CS340 Machine learning




Nearest neighbor classifier

« Remember all the training data (non-parametric

classifier)
o At testtime, find closest example In training set,
and return corresponding label

y(x) = yn~ where n* = arg min dist(x, x,,)
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K-nearest neighbor (kNN)

 We can find the K nearest neighbors, and return
the majority vote of their labels

e Egy(X1) =Xx,y(X2)=0
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Effect of K

« K yields smoother predictions, since we average
over more data

« K=1 yields y=piecewise constant labeling
K = N predicts y=globally constant (majority) label

Fig 2.2, 2.3 of HTFO1



Decision boundary for K=1

« Decision boundary is piecewise linear; each piece
IS a hyperplane that is perpendicular to the bisector
of pairs of points from different classes (Voronoi

tessalation)
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Model selection

 Degrees of freedom =~ N/K, since if neighborhoods

don’t overlap, there would be N/K n’hoods, with one
label (parameter) each

« K=1 yields zero training error, but badly overfits
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Model selection

 |f we use empirical error to choose H (models), we
will always pick the most complex model
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Approaches to model selection

e We can choose the model which optimizes the fit to
the training data minus a complexity penalty

H* = arg max fit(H|D) — Acomplexity(H )

 Complexity can be measured Iin various ways
— Parameter counting
— VC dimension
— Information-theoretic encoding length

 We will see some examples later in class



Validation data

« Alternatively, we can estimate performance of each
model on a validation set (not used to fit the model)
and use this to select the right H.

* This Is an estimate of the generalization error.

 Once we have chosen the model, we refit it to all
the data, and report performance on a test set.
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K-fold cross validation

If D Is so small that N, ;4 would be an unreliable
estimate of the generalization error, we can
repeatedly train on all-but-1/K and test on 1/K’th.
Typically K=10.

If K=N-1, this is called leave-one-out-CV.
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CV for kNN

* In hwl, you will implement CV and use it to select K
for a KNN classifier

e Can use the “one standard error” rule*, where we
pick the simplest model whose error is no more
than 1 se above the best.

e For KNN, dof=N/K, so we would pick K=11.

CV error Souf
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Application of kNN to pixel labeling

LANDSAT images for an agricultural area in 4 spectral bands;

manual labeling into 7 classes (red soil, cotton, vegetation, etc.);

Output of 5NN using each 3x3 pixel block in all 4 channels (9*4=36 dimensions).
This approach outperformed all other methods in the STATLOG project.

Spectral Band 1 Speciral Band 2 Speciral Band 3

HTF fig 13.6, 13.7



Problems with kNN

e Can be slow to find nearest nbr in high dim space

n* = arg min dist(x, x,)
neD

 Need to store all the training data, so takes a lot of
memory

* Need to specify the distance function
e Does not give probabilistic output



Reducing run-time of kNN

« Takes O(Nd) to find the exact nearest neighbor

e Use a branch and bound technique where we
prune points based on their partial distances

r

D, (a,b)* = (a; — b;)”

1=1

e Structure the points hierarchically into a kd-tree
(does offline computation to save online
computation)

e Use locality sensitive hashing (a randomized
algorithm)

Not on exam



Reducing space requirements of kNN

 Various heuristic algorithms have been proposed to

prune/ edit/ condense “irrelevant” points that are far
from the decision boundaries

o Later we will study sparse kernel machines that
give a more principled solution to this problem

Not on exam



Similarity is hard to define




Euclidean distance

 For real-valued feature vectors, we can use
Euclidean distance

D(u,v)* = [ju —v[|* = (u—v)" (u—v) = Z(u —v;)°

 |If we scale x1 by 1/3, NN changes!
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Mahalanobis distance

 Mahalanobis distance lets us put different weights
on different comparisons

D(u,v)? = (u—v)'S(u—v)

— S: S:(Uz — v3) 25 (uj — vy)

where 2 Is a symmetric positive definite matrix
* Euclidean distance is 2=|




Error rates on USPS digit recognition

e 7291 train, 2007 test

 Neural net: 0.049
 1-NN/Euclidean distance: 0.055
 1-NN/tangent distance: 0.026

* |n practice, use neural net, since KNN too slow
(lazy learning) at test time
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Problems with kNN

e Can be slow to find nearest nbr in high dim space

n* = arg min dist(x, x,)
neD

 Need to store all the training data, so takes a lot of
memory

* Need to specify the distance function
e Does not give probabilistic output



Why is probabilistic output useful?

A classification function returns a single best guess
given an input g(z,0) €y

A probabillistic classifier returns a probability
distribution over outputs given an input  p(y|z, ) < [0,1]

If p(y|x) Is near 0.5 (very uncertain), the system
may choose not to classify as 0/1 and instead ask
for human help

If we want to combine different predictions p(y|x),
we need a measure of confidence

P(Y|X) lets us use likelihood as a measure of fit



Probabilistic KNN

 We can compute the empirical distribution over
labels in the K-neighborhood

 However, this will often predict O probability due to
sparse data

Pl D)= Y Iy=y)

jenbr(xz,K,D)
K=4, C=3

P =[3/4, 0, 1/4]
1

y=1y=2 y=3



Probabilistic KNN
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Heatmap of p(y|x,D) for a 2D grid

p(y=1|x,K=10,naive)
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xrange = -4.5:0.1:6.25; yrange = -3.85:0.1:8.25;

[X Y] = meshgrid(xrange, yrange); XtestGrid = [X(:) Y(:)];

% [XtestGrid, xrange, yrange] = makeGrid2d(Xtrain, 0.4);

[ypredGrid, yprobGrid] = knnClassify(Xtrain, ytrain, XtestGrid, K);
HH = reshape(yprobGrid(:,1), [length(yrange) length(xrange)]);
figure(3);clf

imagesc(HH) ; axis xy; colorbar



imagesc, bar3, surf, contour

p(y=1|x,K=10,naive)
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Smoothing empirical frequencies

 The empirical distribution will often predict O
probability due to sparse data

 We can add pseudo counts to the data and then
normalize

K=4, C=3

P=[3+1,0+1,1+1]/7=[4/7,1/7, 2/7]

y=1y=2 y=3



Softmax (multinomial logit) function

* We can “soften” the empirical distribution so it
spreads its probablility mass over unseen classes

» Define the softmax with inverse temperature 3
X X;
Sz B); = p(fw;)

Zj exp(Bz;)
e Big beta = cool temp = spiky distribution

« Small beta = high temp = uniform distribution
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Softened Probabilistic kNN
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Weighted Probabilistic KNN

p(ylz, D, K, 3) =

exp|(B/K) 2 e w(®, )1 (y =

Vﬁghted sum over Knn
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Kernel functions

Any smooth function K such that
K(x)= o0, jK (x)dx =1, _[XK (x)dx = 0 and _[XZK (x)dx >0

» Epanechnikov quadratic kernel

K, (Xo, X) = D(‘X:]—XO‘) D(t) — {4(1‘t2) if|4<1;

0 otherwise A = bandwidth

e tri-cube kernel

Ki (Xo’ X) = D{Mj D(t) _ {(1—t3)3 if| <1

A 0 otherw

—— Epanechnikov
— Tri-cube
- (Gaussian

0.8

 (Gaussian kernel

1 (X=%,)* g s
K, (%, %)= ~ <
A (XO X) \/52_/] exp( ZAZ )
3 2 1 0 1 2 3
Kernel Compact support — vanishes beyond a finite range (Epanechnikov, tri-cube)

characteristics Everywhere differentiable (Gaussian, tri-cube)
HTF 6.2



Kernel functions on structured objects

e Rather than defining a feature vector x, and
computing Euclidean distance D(Xx, X’), sometimes
we can directly compute distance between two
structured objects

e Eg string/graph matching using dynamic
programming



