CS340 Machine learning

Graphical models




e Undirected graphical models
e Directed graphical models

e Conditional independence

« Effects of node ordering

« Markov equivalence

e Bayesian modeling



Undirected graphical models

« A prob distribution factorizes wrt an undirected
graph G if it can be written as

p(x) = 1 IT ve(x.) Z = Z H Ye(Xe)
 where C are the (maximal) cliques of G, Z is the
partition function and v(x.) > oare potential functions

01 p($1:6) X ¢12($1,$2)¢13($17$3)¢24($27$4)

Yss5(x3, 5)Y2s6(T2, X5, T6)

Potential functions are like
soft constraints. We will see
examples later.




Example model

Alice and Bob more likely to agree
D / (0,0 or 1,1) than disagree;
¢ more likely to both be right (0,0)

AN o
o [ [|0d] | A >0¢ than both be wrong (1,1)
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Charles and Debbie more likely to
disagree than agree

X=1 if student X has misconception about homework, else X=0
Source: Koller and Friedman p220 4



Inference

e Given a joint distribution, we can compute the
marginals on any variables of interest

1 1 1
p(b=1) :ijxp(a,b: 1,c,d) =0.18

a=0 c=0 d=0

* And hence any conditionals of interest

p(b=1lc=0) = = 0.06



Graph separation

« We say S separates A and B in G if, when we
remove edges connected to S, all paths from Ato B
are blocked

X, — X

Y\ / \\ Xé eg {2,5} separates 1 and 4
N\ 4a s

— XS

 Hammersley-Clifford Theorem: if p(x)>0 for all x,
and p factorizes over G, then graph separation iff
conditional independence
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Markov properties

e Global A L B|S

bd = boundary,
cl = closure = boundary + node

A node is independent of the rest given its Markov blanket
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Directed graphical models

« A prob distribution factorizes according to a DAG if
It can be written as

d
p(x) = [ ool

where 11 are the parents of | , and the nodes are
ordered topologically (parents before children).

o Each row of the conditional
probability table (CPT) defines
the distribution over the child’s
values given its parents values.
The model is locally normalized.

= p(x1)p(z2|m1)p(z3|71)p(Ts|23)

P(CU5 |£I32, $3)P(CI36 \332, 33’5)




Example model

p(B,E, A, J, M) = p(B)p(E)p(A|B, E)p(J|A)p(M|A)

o |
)O‘Lu)Mﬁ] £

J

Source: Russell & Norvig 10



Example model

P(C=F) P(C=T)

0.5 0.5

C ‘ P(S=F) P(S=T) C | P(R=F) P(R=T)
F 0.5 0.5 / F 0.8 0.2
T 0.9 0.1

% S ISR

S R|P(W=F) P(W=T)

F F 1.0 0.0
T F 0.1 0.9
F T 0.1 0.9

T T 0.01 0.99

p(C, 5, R, W) = p(C)p(S|C)p(R|C)p(W|S, R) 11



Joint distribution

p(C, S, R, W) = p(C)p(S|C)p(R|C)p(W]S, R)

C S r w prob

0000 0.200

000 10.000

B 0010 0.005

- 0011 0.045

0100 0.020

E 0101 0.180

¢ |psempsen (e Cran D 0110 0.001
o les % Folos o2 0111 0.050
BRI 100 0 0.090

< 2 lpcrers poves 100 1 0.000

Fr| 1o oo 1010 0.036

D 1011 0.324

B I 1100 0.001

1101 0.009

1110 0.000

1111 0.040
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Inference

e Prior that sprinkler is on

1 1 1
p(Szl)zy:y:y:p(C:c,S:1,R:r,W:w):O.3

c=0 r=0 w=0
e Posterior that sprinkler is on given that grass is wet
p(S=1W =1) = PE=LW=1) 4

p(W =1)
e Posterior that sprinkler is on given that grass is wet

and it Is raining

p(S=1W=1,R=1) =

0

Explaining away!
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Conditional independence properties of DAGS

 For UGMSs, independence = separation.
 For DGMs, independence = d-separation.

« Alternatively, we can convert a DGM to a UGM and
use simple separation.

15



Moralization

 We can convert a DAG to an undirected graph by
moralizing It, I.e., forcing unmarried parents who
have a child to get connected, and then dropping
all the arrows

X, 5/1, )()
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Ancestral graph

 The ancestral graph of G wrt U is one in which we
remove any node that is not in U or any ancestor of
U, together with any edges in or out of such nodes.

| P UZSI/((;}B
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Conditional independence in DAGs

 One can show that A Is independent of B given S iff
A d-separates B given S, where d-separation is like
graph separation but pays attention to edge
orientation (cf Bayes ball). This is complex to
define.

« A simpler definition is the following:
A Is independent of B given S iff A Is separated
from B given S in the moralization of the ancestral
graph of G wrt A,B,S.

18



Q
Q
=
(S
>

L]

e Is1 1 4|{5,7)?

19



Chains and tents

[ 13 x 1312
(~—-—> ?/"53 /\_2,3 /(2;_/3
|13« 11312
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V-structures

Explaining away couples parents
of observed children or grand-children

21



Markov blankets for DAGs

 The Markov blanket of a node is the set that
renders it independent of the rest of the graph.

« This Is the parents, children and co-parents.

(X5, X3)
> (X, X 5)
(X, Urin, Yi:ms Z1:m, R)
Yo (@, Uty Yiimy Z1.m, R)
p(XilUrn) (L1, p(Y;| X3, Z5)|P(Utiny Z1:m, R)
> o P(Xi = 2|Un)[[1; p(Y;|Xs = =z, Z;)|P(Ur:n, Z1:m, R)
p(Xi|Urn)[I1; p(Y;]Xi, Z;)]
Do P(Xi = z|Unn)[]; p(Y;|Xs = =, Z;)]

p(Xi| X)) =

p(XilX_i) «x p(X;|Pa(X;)) || p(Y;|Pa(Y;)
Y, ech(X,)

Useful for Gibbs sampling 22



Local directed Markov property

* A node is independent of its non-descendants
given Its parents
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Ordered directed Markov property

A node is independent of its predecessors (in some
total ordering) given is parents.
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Equivalence

 Thm: the following are all equivalent for DAG G
P factorizes according to G

* P obeys the global Markov property wrt G

P obeys the local Markov property wrt G

P obeys the directed Markov property wrt G

25
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Example model

e Suppose the true distribution is

p(B,E, A, J,M) = p(B)p(E)p(A|B, E)p(J|A)p(M|A)

5L
|
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Choosing the “wrong” ordering

* |f we choose the order MJABE, we get a more
densely connected network, otherwise this will
make independence statements that are not true.

 Eg In original model we have E L M|A, E L J|A, E [ B|A
so we must connect E to B,A but not M,J

<

Source: Russell & Norvig



A worse ordering

 |f we pick the order MJEBA, the graph becomes
fully connected, and thus makes no independence
statements (and therefore includes the true

distribution).
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Markov equivalence

 The following 3 graphs all assert the same set of
conditional independencies, namely X indep Y | Z;
hence they are equivalent

ff r}( X Y
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This v-structure is not equivalent
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X Ly
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Markov equivalence

« Thm: 2 DAGs are Markov equivalent iff they have
the same undirected skeleton and the same set of
v-structures

G (-, by
X\ % X
X
&Y / L/y\\ VAR VA
S \l XS v)ﬁ% X X
Y | )
‘4 Xy X,
G = 6y’

Gz by !
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PDAGS

 We can uniquely represent each equivalence class
using a partially directed acyclic graph (aka
essential graph).

* This uses undirected edges If they are reversible,
and directed edges Iif they are compelled.
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Parameter nodes

e If we treat the parameters as random variables, we
can add them as nodes to the graph.

 Here we assume global parameter independence.
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Repetitive structure

 |f we have iid samples, the variables get replicated
but the parameters are tied / shared
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Plate notation

e For shorthand, we use plates

&,
/ \,
< c,
/// S NG / \
@S — _S | ﬂ\ - g/\ V/Z/\ \Dgg
\ / \ S
L, 824




Factored prior, likelihood, posterior

e Since the parameters are independent in the prior,
and the likelihood is factorized, they are also
Independent in the posterior

p(0|D) o p(0)p(D|6)
= p(HC)Hp(Ci"QC)

x  p(bs) HP(Si\Cq;, 0s)
x  p(6r) HP(Ti\Ci, 0r)

X p(@w) Hp(wi‘siv Ty, 08)
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Local parameter independence

 |n the case of CPTs, we assume each row of the
table is an independent multinomial
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Hyperparameters

 The hyperparameters are often fixed constants,
hence shaded

p(D,0la) = HP(Hj\aj)Hp(ivz'j\wvm»@j)
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Posterior over parameters factorizes

p(Or|D) = H p(Or|c=k) HI(Cz‘ = k)p(ri|0r)c=k)

= HDZT‘ 0R|C k|aR|C’ k)M’UJ(nR,C’:k‘HRW’:k?n)

$ ;
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p(0|D) H H Dir (@i |cjk + 1)



Naive Bayes classifier

I T
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Example: Binary features

p(D,m,0|a,a,b)

Njc1

jco

p(rlo) [ pws/m) T

&

H H p(wij|0;c)

J vyi=c

p(0jc)

Dir(rw|a) Mu(n|m) [ | [ Bin(nje116;e, njc)Beta(Hjclajc, bjc)

J

Dir(w|a + n) H H Beta(0jc|ajc + nje1, bje + njeo)

J
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