CS340 Machine learning Lecture 4 K-nearest neighbors

Nearest neighbor classifier

- Remember all the training data (non-parametric classifier)
- At test time, find closest example in training set, and return corresponding label

$$\hat{y}(x) = y_{n^*}$$
 where $n^* = \arg\min_{n \in D} dist(x, x_n)$

K-nearest neighbor (kNN)

- We can find the K nearest neighbors, and return the majority vote of their labels
- Eg y(X1) = x, y(X2) = 0

Effect of K

- K yields smoother predictions, since we average over more data
- K=1 yields y=piecewise constant labeling
- K = N predicts y=globally constant (majority) label

Decision boundary for K=1

 Decision boundary is piecewise linear; each piece is a hyperplane that is perpendicular to the bisector of pairs of points from different classes (Voronoi tessalation)

Model selection

- Degrees of freedom ≈ N/K, since if neighborhoods don't overlap, there would be N/K n'hoods, with one label (parameter) each
- K=1 yields zero training error, but badly overfits

Model selection

 If we use empirical error to choose H (models), we will always pick the most complex model

Approaches to model selection

 We can choose the model which optimizes the fit to the training data minus a complexity penalty

$$H^* = \arg\max_{H} \operatorname{fit}(H|D) - \lambda \operatorname{complexity}(H)$$

- Complexity can be measured in various ways
 - Parameter counting
 - VC dimension
 - Information-theoretic encoding length
- We will see some examples later in class

Validation data

- Alternatively, we can estimate performance of each model on a validation set (not used to fit the model) and use this to select the right H.
- This is an estimate of the generalization error.
- Once we have chosen the model, we refit it to all the data, and report performance on a test set.

K-fold cross validation

If D is so small that N_{valid} would be an unreliable estimate of the generalization error, we can repeatedly train on all-but-1/K and test on 1/K'th. Typically K=10.

If K=N-1, this is called leave-one-out-CV.

$$e\hat{r}r_k = \frac{1}{N_k} \sum_{n \in fold(k)} I(\hat{y}(x_n) \neq y_n)$$

$$e\hat{r}r = \frac{1}{K}e\hat{r}r_k$$

$$\mathbf{run 1}$$

$$\mathbf{run 2}$$

$$\mathbf{run 3}$$

$$\mathbf{run 4}$$

CV for kNN

- In hw1, you will implement CV and use it to select K for a kNN classifier
- Can use the "one standard error" rule*, where we pick the simplest model whose error is no more than 1 se above the best.
- For KNN, dof=N/K, so we would pick K=11.

* HTF p216

Application of kNN to pixel labeling

LANDSAT images for an agricultural area in 4 spectral bands; manual labeling into 7 classes (red soil, cotton, vegetation, etc.); Output of 5NN using each 3x3 pixel block in all 4 channels (9*4=36 dimensions). This approach outperformed all other methods in the STATLOG project.

N	N	N
N	X	N
N	N	N

Problems with kNN

- Can be slow to find nearest nbr in high dim space $n^* = \arg\min_{n \in D} dist(x, x_n)$
- Need to store all the training data, so takes a lot of memory
- Need to specify the distance function
- Does not give probabilistic output

Reducing run-time of kNN

- Takes O(Nd) to find the exact nearest neighbor
- Use a branch and bound technique where we prune points based on their partial distances

$$D_r(a,b)^2 = \sum_{i=1}^r (a_i - b_i)^2$$

- Structure the points hierarchically into a kd-tree (does offline computation to save online computation)
- Use locality sensitive hashing (a randomized algorithm)

Reducing space requirements of kNN

- Various heuristic algorithms have been proposed to prune/ edit/ condense "irrelevant" points that are far from the decision boundaries
- Later we will study sparse kernel machines that give a more principled solution to this problem

Similarity is hard to define

"tufa"

Euclidean distance

 For real-valued feature vectors, we can use Euclidean distance

$$D(u,v)^{2} = ||u-v||^{2} = (u-v)^{T}(u-v) = \sum_{i=1}^{d} (u_{i} - v_{i})^{2}$$

If we scale x1 by 1/3, NN changes!

Mahalanobis distance

 Mahalanobis distance lets us put different weights on different comparisons

$$D(u,v)^{2} = (u-v)^{T} \Sigma(u-v)$$

$$= \sum_{i} \sum_{j} (u_{i} - v_{i}) \Sigma_{ij} (u_{j} - v_{j})$$

where Σ is a symmetric positive definite matrix

Euclidean distance is Σ=I

Error rates on USPS digit recognition

- 7291 train, 2007 test
- Neural net: 0.049
- 1-NN/Euclidean distance: 0.055
- 1-NN/tangent distance: 0.026
- In practice, use neural net, since KNN too slow (lazy learning) at test time

Problems with kNN

- Can be slow to find nearest nbr in high dim space $n^* = \arg\min_{n \in D} dist(x, x_n)$
- Need to store all the training data, so takes a lot of memory
- Need to specify the distance function
- Does not give probabilistic output

Why is probabilistic output useful?

- A classification function returns a single best guess given an input $\hat{y}(x,\theta) \in \mathcal{Y}$
- A probabilistic classifier returns a probability distribution over outputs given an input $p(y|x,\theta) \in [0,1]$
- If p(y|x) is near 0.5 (very uncertain), the system may choose not to classify as 0/1 and instead ask for human help

- If we want to combine different predictions p(y|x), we need a measure of confidence
- p(y|x) lets us use likelihood as a measure of fit

Probabilistic kNN

- We can compute the empirical distribution over labels in the K-neighborhood
- However, this will often predict 0 probability due to sparse data

$$p(y|x,D) = \frac{1}{K} \sum_{j \in nbr(x,K,D)} I(y=y_j)$$

$$P = [3/4, 0, 1/4]$$

Probabilistic kNN

Heatmap of p(y|x,D) for a 2D grid


```
xrange = -4.5:0.1:6.25; yrange = -3.85:0.1:8.25;
[X Y] = meshgrid(xrange, yrange); XtestGrid = [X(:) Y(:)];
%[XtestGrid, xrange, yrange] = makeGrid2d(Xtrain, 0.4);
[ypredGrid, yprobGrid] = knnClassify(Xtrain, ytrain, XtestGrid, K);
HH = reshape(yprobGrid(:,1), [length(yrange) length(xrange)]);
figure(3);clf
imagesc(HH); axis xy; colorbar
```

imagesc, bar3, surf, contour

Smoothing empirical frequencies

- The empirical distribution will often predict 0 probability due to sparse data
- We can add pseudo counts to the data and then normalize

$$P = [3 + 1, 0 + 1, 1 + 1] / 7 = [4/7, 1/7, 2/7]$$

Softmax (multinomial logit) function

- We can "soften" the empirical distribution so it spreads its probability mass over unseen classes
- Define the softmax with inverse temperature β

$$S(x,\beta)_i = \frac{\exp(\beta x_i)}{\sum_j \exp(\beta x_j)}$$

- Big beta = cool temp = spiky distribution
- Small beta = high temp = uniform distribution

$$X = [3 \ 0 \ 1]$$

Softened Probabilistic kNN

$$p(y|x,D,K,\beta) = \sum_{\substack{ \exp[(\beta/K)\sum_{j\sim x}^{}I(y=y_j)] \\ \overline{\sum_{y'}\exp[(\beta/K)\sum_{j\sim x}^{}I(y'=y_j)]}}} \text{Sum over Knn}$$

Weighted Probabilistic kNN

Weighted

Weighted sum over Knn

$$p(y|x, D, K, \beta) = \exp[(\beta/K) \sum_{j \sim x} w(x, x_j) I(y = y_j)]$$

$$\sum_{y'} \exp[(\beta/K) \sum_{j \sim x} w(x, x_j) I(y' = y_j)]$$

Local kernel function

Kernel functions

Any smooth function K such that

$$K(x) \ge 0$$
, $\int K(x) dx = 1$, $\int xK(x) dx = 0$ and $\int x^2 K(x) dx > 0$

Epanechnikov quadraţic kernel

$$K_{\lambda}(x_0, x) = D\left(\frac{|x - x_0|}{\lambda}\right) \quad D(t) = \begin{cases} \frac{3}{4}(1 - t^2) & \text{if } |t| \le 1; \\ 0 & \text{otherwise.} \end{cases} \quad \lambda = \text{bandwidth}$$

tri-cube kernel

$$K_{\lambda}(x_0, x) = D\left(\frac{|x - x_0|}{\lambda}\right) \quad D(t) = \begin{cases} (1 - |t|^3)^3 & \text{if } |t| \le 1; \\ 0 & \text{otherw} \end{cases}$$

Gaussian kernel

$$K_{\lambda}(x_0, x) = \frac{1}{\sqrt{2\pi}\lambda} \exp(-\frac{(x - x_0)^2}{2\lambda^2})$$

Kernel characteristics

Compact support – vanishes beyond a finite range (Epanechnikov, tri-cube) Everywhere differentiable (Gaussian, tri-cube)

Kernel functions on structured objects

- Rather than defining a feature vector x, and computing Euclidean distance D(x, x'), sometimes we can directly compute distance between two structured objects
- Eg string/graph matching using dynamic programming