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CS340 Machine learning
Bayesian networks
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Conditional independence

• Recall the naïve Bayes assumption

• This lets us factorize the class conditional density

• Hence the joint distribution is

• Graphical models are ways to represent CI 
statements pictorially. This provides a compact way 
to define joint probability distributions.

Xj ⊥ Xk|Y

p(x|y) =

nx∏

j=1

p(xj |y)

p(x, y) = p(y)

nx∏

j=1

p(xj |y)
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Kinds of graphical models

• Undirected graphical models – aka Markov 
Random fields – see later in class.

• Directed graphical models – aka Bayesian (belief) 
networks.
– BNs require that the graph is a DAG (directed acyclic 

graphs).
– No directed cycles allowed.
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DAGs

• DAGs admit a total ordering (parents before 
children).

• Local Markov property: A node is independent of its 
predecssors given its parents. 



5

Chain rule

• By the chain rule

• By the local Markov property 

p(v1:n) = p(v1)p(v2|vπ2)p(v3|vπ3) . . . p(vn|zπn)

p(v1:nv ) = p(v1)p(v2|v1)p(v3|v1, v2) . . . p(vnv |v1:nv−1

p(y, x1:nx) = p(y)

nx∏

j=1

p(xj |y)
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Local Markov property is not enough

• NB property is Xj ⊥ Xk | Y for all k, including k > j

• But local Markov property only tells us 
Xj ⊥ Xk | Y for k < j 

• Want to be able to answer the following for any sets 
of variables a,b,c: Za ⊥ Zb | Zc ?
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Global Markov property

• By chaining together local independencies, one can 
infer global independencies.

• The general definition/ algorithm is complex, so we 
will break it into pieces.
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Chains

• Consider the chain

• If we condition and y, x and z are independent

p(x, y, z) = p(x)p(y|x)p(z|y)

p(x, z|y) =
p(x)p(y|x)p(z|y)

p(y)

=
p(x, y)p(z|y)

p(y)

= p(x|y)p(z|y)



9

Tents

• Consider the “tent”

• Conditioning on Y makes X and Z independent

p(x, y, z) = p(y)p(x|y)p(z|y)

p(x, z|y) =
p(x, y, z)

p(y)

=
p(y)p(x|y)p(z|y)

p(y)
= p(x|y)p(z|y)
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Naïve Bayes assumption

• Conditional on class, features are independent
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V-structure 

• Consider the v-structure

• X and Z are unconditionally independent

but are conditionally dependent

p(x, y, z) = p(x)p(z)p(y|x, z)

p(x, z) =

∫
p(x, y, z)dy =

∫
p(x)p(z)p(y|x, z)dy = p(x)p(z)

p(x, z|y) =
p(x)p(z)p(y|x, z)

p(y)
�= f(x)g(z)
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Explaining away

• Consider the v-structure

• Let X, Z ∈ {0,1} be iid coin tosses.

• Let Y = X + Z.
• If we observe Y, X and Z are coupled.
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Explaining away

• Let Y = 1 iff burglar alarm goes off,

• X=1 iff burglar breaks in
• Z=1 iff earthquake occurred

• X and Z compete to explain Y, and hence become 
dependent

• Intuitively, p(X=1|Y=1) > p(X=1|Y=1,Z=1)
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Bayes Ball Algorithm

• ZA ⊥ ZB | ZC if every variable in A is d-separated 

from every variable in B when we shade the 
variables in C



15

Boundary conditions
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Example
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Example
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Naïve Bayes assumption

• Conditional on class, features are independent
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Parameters are rv’s, too!

p(x, y, π, θ) = p(π)p(y|π)

nx∏

j=1

p(xj |y, θj)p(θj)

This justifies our approach of estimating all the parameters independently
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Repetitive structure

• When we have multiple samples, we replicate the 
variables, but the params are fixed
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Plates

• We introduce a shorthand for repetitive structure
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Plates

• We introduce a shorthand for repetitive structure


