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CS340 Machine learning
Graphical models
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Outline

• Undirected graphical models

• Directed graphical models
• Conditional independence

• Effects of node ordering
• Markov equivalence

• Bayesian modeling
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Undirected graphical models

• A prob distribution factorizes wrt an undirected 
graph G if it can be written as

• where C are the (maximal) cliques of G, Z is the 
partition function and            are potential functions 

p(x) =
1

Z

∏

c∈C

ψc(xc) Z =
∑

x

∏

c∈C

ψc(xc)

ψ(xc) ≥ 0

p(x1:6) ∝ ψ12(x1, x2)ψ13(x1, x3)ψ24(x2, x4)

ψ35(x3, x5)ψ256(x2, x5, x6)

Potential functions are like
soft constraints. We will see
examples later.
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Example model

Alice and Bob more likely to agree
(0,0 or 1,1) than disagree;
more likely to both be right (0,0)
than both be wrong (1,1)

Source: Koller and Friedman p220
X=1 if student X has misconception about homework, else X=0

Charles and Debbie more likely to
disagree than agree
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Inference

• Given a joint distribution, we can compute the 
marginals on any variables of interest

• And hence any conditionals of interest

p(b = 1) =

1∑

a=0

1∑

c=0

1∑

d=0

p(a, b = 1, c, d) = 0.18

p(b = 1|c = 0) =
p(b = 1, c = 0)

p(c = 0)
= 0.06
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Graph separation

• We say S separates A and B in G if, when we 
remove edges connected to S, all paths from A to B 
are blocked

• Hammersley-Clifford Theorem: if p(x)>0 for all x, 
and p factorizes over G, then graph separation iff
conditional independence

A ⊥G B|S ⇔ A ⊥p B|S

eg {2,5} separates 1 and 4



7

Markov properties

• Global

• Local

A ⊥ B|S

α ⊥ V \ cl(α)|bd(α)

bd = boundary,
cl = closure = boundary + node 

A node is independent of the rest given its Markov blanket
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Directed graphical models

• A prob distribution factorizes according to a DAG if 
it can be written as

where πj are the parents of j , and the nodes are 
ordered topologically (parents before children). 

Each row of the conditional
probability table (CPT) defines
the distribution over the child’s
values given its parents values.
The model is locally normalized.

p(x) =

d∏

j=1

p(xj|xπj )

p(x1:6) = p(x1)p(x2|x1)p(x3|x1)p(x4|x3)

p(x5|x2, x3)p(x6|x2, x5)
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Example model

p(B,E,A, J,M) = p(B)p(E)p(A|B,E)p(J |A)p(M |A)

Source: Russell & Norvig
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Example model

p(C, S,R,W ) = p(C)p(S|C)p(R|C)p(W |S,R)
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Joint distribution

c s r w prob

0 0 0 0 0.200

0 0 0 1 0.000

0 0 1 0 0.005

0 0 1 1 0.045

0 1 0 0 0.020

0 1 0 1 0.180

0 1 1 0 0.001

0 1 1 1 0.050

1 0 0 0 0.090

1 0 0 1 0.000

1 0 1 0 0.036

1 0 1 1 0.324

1 1 0 0 0.001

1 1 0 1 0.009

1 1 1 0 0.000

1 1 1 1 0.040

p(C, S,R,W ) = p(C)p(S|C)p(R|C)p(W |S,R)
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Inference

• Prior that sprinkler is on

• Posterior that sprinkler is on given that grass is wet

• Posterior that sprinkler is on given that grass is wet 
and it is raining

p(S = 1) =

1∑

c=0

1∑

r=0

1∑

w=0

p(C = c, S = 1, R = r,W = w) = 0.3

p(S = 1|W = 1) =
p(S = 1,W = 1)

p(W = 1)
= 0.43

p(S = 1|W = 1, R = 1) =
p(S = 1,W = 1, R = 1)

p(W = 1, R = 1)
= 0.19

Explaining away!
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Conditional independence properties of DAGs

• For UGMs, independence ≡ separation.

• For DGMs, independence ≡ d-separation.

• Alternatively, we can convert a DGM to a UGM and 
use simple separation.
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Moralization

• We can convert a DAG to an undirected graph by 
moralizing it, i.e., forcing unmarried parents who 
have a child to get connected, and then dropping 
all the arrows
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Ancestral graph

• The ancestral graph of G wrt U is one in which we 
remove any node that is not in U or any ancestor of 
U, together with any edges in or out of such nodes.
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Conditional independence in DAGs

• One can show that A is independent of B given S iff
A d-separates B given S, where d-separation is like 
graph separation but pays attention to edge 
orientation (cf Bayes ball). This is complex to 
define.

• A simpler definition is the following:
A is independent of B given S iff A is separated 
from B given S in the moralization of the ancestral 
graph of G wrt A,B,S.
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Example

• Is 1 ⊥ 4 | {5,7}? 



20

Chains and tents
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V-structures

Explaining away couples parents
of observed children or grand-children
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Markov blankets for DAGs

• The Markov blanket of a node is the set that 
renders it independent of the rest of the graph.

• This is the parents, children and co-parents.

p(Xi|X−i) =
p(Xi,X−i)∑
x p(Xi,X−i)

=
p(Xi, U1:n, Y1:m, Z1:m, R)∑
x p(x, U1:n, Y1:m, Z1:m, R)

=
p(Xi|U1:n)[

∏
j p(Yj |Xi, Zj)]P (U1:n, Z1:m, R)

∑
x p(Xi = x|U1:n)[

∏
j p(Yj |Xi = x,Zj)]P (U1:n, Z1:m, R)

=
p(Xi|U1:n)[

∏
j p(Yj |Xi, Zj)]∑

x p(Xi = x|U1:n)[
∏
j p(Yj |Xi = x,Zj)]

p(Xi|X−i) ∝ p(Xi|Pa(Xi))
∏

Yj∈ch(Xi)

p(Yj |Pa(Yj)

Useful for Gibbs sampling



23

Local directed Markov property

• A node is independent of its non-descendants 
given its parents



24

Ordered directed Markov property

• A node is independent of its predecessors (in some 
total ordering) given is parents.
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Equivalence

• Thm: the following are all equivalent for DAG G

• P factorizes according to G
• P obeys the global Markov property wrt G

• P obeys the local Markov property wrt G
• P obeys the directed Markov property wrt G
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Example model

• Suppose the true distribution is

p(B,E,A, J,M) = p(B)p(E)p(A|B,E)p(J |A)p(M |A)
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Choosing the “wrong” ordering

• If we choose the order MJABE, we get a more 
densely connected network, otherwise this will 
make independence statements that are not true.

• Eg in original model we have
so we must connect E to B,A but not M,J

E ⊥M |A, E ⊥ J |A, E 	⊥ B|A

Source: Russell & Norvig
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A worse ordering

• If we pick the order MJEBA, the graph becomes 
fully connected, and thus makes no independence 
statements (and therefore includes the true 
distribution).
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Markov equivalence

• The following 3 graphs all assert the same set of 
conditional independencies, namely X indep Y | Z; 
hence they are equivalent

This v-structure is not equivalent
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Markov equivalence

• Thm: 2 DAGs are Markov equivalent iff they have 
the same undirected skeleton and the same set of 
v-structures
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PDAGs

• We can uniquely represent each equivalence class 
using a partially directed acyclic graph (aka 
essential graph).

• This uses undirected edges if they are reversible, 
and directed edges if they are compelled.
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Parameter nodes

• If we treat the parameters as random variables, we 
can add them as nodes to the graph.

• Here we assume global parameter independence.
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Repetitive structure

• If we have iid samples, the variables get replicated 
but the parameters are tied / shared 
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Plate notation

• For shorthand, we use plates 

p(D, θ) = p(θc)p(θs)p(θr)p(θw)

×

n∏

i=1

p(ci|θc)p(si|ci, θs)p(ri|ci, θr)p(wi|si, ri, θw)
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Factored prior, likelihood, posterior

• Since the parameters are independent in the prior, 
and the likelihood is factorized, they are also 
independent in the posterior

p(θ|D) ∝ p(θ)p(D|θ)

= p(θc)
∏

i

p(ci|θc)

× p(θs)
∏

i

p(si|ci, θs)

× p(θr)
∏

i

p(ri|ci, θr)

× p(θw)
∏

i

p(wi|si, ri, θs)
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Local parameter independence

• In the case of CPTs, we assume each row of the 
table is an independent multinomial
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Hyperparameters

• The hyperparameters are often fixed constants, 
hence shaded

p(D, θ|α) =
∏

j

p(θj |αj)
∏

i

p(xij |xi,πj , θj)
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Posterior over parameters factorizes 

p(θR|D) =

1∏

k=0

p(θR|C=k)

n∏

i=1

I(ci = k)p(ri|θR|C=k)

=
∏

k

Dir(θR|C=k|αR|C=k)Mu(nR,C=k|θR|C=k, n)

p(θ|D) =

d∏

j=1

∏

k∈Pa(j)

Dir(θjk|αjk + njk)
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Naïve Bayes classifier
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Example: Binary features

p(D,π, θ|α, a,b)

= p(π|α)
∏

i

p(yi|π)
∏

c




∏

j

∏

i:yi=c

p(xij |θjc)



 p(θjc)

= Dir(π|α)Mu(n|π)
∏

c

∏

j

Bin(njc1|θjc, njc)Beta(θjc|ajc, bjc)

= Dir(π|α+ n)
∏

c

∏

j

Beta(θjc|ajc + njc1, bjc + njc0)

njc1 =
∑

i

I(yi = c)I(xij = 1)

njc0 =
∑

i

I(yi = c)I(xij = 0)

njc = nc =
∑

i

I(yi = c)

n = (n1, . . . , nC)


