
CS340 Machine learning
Lecture 2

Classification and generalization error



Summary of last lecture

• Given training data D = { (x1.y1), …, (xN, yN) }
• Choose right hypothesis class H 

• Fit parameters θ of function given H and D

• Applications

f(x, θ) = sgn(θTx) = sgn(θ0 + θ1x1 + θ2x2)

linear quadratic Depth-2 decision tree



Notation for inputs (covariates)

• Input is a d-dimensional feature vector

• We will frequently omit boldface notation
• Sometimes we assume each component (attribute) 

is a real-valued quantity, so
• In general, some components may be categorical 

(eg male, female) or ordinal (eg low, medium, high) 
or an integer (eg number of arrivals) etc

• We can also have structured inputs, like text 
documents, DNA sequences or web pages

• In statistics, they use p instead of d, and say 
“covariate” or “explanatory variable” instead of 
“input”.

x ∈ X

X = Rd

x



Notation for output (response/ target)

• The output is

• For classification problems with K mutually 
exclusive  categorical classes, we have

• If K=2, this is binary classification.
• We will consider ordinal classes later.
• Sometimes we will use a 1-of-K binary encoding, 

e.g., for 3 classes, class 1 = (1,0,0), class 2 = 
(0,1,0), class 3 = (0,0,1) . This allows us to 
represent non mutually exclusive classes.

y ∈ Y

Y = {1, 2, . . . , K}



Notation for training data

8.7EllipseRed

12.3EllipseRed

10SquareBlue

Size (cm)ShapeColor

Yes

No

Yes

Label
Training set:

X: N x d

y: N x 1

N cases

d features (attributes)

Design matrix



Design matrices

Tall & skinny Short & fat



Notation for training data

• N = number of training examples, xn = n’th training 
input, for n=1:N. (Notation used by Bishop’s book.)

• In statistics, more common to use n = number of 
training examples, xi = i’th example, i=1:n.

• Hastie book uses xi, i=1:N.



H=rectangles in the Rd plane

learn concept of “healthy levels” of cholestrol x1 and 
insulin x2 from positive and negative examples

True concept C (hidden)



Training data D

Training data D sampled from CTrue concept C (hidden)



Learning = inferring hidden concept (function)

Too big Too small Just right



Empirical error

Nerr =
N∑

n=1

I(ŷ(xn) �= yn)

I(e) =

{
1 if e is true
0 if e is false

Predicted
label

True
label



Empirical error

Predicted
label

True
label

Nerr =
N∑

n=1

δ(ŷ(xn)− yn)

δ(x) =

{
1 if x = 0
0 otherwise



False positive

Nfp =
N∑

n=1

I(ŷ(xn) = 1 ∧ yn = 0)



False negative

Nfn =
N∑

n=1

I(ŷ(xn) = 0 ∧ yn = 1)



Generalization error

We want to minimize the average error rate,
where the test cases are assumed to be sampled from C

E[err] = Ex,yI(ŷ(x) �= y)

=

∫

x∈X

∑

y∈Y

I(ŷ(x) �= y)p(x, y)

But p(x,y) (which defines C) is unknown



Empirical risk minimization

In ERM,  we choose f so as to
minimize the number of errors on the training set 

ˆerr =
1

N

N∑

n=1

I(ŷ(xn) �= yn)

We are approximating p(x,y) by just a finite set of samples

p(x, y) =
1

N

∑

n

I( (x, y) = (xn, yn) )



Version space

There may be many functions which have zero training error,
ranging from the most specific hypothesis to the most general.
Which one we pick depends on our prior knowledge.

most specific hypothesis, S

most general hypothesis, G



CNF example of version space

• Let H = formula in conjuctive normal form eg

• Suppose we have 3 variables and D is given by

• Then the most specific and general hyps are

f = (x1 ∧ ¬x3) ∨ (x2 ∧ x4 ∧ ¬x5)

S = (x1 ∧ ¬x2 ∧ ¬x3) ∨ (x1 ∧ x2 ∧ ¬x3) ∨ (¬x1 ∧ x2 ∧ ¬x3)

G = x1 ∨ x2



If the true concept (green blob) is a rectangle, we can 
fit it perfectly, and thus get 0 training error.

But if the truth is more complex, we will just choose 
the best-fitting rectangular approximation (blue box) 
and so Nerr ≠ 0  

Lower bound on achievable error rate



Overfitting in rectangle land

• We can always make the empirical error be 0 by 
putting a little rectangle around every +ve training 
example.

• But this may not lead to good generalization 
performance

• Hence we cannot use empirical error to select 
between models of different complexity


