CS340 Machine learning

Bayesian networks




Conditional independence

Recall the naive Bayes assumption

X; L XilY

This lets us factorize the class conditional density
p(xly) = | [ p(z;|y)

Hence the joint distribution IS
p(x,y) =p(y) | | p(z;ly)
j=1

Graphical models are ways to represent ClI
statements pictorially. This provides a compact way
to define joint probability distributions.
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Kinds of graphical models

e Undirected graphical models — aka Markov
Random fields — see later In class.

e Directed graphical models — aka Bayesian (belief)
networks.

— BNs require that the graph is a DAG (directed acyclic
graphs).

— No directed cycles allowed.
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« DAGs admit a total ordering (parents before
children).

* Local Markov property: A node Is independent of Its
predecssors given its parents.
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By the chain rule
p(vin,,) = p(v1)p(ve|vi)p(vs|v, v2) - . . p(vn, [v1n, -1

* By the local Markov property
/
p(v1:n) = p(v1)p(va|vr, )P(V3[Vry) - - - P(Vn %, )
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(Y, T1m,) = P(y) [ p(z5ly)

j=1



Local Markov property is not enough
* NB property is X; L X, | Y for all k, including k > |

« But local Markov property only tells us
X, L X |Ytork<]

 Want to be able to answer the following for any sets
of variables a,b,c: Z, L Z, | Z.?
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Global Markov property

e By chaining together local independencies, one can
Infer global independencies.

 The general definition/ algorithm is complex, so we
will break it into pieces.



e Consider the chain
X >T7T>3

p(z,y, 2) = p(x)p(y|z)p(2|y)
 If we condition and y, x and z are independent

p(z)p(y|x)p(z|y)

_ plz,y)p(2ly)
| o p(y)
/N = p(z|y)p(z|y)



e Consider the “tent”

-

N

X \’3;
p(z,y,z) = p(y)p(z|y)p(2|y)

e Conditioning on Y makes X and Z independent

_ p(z,y,2)
p(:z:,z\y) o p(y)
/:@r _ p(y)p(;j(‘zip(z‘y) _ p(m‘y)p(z‘y)
/TN
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Naive Bayes assumption

e Conditional on class, features are independent
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e Consider the v-structure

X T
\vb/
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p(z,y,z) = p(z)p(z)p(yl|z, 2)
X and Z are unconditionally independent

Pz, 2) = / p(z, y, 2)dy = / p(2)p(2)p(yle, 2)dy = p(x)p(=)

but are conditionally dependent
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p(x,z|y) — p(y)
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Explaining away

e Consider the v-structure
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e Let X, Z € {0,1} be iid coin tosses.

e LetY =X+ Z.
* |f we observe Y, X and Z are coupled.
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Explaining away

e LetY =1 iff burglar alarm goes off,
o X=1 iff burglar breaks in
e /=1 Iff earthquake occurred
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« X and Z compete to explain Y, and hence become
dependent

o Intuitively, p(X=1|Y=1) > p(X=1]Y=1,Z=1)

13



Bayes Ball Algorithm

e Z, 1 Zg | Z- If every variable in A Is d-separated

from every variable in B when we shade the
variables in C

X >E) >y X (D> %

—> f— >
| :
\ d
\
NP
X P A
X X 2
=Y/ W\ Y

%, ® :



Boundary conditions

— D
e U Y/

15



gy a6
yd ~

16



17



Naive Bayes assumption

e Conditional on class, features are independent
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Parameters are rv’'s, too!

O o,

This justifies our approach of estimating all the parameters independently
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Repetitive structure

 When we have multiple samples, we replicate the
variables, but the params are fixed

T
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 We introduce a shorthand for repetitive structure
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 We introduce a shorthand for repetitive structure
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