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1 Introduction
We have seen that conditional independence assumptions area useful way to decompose joint probability distributions
into a simpler form. For example, the “bag of words” model assumes all variables are independent

p(x1:D) =

D
∏

i=1

p(xi) (1)

The naive Bayes model assumes all thex variables (features) are independent conditional ony (class):

p(y, x1:D) = p(y)p(x1:D|y) = p(y)
D
∏

i=1

p(xi|y) (2)

A Markov model assumes the variables only depend on their immediate “predecessor”

p(x1:D) = p(x1)

D
∏

i=2

p(xi|xi−1) (3)

Graphical models provide a convenient way to represent conditional independence assumptions using graphs.
Nodes represent random variables and (lack of) edges represent independence assumptions, in a way to be described
below. Such independence assumptions reduce the number of parameters in the model, and therefore the amount of
data that is needed to learn the model from data. Independence assumptions can also be exploited computationally
to speed up the inference process (i.e., estimating one variable given evidence on some of the others). We will give
details later.

There are many kinds of graphical model, but the two most popular are based ondirected acylic graphs (DAGs),
and onundirected graphs. In the directed graph, we can (informally) think of an edge from nodeXi to nodeXj

as meaningXi “causes” or “directly influences”Xj , whereas in an undirected graph, edges represent correlation or
constraints rather than causation. In this chapter, we focus on undirected graphs, also calledMarkov random fields
(MRFs) or Markov networks .

2 Conditional independence properties
In an MRF, we say that a set of nodesA is independent of another setB given a third setC (written more concisely
asXA ⊥ XB|XC ) if C separates A fromB in the graph. This means that, if we remove the nodes inC, there are
no paths connecting any node inA to any node inB. For example, in Figure 1, we see thatC = {2, 5} separates
A = {1} fromB = {4, 6}. We also see thatC = {2} separatesA = {3} fromB = {4}. And so on. These are called
theglobal Markov properties encoded by a graph. (There are various other kinds of Markov properties, discussed
below, but these can be shown to be equivalent to the global Markov property under various assumptions.)

Let us now consider some more examples. In Figure 2(left), wesee that

Xi ⊥ Xj |Y (4)
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Figure 1: An example of an undirected graphical model.

Figure 2: Left: a naive Bayes classifier represented as an MRF. Right: aMarkov chain represented as an MRF.

which is the naive Bayes assumption. Hence

p(X1:D, Y ) ∝
D
∏

i=1

ψi(Xi, Y ) (5)

We can setψi(Xi, Y ) = p(Xi|Y ). What about thep(Y ) term? We can multiply that onto any of the clique potentials,
say the first, soψ1(X1, Y ) = p(X1|Y )p(Y ) = p(X1, Y ). Thus some of the potentials are conditional probabilities
are some are joint probabilities. We will discuss this more below.

In Figure 2(right), we see that
Xi+1 ⊥ Xi−1|Xi (6)

which is the Markov assumption. Hence

p(X1:D) ∝
D
∏

i=2

ψi(Xi−1, Xi) (7)

Again we can setψi(Xi−1, Xi) = p(Xi|Xi−1), andψ1(X1, X2) = p(X1)p(X2|X1).

2.1 Varieties of conditional independencies *

An undirected graph can represent various kinds of conditional independences. Define thepairwise Markov inde-
pendenciesof a graphG to be

Ip(G) = {Xi ⊥ Xj |Xrest : (i− j) 6∈ G} (8)

whereXrest = V \ {i, j} are all the other variables apart fromi andj, andV is all the nodes in the graph. In other
words, for every missing edgei − j, we create a conditional independence assertion. For example, in Figure 1, we
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Figure 3: Nested sets of independence statements.

have
Ip(G) = {(X1 ⊥ X5|X2, X3, X4, X6), (X1 ⊥ X4|X2, X3, X5, X6), . . . , } (9)

(An alternative to listing all the independence propertiesis to think of the graph as anoracle, which can answer any
conditional independence query.)

A second kind of independence are thelocal Markov independencies, defined as

Il(G) = {Xi ⊥ Xrest|Xnbr(i)} (10)

wherenbr(i) are the neighbors of nodei, andXrest = V \ {i} \Xnbr(i). (The neighbors of a node are also called its
Markov blanket .) For example, in Figure 1, we have

Il(G) = {(X3 ⊥ X2, X4, X6|X1, X5), . . .} (11)

since 1 and 5 “shield” 3 from the other nodes.
The third kind of independence are theglobal Markov independencies, defined as

I(G) = {XA ⊥ XB|XC : C separatesA fromB} (12)

We can check ifC separatesA andB by removing all the nodes inC from the graph, and checking if there is a path
from any node inA to any node inB. If so, they are not separated. For example, in Figure 1,C = {2, 5} separates
A = {1} fromB = {4, 6}, etc. Hence for this example

I(G) = {(X1 ⊥ X4, X6|X2, X5), . . .} (13)

Now we discuss the relationship between these three notions. Let I(p) be the set of conditional independencies
that are true of distributionp. We say thatG is anI-map (independency map) forp if I(G) ⊆ I(p). In otherwords,
the graph does not make any false assertions of independence. Note that the fully connected graph is an I-map of all
distributions, since it makes no assertions at all.

Theorem 1 If I(p) contains I(G)) (i.e., G is an I-map for p), then it will also contain Il(G) and Ip(G): see Figure 3.
In other words, global Markov properties imply local Markov properties imply pairwise Markov properties. If p is a
positive distribution (i.e., p(x) > 0 for all x) then the converse is also true, hence Ip(G) = Il(G) = I(G).

3 Factorization
Above we saw that a graph encodes conditional independence assumptions. An alternative way to view graphical
models is as a means to define probability distributions in terms of a product of local factors. To explain this, we need
some definitions.
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A clique is a set of variables in a graph that are all connected with each other. Amaximal clique is a clique which
cannot be made larger without ceasing to be a clique. For example, in Figure 1, the maximal cliques are

{X1, X2}, {X1, X3}, {X2, X4}, {X3, X5}, {X2, X5, X6} (14)

A potential functionψ(·) is any non negative function of its arguments. We say that a probability distributionp
factorizes overG, orp is Markov wrt G (wrt = with respect to) if it can be written in this form:

p(x) =
1

Z

∏

c∈C

ψc(xc) (15)

whereC are the maximal cliques of the graph,ψc(xc) is a for the nodes in cliquec andZ is thepartition function

Z =
∑

x1:D

∏

c∈C

ψc(xc) (16)

The global normalization constantZ is needed because locally theψc terms need not sum to one. For example, in
Figure 1, we have

p(x1:6) ∝ ψ12(x1, x2)ψ13(x1, x3)ψ24(x2, x4)ψ35(x3, x5)ψ256(x2, x5, x6) (17)

3.1 Hammersley-Clifford theorem *

The celebratedHammersley-Clifford theorem states that, if the graph correctly captures the conditional independen-
cies of the distribution, then there must exist potential functionsψc such that the distribution can be represented as
p(x) ∝

∏

c ψc(xc). More precisely,

Theorem 2 For any probability distribution p, if p factorizes over G, then G is an I-map of p (i.e., I(G) ⊆ I(p)).
Conversely, if p is everywhere non-negative (i.e, p(x) > 0 for all x), andG is an I-map of p, then p must factorize over
G, i.e., p must have the form

p(x) =
1

Z

∏

c∈C

ψc(xc) (18)

See [KF06] for a proof.

3.2 MRFs are exponential family distributions

Let us assume a particular parametric form for each potential ψc, and denote the corresponding parameters byθc. Then
we can write

p(x|θ) =
1

Z(θ)

∏

c∈C

ψc(xc|θc) (19)

We can rewrite this as anexponential family modelas follows

p(x|θ) = exp

(

∑

c∈C

logψc(xc|θc) − logZ(θ)

)

(20)

If we restrict potentials to be strictly positive (which will imply that p(x) > 0 for all x, so we cannot encode hard
constraints), then we can represent potentials usingenergy functionsEc

ψc(xc) = exp[−Ec(xc)] (21)

This is called theBoltzmann distribution . Low energy states are more probable than high energy ones. We will
examples of this below.
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3.3 Maxent models *

A maximum entropy (maxent)model is an MRF in which all the potentials have the form

ψc(xc) = exp[
∑

j=1

θcjfcj(xc)] (22)

wherefcj(xc) is thej’th feature for cliquec, applied toxc, andθcj is the corresponding weight. In other words, the
potentials are linear functions of a fixed set of features. Hence the joint is

p(x|θ) =
1

Z(θ)

∏

c

exp[
∑

j

θcjfcj(xc)] (23)

=
1

Z(θ)
exp[

∑

k

θkfk(x)] (24)

where we have combined all the features into one long featurevectorf , and all the parameters into one long parameter
vectorθ. This is obviously a member of the exponential family. In machine, this model is sometimes called alog-
linear model, although this means something slightly different in statistics, so we don’t recommend this usage. We
will explain the “maxent” term below.

Note that feature based potentials include tabular potentials as a special case: we create one binary feature for
every possible value ofxc, and just setθcj to be the log of the original potential entries. For example,consider a clique
c = (i, j) on binary nodes. If the original potential

ψc =

(

0.1 0.5
1 20

)

(25)

then we setfc1(xi, xj) = I(xi = 0, xj = 0), fc2(xi, xj) = I(xi = 0, xj = 1), fc3(xi, xj) = I(xi = 1, xj = 0), and
fc4(xi, xj) = I(xi = 1, xj = 1), and then setθc1 = log 0.1, θc2 = log 0.5, θc3 = log 1, andθc4 = log 20.

One example where a feature based representation of potentials is useful is when the number of statesK is large
and/or the cliques are large. In this case, the tabular representation of potentials may require too many parameters. For
example, if we create a Markov model of language, we have one state per word, soK ∼ 50, 000. ButK2 parameters
in eachψ(Xi, Xi+1) potential is too many to reasonably estimate. Instead of considering all possible word pairs, we
can use log-linear potentials. Features might include “does the first word begin with a capital letter”, “is the first word
a noun and the second word a verb”, etc. Typically these features are hand-constructed, but theweights(parameters)
θc are learned from data (see below). Such models have been usedfor unsupervised learning of the rules of English
spelling [PPL97].

We now explain the origin of the term “maximum entropy”. Suppose we want to build a probability distribution
that satisfies certain expectation constraints wrt some featuresfj :

E[fj(X)] = αj (26)

For example, we might want our model to generate English words with a certain proportion of each letter of the
alphabet. Also, we may want to enforce hard constraints like“q is always followed by u”; we just setfj(X) = 1 if X
satisfies the constraint, andfj(X) = 0 otherwise, and setαj = ∞.

Apart from these constraints, we want pick as general a distribution as possible. In other words, we want to find
a distributionp with maximum entropy, subject to the above constraints, plus the sum-to-one constraint. (We assume
px is a finite length vector of elements.) We can formalize this as a convex optimization problem subject to linear
constraints:

max
p

−
∑

x

px log px (27)

subject to
∑

x

pxfj(x) = αj (28)

∑

x

px = 1 (29)
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Figure 4: Chain graphs in which the clique potentials are explicitly represented as random variables (square nodes). Left: one
potential per maximal clique. Right: one potential per edge.

We write the Lagrangian as

J = −
∑

x

px log px + λ(
∑

x

px − 1) +
∑

j

θj(
∑

x

pxfj(x) − αj) (30)

Taking derivatives wrt a specific elementpx

∂J

∂px
= −px[

∂

∂px
log px] − [

∂

∂px
px] log px + λ+

∑

j

θjfj(x) (31)

= −1 − log px +
∑

j

θjfj(x) (32)

= 0 (33)

Hence

log px = −1 + λ+
∑

j

θjfj(x) (34)

px = eλ−1 exp[
∑

j

θjfj(x)] (35)

Since
∑

x px = 1, we have

eλ−1 =
1

exp[
∑

j θjfj(x)]
= Z (36)

Hence

px =
1

Z
exp[

∑

j

θjfj(x)] (37)

So we have derived the exponential family using the maximum entropy principle, where the weights (parameters)θj
are the Lagrange multipliers. Typically theαj values are derived from data, as we discuss below.

4 Factor graphs *
In a Bayesian model, the parameters are treated as random variables, and can therefore be viewed as nodes in the
graph. Although the “main” graph of an MRF is undirected, theedges from the parameter nodes will be directed,
since the priors on the parameters will usually belocally normalized. For example, referring to Figure 4(left), we
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have

p(x1:4, ψ) = p(x1:4|θ)p(ψ) (38)

=

[

1

Z(ψ)
ψ124(x124) × ψ234(x234)

]

[p(ψ124)p(ψ234)] (39)

Z(ψ) =
∑

x1,x2,x3,x4

ψ124(x124) × ψ234(x234) (40)

whereψ = (ψ234, ψ124) are the parameters. This is an example of achain graph, which (loosely speaking) is a graph
in which some nodes have directed arrows to sets of nodes connected together in undirected maximal cliques.

Now imagine that instead of associating a potential with each maximal clique, we associate potentials with non
maximal cliques. For example, referring to Figure 4(right), supposeψ124 = ψ12ψ14 andψ234 = ψ23ψ34ψ24, so we
have one potential for each edge. (This is called apairwise MRF.) Then

p(x1:4|ψ) =
1

Z

∏

<ij>

ψij(xij) (41)

=
1

Z
ψ12(x12)ψ14(x14)ψ23(x23)ψ24(x24)ψ34(x34) (42)

Note that theψ24 edge potential is shared (tied) across different max cliques, so the clique potentials are no longer
independent.

One way to make the parameterization of the MRF graphically explicit, without any committment to a Bayesian
approach, is to use afactor graph. A factor graph is an undirected bipartite graph with two kinds of nodes. Round
nodes represent variables, square nodes represent factors(potentials), and there is an edge from each variable to every
factor that mentions it. In Figure 5, we show factor graphs for the two models mentioned above. It is possible to
extend the conditional independence semantics of graphical model to include factor graphs [Fre03], but here we just
use them as a convenient notation for making the parameterization more explicit.

5 Decomposable graphs *
An undirected graph is said to bechordal or triangulated if every undirected loop/ cycleX1 − X2 · · ·Xk − X1 of
lengthk ≥ 4 has a chord, i.e., an edge connectsXi, Xj for all non-adjacent nodesi,j in the cycle. The process of
converting a non-chordal graph to chordal form is calledtriangulation . The importance of triangulated graphs will be
explained later.

Some simple examples of chordal and non chordal graphs are shown in Figure 6. A less obvious example is shown
in Figure 7: this illustrates that triangulation is more than covering the graph with little triangles. In particular, we
may have to add a lot of edges to ensure the graph is triangulated (such edges are calledfill-in edges). Furthermore,
there may be many ways to do this. Let us define theoptimal triangulation as the one which adds the least number
of fill-in edges. LetC(G) be the size of the largest maximal clique in the optimal triangulation of graphG. Then we
define thetree width of the graph asT (G) = C(G) − 1. (It is defined this way so that for trees,T (G) = 1.) For
example, in Figure 7(right), we see thatC(G) = 4 (look at the 2-4-5-6 clique or the 4-5-6-8 clique), which is larger
than the maximal cliques in the non-triangulated graph in Figure 7(left). In this case, the max clique size is not very
large, but in general, one can show that for planar 2D grids ofsizeD = d × d, the treewidth isO(d) [LT79]. The
importance of this result will be discussed later.

Triangulated graphs are also calleddecomposable graphs. A simple example of a decomposable graph is a chain,
X1 − X2 − X3 − X4. In this case the cliques areC1 = {X1, X2}, C2 = {X2, X3}, andC3 = {X3, X4}. Define
theseparatorsas the intersection of neighboring cliques:Sij = Ci∩Cj . For the chain, the separators are the internal
nodes,S1,2 = {X2}, S2,3 = {X3}. See Figure 8.

Let us denote the clique potentials byψc and the separator potentials byψs. If we defineψc = p(Xc) and
ψs = p(Xs), then we can write the joint as

p(X1:D) =

∏

c ψc(xc)
∏

s ψs(xs)
(43)
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(a) (b)

(c) (d)

Figure 5: Some factor graphs. (a) and (b) are topologically equivalent graphs, and represent the MRF in Figure 4(left), with one
potential per maximal clique. (c) and (d) are topologicallyequivalent graphs, and represent the MRF in Figure 4(right), with one
potential per edge.

Figure 6: Left: a non triangulated graph. Right: one possible triangulated version.
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Figure 7: Left: a non triangulated grid. Note the dotted 2-4-6-8 loop is a chordless 4-cycle. Right: one possible triangulation.

Figure 8: Cliques (ovals) and separators (squares) for a chain structured MRF.

For example, in the case of the chain, we have

p(X1:4) =
p(X1, X2)p(X2, X3)p(X3, X4)

p(X2)p(X3)
(44)

= p(X1, X2)p(X3|X2)p(X4|X3) (45)

= p(X1|X2)p(X2|X3)p(X3, X4) (46)

which corresponds to the joint distribution of a Markov chain going forwards or backwards in time. (Undirected graphs
are acausal, and have no notion of directionality.) It turnsout that Equation 43 applies to any decomposable graph,
not just chains. The reason is that by dividing by the separator potentials, we convert marginals into conditionals, and
then the chain rule applies.

6 Applications of MRFs

6.1 Image denoising

One important application of MRFs is to low level vision. Consider the image in Figure 9 (top left). Let each “true”
pixel bexi ∈ {−1,+1}. Suppose this image gets sent over some channel and gets corrupted by noise. What we
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sigma=2.0 initial guess sample 10000

sample 50000 sample 100000 posterior mean after 100000 samples

Figure 9: Example of image denoising using Gibbs sampling. We use an Ising prior withJ = 1 and a Gaussian noise model with
σ = 2.

Figure 10: Grid-structured MRF. The shaded nodesyi are observed, the unshaded nodesxi are hidden and need to be estimated.
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receive is the image in Figure 9 (top middle). Let each observed observed pixel beyi ∈ IR. Our goal is toestimate
the underlying image from the noisy signal. There are two formulations of this. The first is to find the single best
interpretation:

x∗ = argmax
x

p(x1:D|y1:D, θ) (47)

This is called themaximum a posteriori (MAP) estimate. An alternative is to find the single most probable guess
for each pixel locally:

x∗i = arg max
xi

p(xi|y1:D, θ) (48)

These are called themax marginals. Both of these are examples ofstate estimation (inference)which we will
discuss later.

The simplest model would be to assume that pixels are independent and have a uniform prior (i.e., +1 and -1 are
equally likely). For the likelihood, let us assume a Gaussian noise model

p(yi|xi) = N (yi|xi, σ) (49)

If σ is very small, then ifxi = −1 thenyi ≈ −1, and similarly ifxi = +1 thenyi ≈ +1, so we will can easily
estimatex from y by thresholding each value separately. But if the noise level is high, we need to use some prior to
help.

A simple prior is to assume that nearby pixels “like” to be in the same state. In other words, ifxi is “on”, its
neighbors are more likely to be on; and vice versa ifxi is off. This is called asmoothness prior. More precisely, we
can write the probability model as

p(x, y) = p(x)p(y|x) (50)

=





1

Z

∏

<ij>

ψij(xi, xj)





[

∏

i

p(yi|xi)

]

(51)

whereφi(xi) = p(yi|xi) is called thelocal evidence potentialfor nodei, andψij is called theedge potentialfor
edgei − j. (We writeφi(xi) as a function ofxi only, since theyi’s are observed constants.) The notation

∏

<ij>

means “product over all edges in the graph”. We define the edgepotential as

ψij(xi, xj) = exp[Jijxixj ] =

(

eJij e−Jij

e−Jij eJij

)

(52)

whereJij = 0 if i− j are not neighbors in the graph. Ifi− j are neighbors, we setJij = J > 0 which gives higher
probability (lower energy) to configurations in whichxi = xj (sincexixj = 1 if xi = xj , andxixj = −1 if xi 6= xj ).
J is thestrength of our smoothness prior.

Using this model, we can then perform inference to estimatep(x|y, θ), whereθ = (J, σ) are the parameters of the
prior and likelihood. In Figure 9, we show the result of usingGibbs sampling to draw samples fromp(x|y, θ). We
also show an estimate of the posterior mean,E[X |y, θ]. We will explain this and other algorithms for inference later.

6.2 Ising models

The image denoising model above is closely related to theIsing model, which is used in statistical physics for mod-
elling magnets. In particular,xi ∈ {−1,+} represents the atomic spin of a particle, either spin down orup. In an Ising
model we assume that thecoupling strengthJij = J is the same for all edges, and that theexternal field hi = H is
the same for all nodes. In this case, the model becomes

p(x) =
1

Z(θ)
exp[−βE(x)] (53)

E(x) = −[
∑

<ij>

Jxixj +
∑

i

Hxi] (54)

whereE(x) is the energy of the system, andβ = 1/(kT ), whereT is the temperature of the system, andk is
Boltzmann’s constant. Hereθ = (J,H, β) are the parameters of the system. Often we takeH = 0.
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Figure 11: Markov random fields and some variants. BM = Boltzmann machine. RBM = Restricted Boltzmann machine (bipartite
graph). PoE = product of experts. AMN = Associative Markov network.

In a ferromagnet, neighboring spins want to be the same, soJ > 0. In this case, the lowest energy (most probable)
states are all -1s or all +1s. In ananti-ferromagnet, neighboring spins want to be different, soJ < 0. In this case,
the lowest energy (most probable) states are alternating checkerboards of +1/-1; these are called theground statesof
the system. However, the system can only enter this state at temperatureT = 0 (soβ = ∞). At higher temperatures,
differences in energy matter less, so the system will fluctuate around, and will spend time in other states (this is the
motivation behind simulated annealing).

If the Jij ’s andhi’s are not constant, the result is called aspin glassin physics, or aBoltzmann machineor
Hopfield network in machine learning. If theJij ’s have mixed sign, then resulting system might exhibitfrustration ,
since some states will want to be +1, and some -1. We discuss methods to learn the parametersJij below.

If we generalize the Ising model from binary to multiple states, we get aPotts model. For example, for 3 state
variables, the edge potentials look like this

ψij(xi, xj) = exp[J × I(xi = xj)] =





eJ e−J e−J

e−J eJ e−J

e−J e−J eJ



 (55)

Obviously we can makeJij be non-constant in this case, too. If allJij > 0, this is called anassociative Markov
network. See Figure 11 for some other model variants.

7 Parameter estimation*
In this section, we will assume that all the variables are discrete, and that there is one parameter for each possible
assignment to a clique potential, i.e.,ψc(xc) can be represented as a table ofK |c| numbers, where|c| is the size
of clique c. (The results in this section also apply to Gaussian MRFs.) In Section 7.3, we consider a more general
parameterization in whichψc is defined in terms of a set of “features”. This can require fewer thanK |c| parameters,
which is useful ifK or |c| is large. We will focus on maximum likelihood estimation, although Bayesian approaches
can also be used (see e.g., [MG04]).
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The log-likelihood of a set ofN iid datasetsxn is

`(θ) = log
∏

n

1

Z

∏

c

ψc(xn,c|θc) (56)

=
∑

n

∑

c

logψc(xnc|θc) −N logZ (57)

=
∑

c

∑

xc

N(xc) logψc(xc) −N logZ (58)

whereN(xc) =
∑

n I(xc, xnc) is the number of times cliquec is in configurationxc in the data. For example,
consider a chainX1 −X2 −X3 −X4. Then

`(θ) =
∑

x1,x2

N(x1, x2) logψ12(x1, x2) +
∑

x2,x3

N(x2, x3) logψ23(x2, x3) (59)

+
∑

x3,x4

N(x3, x4) logψ34(x3, x4) −N logZ (60)

So the derivative wrt one of the clique potentials, sayψ12, is

∂`

∂ψ12(x′1, x
′
2)

=
N(x′1, x

′
2)

ψ12(x′1, x
′
2)

−N
∂

∂ψ12(x′1, x
′
2)

logZ (61)

The key question is: what are the derivatives wrt the log partition function? In this example we find

∂ logZ

∂ψ12(x′1, x
′
2)

=
1

Z

∂

∂ψ12(x′1, x
′
2)

∑

x1,x2,x3,x4

ψ12(x1, x2)ψ23(x2, x3)ψ34(x3, x4) (62)

=
1

Z

∑

x3,x4

∂

∂ψ12(x′1, x
′
2)
ψ12(x

′
1, x

′
2)ψ23(x

′
2, x3)ψ34(x3, x4) (63)

=
1

Z

∑

x3,x4

ψ23(x
′
2, x3)ψ34(x3, x4) (64)

=
∑

x3,x4

1

Z

ψ12(x
′
1, x

′
2)ψ23(x

′
2, x3)ψ34(x3, x4)

ψ12(x′1, x
′
2)

(65)

=
∑

x3,x4

p(x′1, x
′
2, x3, x4)

ψ12(x′1, x
′
2)

(66)

=
p(x′1, x

′
2)

ψ12(x′1, x
′
2)

(67)

And in general we have

∂ logZ

∂ψc(xc)
=

p(xc)

ψc(xc)
(68)

so the derivative of the log-likelihood is

∂`

∂ψc(xc)
=

N(xc)

ψc(xc)
−N

p(xc))

ψc(xc)
(69)

Hence ∂`
∂ψc(xc)

= 0 implies the following constraint must hold at the MLE:

pML(xc) =
N(xc)

N

def
= p̃(xc) (70)
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where p̃(xc) is the empirical distribution on cliquec. In other words, at the maximum likelihood setting of the
parameters, for each clique,the model marginals must be equal to the observed marginals (empirical counts).

This doesn’t tell us how to get the ML parameters, it just gives us a condition that must be satisfied when we have
them. The method we have to use depends on whether the graph isdecomposable or not, and whether the potentials
are defined on maximal cliques or on sub cliques, and on whether the potentials are “fully parameterized” (one param-
eter per clique configuration, as in a tabular representation), or whether they are parameterized more generally. We
summarize the options below.

Decomposable? Max. Cliques Potential Method
Yes Yes Tabular Closed form
- - Tabular IPF
- - - Gradient descent

7.1 MLE for decomposable graphs with tabular potentials on the max cliques

If the graph is decomposable, and the clique potentials are defined on maximal cliques, and the potentials are tabular,
then we can just write down the MLEs in terms of the empirical counts, since these simultaneously satisfy all the
above constraints. Recall that for a decomposable MRF

p(x1:d) =

∏

c ψc(xc)
∏

s φs(xs)
(71)

The MLE is gotten by settingψc = p̃(xc) andψs = p̃(xs). For example, consider a chainX1 −X2 −X3. We set

ψ̂ML
12 (x1, x2) = p̃(x1, x2) (72)

ψ̂ML
23 (x2, x3) = p̃(x2, x3), (73)

φ̂ML
12 (x2) = p̃(x2) (74)

7.2 Iterative proportional fitting (IPF)

Consider the graph in Figure 5(d):

p(x1:4) =
1

Z

∏

<ij>

ψij(xij) (75)

Although this is decomposable, the potentials are not defined on the maximal cliques. So theψ24 term contributes
to bothψ124 andψ234. Hence we cannot just set the potentials to the empirical marginals. Instead, we will use an
iterative scheme.

Recall that

∂`

∂ψc(xc)
=

N(xc)

ψc(xc)
−N

p(xc))

ψc(xc)
= 0 (76)

From this we infer

N(xc)

N

1

ψtc(xc)
=

pt(xc)

ψtc(xc)
(77)

where thet superscript denotes the values of the parameters at iteration t. We can solve this fixed point equation
iteratively

ψt+1
c (xc) =

p̃(xc)

pt(xc)
(78)

This is called theiterative proportional fitting (IPF) algorithm. In pseudo code, we have

for each cliquec
p̃c = normalize(empirical counts(Xc))
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while not converged
for each cliquec

p̂tc = p(xc|ψt) (*)
ψt+1
c = ψtc ×

p̃c

p̂t
c

The line marked (*) requires inference to compute the marginals. Note that if the graph is decomposable, IPF will
terminate in one iteration.

IPF is essentially acoordinate ascentmethod, where we update a whole clique potential at each step. Below we
will consider gradient-based methods that update all the parameters at each step.

We now give an example of fitting an MRF with two disconnected nodes. We use brute force enumeration for
inference. Since there are only two variables, we can use a 2Dmatrix to represent the joint, and 1D vectors to
represent the marginals. We observed some count dataC(X1, X2) and want to choose potentialsψ1 andψ2 such that
they match the marginalsC(X1) = 0.4157, 0.2584, 0.3258 andC(X2) = 0.3596, 0.3596, 0.2809 respectively. We
find that the potentials stop changing after the first iteration, as expected. The final answers are

ψ1 = 0.1386, 0.0861, 0.1086 (79)

ψ2 = 1.0787, 1.0787, 0.8427 (80)

If J(x1, x2) = ψ1(x1)×ψ2(x2), You can check manually that
∑

x1
J(x1, x2) = c2(x2) and

∑

x2
J(x1, x2) = c1(x1).

% IPFdemo
% Approximate joint density as a product of two marginals
% i.e., fit a 2 node disconnedted MRF X1 X2

C12 = [25 10 2;
3 19 1;
4 3 22];

C12 = normalise(C12);
C1 = sum(C12,2);
C2 = sum(C12, 1);

nstates = [3 3];
psi1 = ones(1,3);
psi2 = ones(1,3);

for iter=1:2
joint = psi1(:) * psi2(:)’;

M1 = sum(joint,2);
psi1 = psi1 . * (C1 ./ M1)’

joint = psi1(:) * psi2(:)’;
M2 = sum(joint,1);
psi2 = psi2 . * (C2 ./ M2)

end

joint = psi1(:) * psi2(:)’;
assert(approxeq(C1, sum(joint,2)))
assert(approxeq(C2, sum(joint,1)))

We now give an example of fitting a loopy1−2−3−1graph. Again we use brute force enumeration for inference.
This takes about 10 iterations to converge. Because the joint is now on three variables, we use the tabular potential
class to take care of all the bookkeeping involved in matching dimensions.

% IPFdemo3
% Fit loopy MRF 1-2-3-1 using iterative proportional fitting

clqs = {[1 2], [2 3], [1 3]};
NC = length(clqs);
N = 3;

% Some count data
C = reshape([53 414 11 37 0 16 4 139], [2 2 2]);
C = normalise(C);
Cpot = tabularPot(1:N, 2 * ones(1,N), C);
for c=1:NC
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counts{c} = marginalizePot(Cpot, clqs{c});
end

% Initial guess is all 1’s
for c=1:NC

pots{c} = tabularPot(clqs{c}, 2 * ones(1,length(clqs{c})));
end
converged = 0;
iter = 0;
thresh = 1e-3; % convergence threshold
while ˜converged

converged = 1;
for c=1:NC

potsOld{c} = pots{c};
end
iter = iter + 1;
fprintf(’iter %d\n’, iter);
for c=1:NC

J = multiplyPots(pots{:});
Mc = marginalizePot(J, clqs{c});
pots{c}.T = pots{c}.T . * (counts{c}.T ./ Mc.T);
if ˜approxeq(pots{c}.T, potsOld{c}.T, thresh)

converged = 0;
end
fprintf(’c=%d\n’, c)
printTable(pots{c})

end
end

J = multiplyPots(pots{:});
for c=1:NC

Mc = marginalizePot(J, clqs{c});
assert(approxeq(counts{c}.T, Mc.T))

end

7.3 Gradient based methods for maxent models

For a maxent model with general features, whereψc(xc) = θTc fc(xc), the previous derivation simplifies somewhat.
The log-likelihood becomes

`(θ) =
∑

n

∑

k

θkfk(xn) −N logZ(θ) (81)

Hence the derivative is

∂`

∂θj
=

∑

n

fj(xn) −N
∂

∂θj
logZ (82)
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Let us focus on the second term, the derivative wrt the log partition function.

∂ logZ(θ)

∂θj
=

1

Z(θ)

∂Z(θ)

∂θj
(83)

=
1

Z(θ)

∑

x

∂

∂θj
exp[

∑

k

θkfk(x)] (84)

=
1

Z(θ)

∑

x

∂

∂θj

∏

k

exp[θkfk(x)] (85)

=
1

Z(θ)

∑

x

[
∂

∂θj
exp[θjfj(x)]

∏

k 6=j

exp[θkfk(x)] (86)

=
1

Z(θ)

∑

x

[fj(x) exp[θjfj(x)]]
∏

k 6=j

exp[θkfk(x)] (87)

=
1

Z(θ)

∑

x

fj(x)
∏

k

exp[θkfk(x)] (88)

=
∑

x

fj(x)p(x) (89)

= E[fj(X)] (90)

Hence the gradient is
∂`

∂θj
=
∑

n

fj(xn) −NE[fj(X)] (91)

We can find the globally optimal MLE by passing this gradient to anygradient-based optimization algorithm, such
as conjugate gradient, quasi-Newton, etc. (In matlab, you can usefminunc (function minimization unconstrained)
in the optimimization toolbox.) However, to compute the gradient, we have to evaluate

E[fj(X)] =
∑

x

p(x)fj(x) (92)

for every featurefj , which might be expensive. Typically, each feature only depends on a subset of the variables. In
particular, for a graphical model, each feature only depends on the variables in its clique, so what we need are ways to
computep(xc) for each clique. We discuss this later.

At the optimum, ∂`∂θk
= 0, so the expected features according to the model should match the expected features

according to the data:
1

N

∑

n

fj(xn) = E[fj(X)] (93)

Hence maximum likelihood of an exponential family model gives the same results as maximum entropy, where the
constraints are that the expected features match the empirical features. In the case that there is one feature for each
possible clique value, thenE[fcj(Xc)] = p(Xc = j), so this is saying the model’s marginal probabilities should equal
the empirical marginal probabilities, as we saw before.

7.4 Regularization

Since maximum likelihood often overfits, it is very common tofind MAP estimates

θ̂MAP = arg max
θ

˜̀(θ) = arg max
θ

log p(θ) + log p(D|θ) (94)

where˜̀(θ) is thepenalized (regularized) log likelihood. It is common to use a Gaussian prior,

p(θ) = N (θ|µ,Σ) =
1

(2π)p/2|Σ|1/2
exp[− 1

2 (θ − µ)TΣ−1(θ − µ)] (95)
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Figure 12: A Laplace prior
.

If we setµ = 0 andΣ = λ−1I, whereλ is called the precision, then the log prior becomes

log p(θ) = −λ||θ||2 + const (96)

where||θ||22 =
∑

j θ
2
j . The objective function becomes

˜̀(θ) = log p(D|θ) − λ||θ||22 (97)

Henceλ reflects the degree of regularization. This is called anL2 penalty term, since it penalizes theL2 norm of the
parameters. It is also calledweight decay, since it encourages parameters to become small. (A priori parameters are
most likely to be zero.)

The derivative of the penalized log likelihood becomes

∂ ˜̀

∂θj
= [
∑

n

fj(xn)] −NE[fj(X)] − 2λθj (98)

and can be optimized using gradient methods. The termλ is often set by cross validation.
An alternative to a Gaussian prior is to use aLaplace (double-sided exponential)prior:

p(θ) =

p
∏

j=1

Laplace(θj |λ) =
∏

j

−λ

2
exp(−λ|θj |) = −

(

λ

2

)p

exp(−λ||θ||1) (99)

See Figure 12. Hence the objective function becomes

˜̀(θ) = log p(D|θ) − λ||θ||1 (100)

This is calledL1 regularization . Note that this function is non-differentiable if anyθj = 0, so care must be taken
when optimizing this objective. The details are beyond the scope of this chapter.

In the context of linear regression, L2 regularization is called ridge regressionand L1 regularization is called
lasso(least absolute shrinkage and selection operator). The keydifference between them is that L2 encourages all
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Figure 13: Illustration of L1 (left) vs L2 (right) regularization. Source: [HTF01] Figure 3.12.

parameters to become small, whereas L1 encourages some parameters to become exactly zero, and the rest to remain
more or less unchanged. Thus L1 can be used to performfeature selection.

To see why this happens, note that an L2 penalty on the parameter vectorθ = (1, 0) is the same as onθ =
(1/
√

(2), 1/
√

(2)), since
||(1, 0)||2 = ||(1/

√

(2), 1/
√

(2)||2 = 1 (101)

However, for L1, settingθ = (1, 0) is cheaper than settingθ = (1/
√

(2), 1/
√

(2)), since

||(1, 0)||1 = 1 < ||(1/
√

(2), 1/
√

(2)||1 =
√

(2) (102)

Hence lasso preferssparse solutions.
Figure 13 shows this result visually. The ellipses represent the quadratic log likelihood function. The shaded blobs

represent the log prior, whose size is controlled byλ. The MAP estimate is at the intersection point. It is apparent that
with the L1 prior, the solution will always be at one of the corners (since they will “touch” the likelihood surface first).

When performing regression with discrete features (factors), we need to include or exclude a block of columns for
the result to be meaningful. This is called thegroup lasso. See [YL06] for details.

8 Structure learning *
Given a dataset, we might want to find a graph structure that represents it. More formally, the dataset defines an
empirical distribution

p̂emp(x) =
1

N

∑

n

I(x = xn) (103)

and we want to find a graph that models the independencies inp̂emp. Since the fully connected graph is an I-map of
all distributions, this can representp̂emp. However, what we really want is aminimal I-map , i.e., the one that makes
as few additional independence assumptions as necessary.

One approach to this is to apply a series of conditional independence tests to the data (e.g., usingχ2-tests), and
then to fit a model consistent with those test results (see [Edw00] for details). Since there areO(2D

2

) possible
graphs onD nodes (since each edge in the adjacency matrix can be presentor absent), this can be computationally
expensive. In addition to computational cost, there are fundamental statistical problems: conditional independency
tests return yes/no answers (based on a threshold). When combining such results, inconsistencies can arise. An
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alternative approach is to performBayesian model selection, which solves the statistical problem, at the cost of
making the computational problem harder. We discuss this later.

A final approach, in the case of log-linear models, is to put asparsity promoting prior on the parametersθc,
which encourages them to go to zero, and then to perform MAP estimation. If all the weights between two nodes are
zero, then the edge is effectively removed from the graph.
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