(Z ebc)eBeB]
= log [(Z ebCB)eB] = [log(z ele=5)

B = maxb,

+ B

log(e= ™ + e 1?!) =log (e (e” + 7)) =log(e” + ) — 120

e |[n Matlab, use Minka’s function S =logsumexp(b)

logjoint = log(prior) + counts * log(theta) + (1-counts) * log(1-theta); Loj ,9/734, ac)
logpost = logjoint — logsumexp(logjoint) lo; sly=cf M)



Missing features

* Suppose the value of x; Is unknown
* We can simply drop the term p(x,|y=c).
p(y = clza.d) o< ply =c,T2.4)
— [ #ly = oz

d

= py=0) / p(aly = )das] [ plasly = o

) =2
= ply =) [[p(iy =0

e This Is a big advantage of generative classifiers
(which specify p(x|y=c)) over discriminative
classifiers (that learn p(y=c|x) directly).



Parameter estimation

e So far we have assumed that the parameters of
pP(x|]y=c) and p(y=c) are known.

 To estimate p(y=c), we can use MLE or MAP or
fully Bayesian estimation of a multinomial, eg

ﬁéwAP _ N.+ o, —1
2o (Ne +ae —1)
 We can then use the plug-in approximation
p(y|D) Hﬁf(y c)

or the posterior predlctlve
y’D Hf—’(y c)




Posterior predictive for a multinomial

 Recall that, for the Dirichlet-multinomial model, the
posterior predictive is equivalent to plugging in the
posterior mean parameters, since

ply=cD) = [ ply=cimp(r|D)dr,
= n.Dir(m|aly, ..., ol )dnr.
_ Ne+oae
p— T‘-C p—

N + «



MLE for Bernoulli features

 We will assume the params for p(x|y=c) are
Independent for each class.

e Since we treat each feature separately, we just
count how many times word | occurred In
documents of class c, and divide by the number of
documents of class c

Zi:yi:c Z@Ez I(’UJ — J) N]C

b =

 We can £asily add priors to regularize this.

Sum over documents i which belong to class ¢

Sum over words w in document |



Class conditional densities

e Attesttime, we can either use a plug-in
approximation

sty = D) ~ I 9LEI =D (1 — ) es=0

or the exact posterior predlctlve
I(mj_]‘) N T..=
p(xly = ¢, D) HH (1—8;c)"*=0



Naive Bayes with real-valued features
o |f Xj c R, we can use Gaussian class conditional

densities Xly=c ~ N(l, Oi)
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Plug-in approximation

 We can compute MLEs for each feature | and class
C separately
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« Then we can use a plug-in approximation
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Fully Bayesian solution

 |f we use conjugate priors, it is simple to derive a
fully Bayesian solution: we just update the hyper-
parameters for each feature | and class c, and then
use the predictive distribution, which is a student T

d
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