CS340 Machine learning

Nearest neighbor classifier

« Remember all the training data (non-parametric

classifier)
o At testtime, find closest example In training set,
and return corresponding label

y(x) = yn~ where n* = arg min dist(x, x,,)

neD
° o © o °
®
°
°* ¢ ® o, o ©° ¢
° o o, o © °
® 2 06 eg0
® o ° e o " °
® o o® ® e ¢ ®

K-nearest neighbor (kNN)

 We can find the K nearest neighbors, and return
the majority vote of their labels

e Egy(X1) =Xx,y(X2)=0

X = s
g; ~
)(\/(7 7 D
X %
/(L&
/< | o/

Effect of K

« K yields smoother predictions, since we average
over more data

« K=1 yields y=piecewise constant labeling
K = N predicts y=globally constant (majority) label

Fig 2.2, 2.3 of HTFO1

Decision boundary for K=1

« Decision boundary is piecewise linear; each piece
IS a hyperplane that is perpendicular to the bisector
of pairs of points from different classes (Voronoi

tessalation)

-1,

DHS 4.13

Model selection

 Degrees of freedom =~ N/K, since if neighborhoods

don’t overlap, there would be N/K n’hoods, with one
label (parameter) each

« K=1 yields zero training error, but badly overfits

K=20 K=1
0.4 ea ‘9,, T T T U ! o
° . | Testerror
//

error
_— Train error

I "0
0 100

40 50 B0
degree of freedom N/K

dof=5 dof=100

Model selection

 |f we use empirical error to choose H (models), we
will always pick the most complex model

(’(A(r-\ R(lar éﬁﬂ’ e(/Vr
\ N
| — 2 J T | .
Mo lel Mkﬂw& pverek

é)r/\?tb(l\/‘j

Approaches to model selection

e We can choose the model which optimizes the fit to
the training data minus a complexity penalty

H* = arg max fit(H|D) — Acomplexity(H)

 Complexity can be measured Iin various ways
— Parameter counting
— VC dimension
— Information-theoretic encoding length

 We will see some examples later in class

Validation data

« Alternatively, we can estimate performance of each
model on a validation set (not used to fit the model)
and use this to select the right H.

* This Is an estimate of the generalization error.

 Once we have chosen the model, we refit it to all
the data, and report performance on a test set.

KoZ 2o/
F&Vm’r\ /VAIJH fte(ﬂ
(_ \J\/‘D\/’ -
Elerr] ~ ; (9(zn) # Yn)

K-fold cross validation

If D Is so small that N, ;4 would be an unreliable
estimate of the generalization error, we can
repeatedly train on all-but-1/K and test on 1/K’th.
Typically K=10.

If K=N-1, this is called leave-one-out-CV.

erry = Ni Z I(ﬁ(xn)#yn)

F opefold(k)

1
err = —errg

K

Tramr 1

T TR

I"11xL

= W N

I11XY

CV for kNN

* In hwl, you will implement CV and use it to select K
for a KNN classifier

e Can use the “one standard error” rule*, where we
pick the simplest model whose error is no more
than 1 se above the best.

e For KNN, dof=N/K, so we would pick K=11.

CV error Souf

*HTF p216 K

Application of kNN to pixel labeling

LANDSAT images for an agricultural area in 4 spectral bands;

manual labeling into 7 classes (red soil, cotton, vegetation, etc.);

Output of 5NN using each 3x3 pixel block in all 4 channels (9*4=36 dimensions).
This approach outperformed all other methods in the STATLOG project.

Spectral Band 1 Speciral Band 2 Speciral Band 3

HTF fig 13.6, 13.7

Problems with kNN

e Can be slow to find nearest nbr in high dim space

n* = arg min dist(x, x,)
neD

 Need to store all the training data, so takes a lot of
memory

* Need to specify the distance function
e Does not give probabilistic output

Reducing run-time of kNN

« Takes O(Nd) to find the exact nearest neighbor

e Use a branch and bound technique where we
prune points based on their partial distances

r

D, (a,b)* = (a; — b;)”

1=1

e Structure the points hierarchically into a kd-tree
(does offline computation to save online
computation)

e Use locality sensitive hashing (a randomized
algorithm)

Not on exam

Reducing space requirements of kNN

 Various heuristic algorithms have been proposed to

prune/ edit/ condense “irrelevant” points that are far
from the decision boundaries

o Later we will study sparse kernel machines that
give a more principled solution to this problem

Not on exam

Similarity is hard to define

Euclidean distance

 For real-valued feature vectors, we can use
Euclidean distance

D(u,v)* = [ju —v[|* = (u—v)" (u—v) = Z(u —v;)°

 |If we scale x1 by 1/3, NN changes!

X X
i L

Mahalanobis distance

 Mahalanobis distance lets us put different weights
on different comparisons

D(u,v)? = (u—v)'S(u—v)

— S: S:(Uz — v3) 25 (uj — vy)

where 2 Is a symmetric positive definite matrix
* Euclidean distance is 2=|

Error rates on USPS digit recognition

e 7291 train, 2007 test

 Neural net: 0.049
 1-NN/Euclidean distance: 0.055
 1-NN/tangent distance: 0.026

* |n practice, use neural net, since KNN too slow
(lazy learning) at test time

o[|=||3]|4||5]|&||7]|8]|%
=E IS EGEE

Ol X 3||4|S||&|||§||T

HTF 13.9

Problems with kNN

e Can be slow to find nearest nbr in high dim space

n* = arg min dist(x, x,)
neD

 Need to store all the training data, so takes a lot of
memory

* Need to specify the distance function
e Does not give probabilistic output

Why is probabilistic output useful?

A classification function returns a single best guess
given an input g(z,0) €y

A probabillistic classifier returns a probability
distribution over outputs given an input p(y|z,) < [0,1]

If p(y|x) Is near 0.5 (very uncertain), the system
may choose not to classify as 0/1 and instead ask
for human help

If we want to combine different predictions p(y|x),
we need a measure of confidence

P(Y|X) lets us use likelihood as a measure of fit

Probabilistic KNN

 We can compute the empirical distribution over
labels in the K-neighborhood

 However, this will often predict O probability due to
sparse data

Pl D)= Y Iy=y)

jenbr(xz,K,D)
K=4, C=3

P =[3/4, 0, 1/4]
1

y=1y=2 y=3

Probabilistic KNN

train
5 i 4# .
bt
4 T L
++ #Qﬁ# S+
’ * 4o T 4
-+ B
) %\ 3 B NI
: HE g 2 g o ,
*
R *F g, F |
) L Sonk L . |
* * * x
24 | Nz I I | I .
2 2" 0 1 3

p(y=2|x,K=10,rRe(y:2 |X; D)

8.22

6.88

5.54

4.20
2.86 10.6
1.53 40.5

0.19 -0.4

-1.15

-2.49

-3.83

-4.47 -3.13 -1.79 -045 0.89 223 356 4.90 6.24

-1.15

-2.49

-3.83

P(y=1[x, D)
8.22
6.88
5.54
4.20
2.86

1.53

0.19

-4.47 -3.13 -1.79 -0.45 0.89 223 3.5 490 6.24

P (y=3%ad)

-4.47 -3.13 -1.79 -0.45 0.89 223 356 4.90 6.24

-10.6

-10.5

-10.4

Heatmap of p(y|x,D) for a 2D grid

p(y=1|x,K=10,naive)

-2.49

-4.47 -3.13 -1.79 -0.45 0.89 223 356 4.90 6.24

xrange = -4.5:0.1:6.25; yrange = -3.85:0.1:8.25;

[X Y] = meshgrid(xrange, yrange); XtestGrid = [X(:) Y(:)];

% [XtestGrid, xrange, yrange] = makeGrid2d(Xtrain, 0.4);

[ypredGrid, yprobGrid] = knnClassify(Xtrain, ytrain, XtestGrid, K);
HH = reshape(yprobGrid(:,1), [length(yrange) length(xrange)]);
figure(3);clf

imagesc(HH) ; axis xy; colorbar

imagesc, bar3, surf, contour

p(y=1|x,K=10,naive)

-4.47 -3.13 -1.79 -0.45 0.89 223 356 4.90 6.24

Smoothing empirical frequencies

 The empirical distribution will often predict O
probability due to sparse data

 We can add pseudo counts to the data and then
normalize

K=4, C=3

P=[3+1,0+1,1+1]/7=[4/7,1/7, 2/7]

y=1y=2 y=3

Softmax (multinomial logit) function

* We can “soften” the empirical distribution so it
spreads its probablility mass over unseen classes

» Define the softmax with inverse temperature 3
X X;
Sz B); = p(fw;)

Zj exp(Bz;)
e Big beta = cool temp = spiky distribution

« Small beta = high temp = uniform distribution

=100 p=1 3=0.01
1

1 0.4
0.3
ﬂ 0.5 0.5 I 102

y:1 y:2 y:3 Olll_l
0 0 0

X=[3 0 1]

Softened Probabilistic kNN

train
5—‘ + 4# | 4
bt
at i L
] PSR
< pF
2r * 3 —+ .
1} S
*
g F R EF g T
4l e
2h N ‘ ‘
- 2 2" 0 1 2 3
Sum over Knn
p(y’$7D7K7 ﬁ) — /

exp|(8/K) >, 1y = y;)]

>y exp(B/K) > IV

= y;)]

-1.15

-2.49

-3.83

Rawcounts)

8.22
6.88
5.54
4.20
2.86
1.53

0.19

-4.47 -3.13 -1.79 -0.45 0.89 223 356 4.90 6.24

IO.5

r 10.45

Softmax

p(y=1|x,K=10,unweighted, beta=1.0000)

L 104

r 10.35

-4.47 -3.13 -1.79 -0.45 089 223 356 490 6.24

Weighted Probabilistic KNN

p(ylz, D, K, 3) =

exp|(B/K) 2 e w(®,)1 (y =

Vﬁghted sum over Knn

-2.49

-3.83

Weighted

p(y=1[x,K=10,weighted,beta=1.0000)

8.22

6.88

5.54

4.20

2.86

1.53

0.19

-4.47 -3.13 -1.79 -0.45 0.89 223 356 4.90 6.24

Softmax

p(y=1|x,K=10,unweighted, beta=1.0000)

-0.45

2y eXP|(B/K) D w(z, 5) (Y

Local kernel function

-10.4

-0.35

-4.47 -3.13 -1.79 -0.45 089 223 356 490 6.24

Kernel functions

Any smooth function K such that
K(x)= o0, jK (x)dx =1, _[XK (x)dx = 0 and _[XZK (x)dx >0

» Epanechnikov quadratic kernel

K, (Xo, X) = D(‘X:]—XO‘) D(t) — {4(1‘t2) if|4<1;

0 otherwise A = bandwidth

e tri-cube kernel

Ki (Xo’ X) = D{Mj D(t) _ {(1—t3)3 if| <1

A 0 otherw

—— Epanechnikov
— Tri-cube
- (Gaussian

0.8

 (Gaussian kernel

1 (X=%,)* g s
K, (%, %)= ~ <
A (XO X) \/52_/] exp(ZAZ)
3 2 1 0 1 2 3
Kernel Compact support — vanishes beyond a finite range (Epanechnikov, tri-cube)

characteristics Everywhere differentiable (Gaussian, tri-cube)
HTF 6.2

Kernel functions on structured objects

e Rather than defining a feature vector x, and
computing Euclidean distance D(Xx, X’), sometimes
we can directly compute distance between two
structured objects

e Eg string/graph matching using dynamic
programming

