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1 Introduction

We have seen that conditional independence assumptioasiaeful way to decompose joint probability distributions
into a simpler form. For example, the “bag of words” modelasss all variables are independent

D

p(ri.p) = [ [ p(w:) 1)

i=1

The naive Bayes model assumes all theariables (features) are independent conditiona} ¢elass):

D
p(y.1.0) = p(y)p(z1.0]y) = P(y) Hp(xily) )

A Markov model assumes the variables only depend on theiridiate “predecessor”

D

p(z1:p) ZP(l'l)HP(l‘Al‘iq) 3)

1=2

Graphical models provide a convenient way to representitondl independence assumptions using graphs.
Nodes represent random variables and (lack of) edges myrieslependence assumptions, in a way to be described
below. Such independence assumptions reduce the numbarashpters in the model, and therefore the amount of
data that is needed to learn the model from data. Indepeerdestimptions can also be exploited computationally
to speed up the inference process (i.e., estimating onablargiven evidence on some of the others). We will give
details later.

There are many kinds of graphical model, but the two most [ao@ue based odirected acylic graphs (DAGS)
and onundirected graphs In the directed graph, we can (informally) think of an edgenf nodeX; to nodeX;
as meaningX; “causes” or “directly influencesX;, whereas in an undirected graph, edges represent cooreati
constraints rather than causation. In this chapter, wesfoouundirected graphs, also callg@rkov random fields
(MRFs) or Markov networks.

2 Conditional independence properties

In an MRF, we say that a set of noddds independent of another sBtgiven a third seCC' (written more concisely
asX, L Xp|X¢)if C separates A from B in the graph. This means that, if we remove the nodes,ithere are
no paths connecting any node ihto any node inB. For example, in Figure 1, we see th@t= {2,5} separates
A= {1} from B = {4,6}. We also see thal' = {2} separatesl = {3} from B = {4}. And so on. These are called
the global Markov properties encoded by a graph. (There are various other kinds of Markopesties, discussed
below, but these can be shown to be equivalent to the globekdwgroperty under various assumptions.)

Let us now consider some more examples. In Figure 2(leftgeecthat
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Figure 1: An example of an undirected graphical model.
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Figure 2: Left: a naive Bayes classifier represented as an MRF. RigWfar&ov chain represented as an MRF.

which is the naive Bayes assumption. Hence

D
p(X1.p,Y) o [ (X, V) (5)
i=1

We can set); (X;,Y) = p(X;]Y). What about the(Y") term? We can multiply that onto any of the clique potentials,
say the first, sa); (X1,Y) = p(X1|Y)p(Y) = p(X;,Y). Thus some of the potentials are conditional probabilities
are some are joint probabilities. We will discuss this maztoty.

In Figure 2(right), we see that

Xip1 L Xi1]X; (6)
which is the Markov assumption. Hence
D
p(X1:p) H%(Xithi) )
=2

Again we can Seﬂ)i(Xi_l, X7) = p(X1'|X1'_1), and¢1 (Xl, XQ) = p(Xl)p(X2|X1)
2.1 Varieties of conditional independencies *

An undirected graph can represent various kinds of conditimdependences. Define thairwise Markov inde-
pendencief a graphG to be
Iy(G) = {Xi L X;|Xpest : (i — j) & G} 8)

whereX, .. = V' \ {i,j} are all the other variables apart franand;, andV is all the nodes in the graph. In other
words, for every missing edge— j, we create a conditional independence assertion. For dgamgFigure 1, we



Figure 3: Nested sets of independence statements.

have
IP(G) = {(Xl L X5|X27X3a X47X6)a (Xl L X4|X27X3a X57X6)a ey } (9)

(An alternative to listing all the independence properiget® think of the graph as asracle, which can answer any
conditional independence query.)
A second kind of independence are tbeal Markov independencies defined as

Il(G) = {X7 1 Xrest|anr(i)} (10)

wherenbr (i) are the neighbors of nodeand X,..s; = V' \ {i} \ Xy4,5)- (The neighbors of a node are also called its
Markov blanket.) For example, in Figure 1, we have

I(G) = {(X3 L Xa, X4, Xe| X1, X5),...} (11)

since 1 and 5 “shield” 3 from the other nodes.
The third kind of independence are thiebal Markov independencies defined as

I(G) = {Xa L Xp|X¢ : C separatesi from B} (12)

We can check if” separates! and B by removing all the nodes i@ from the graph, and checking if there is a path
from any node inA to any node inB. If so, they are not separated. For example, in Figut€ & {2,5} separates
A = {1} from B = {4, 6}, etc. Hence for this example

I(G) = {(X1 L X4, Xo|Xa, X5),...} (13)

Now we discuss the relationship between these three notlagts/ (p) be the set of conditional independencies
that are true of distributiop. We say thatG is anl-map (independency map) farif 7(G) C I(p). In otherwords,
the graph does not make any false assertions of independsdntethat the fully connected graph is an I-map of all
distributions, since it makes no assertions at all.

Theorem 1 If I(p) contains I(G)) (i.e., G isan |-map for p), thenit will also contain I;(G) and I,,(G): see Figure 3.
In other words, global Markov properties imply local Markov properties imply pairwise Markov properties. If p isa
positive distribution (i.e., p(x) > 0 for all x) then the converseisalso true, hence I,,(G) = I;(G) = I(G).

3 Factorization

Above we saw that a graph encodes conditional independesscengtions. An alternative way to view graphical
models is as a means to define probability distributionsrimseof a product of local factors. To explain this, we need
some definitions.



A cliqueis a set of variables in a graph that are all connected with etiter. Amaximal clique is a clique which
cannot be made larger without ceasing to be a clique. For pbeain Figure 1, the maximal cliques are

{X1, Xo}, { X1, X3}, {Xo, Xu}, { X3, X5}, { X2, X5, X6} (14)

A potential functiony(-) is any non negative function of its arguments. We say thatohadility distributionp
factorizes overG, orp is Markov wrt G (wrt = with respect to) if it can be written in this form:

p) = 5 [ ele) (15)

ceC

whereC' are the maximal cliques of the graph,(z.) is a for the nodes in cliqueandZ is thepartition function

7 = Z H Pe(Te) (16)

z1.p ceC

The global normalization constagt is needed because locally tlie terms need not sum to one. For example, in
Figure 1, we have

p(x1:6) X P12(z1, T2)Y13(x1, T3)1h24(T2, Ta) V35 (X3, T5)ase (T2, T5, T6) (17)

3.1 Hammersley-Clifford theorem *

The celebratetlammersley-Clifford theorem states that, if the graph correctly captures the conditiod@penden-
cies of the distribution, then there must exist potentialctionsi. such that the distribution can be represented as

p(x) o< [[, ¥e(zc). More precisely,

Theorem 2 For any probability distribution p, if p factorizes over G, then G isan I-map of p (i.e, I(G) C I(p)).
Conversely, if p is everywhere non-negative(i.e, p(x) > 0 for all z), and G isan |-map of p, then p must factorize over
G, i.e, p must have the form

p(a) = 5 [T vele) (18)

ceC

See [KF06] for a proof.
3.2 MREFs are exponential family distributions

Let us assume a particular parametric form for each poteptiand denote the corresponding parameteiss.byhen
we can write

p(@l9) = o [ elecl6e) (19)
Z(0)

ceC
We can rewrite this as agxponential family modelas follows

p(x]0) = exp <Z log ¥c(zc|0c) — log 2(9)> (20)
ceC

If we restrict potentials to be strictly positive (which Wimply that p(z) > 0 for all 2, so we cannot encode hard
constraints), then we can represent potentials usirgggy functions £,

VYe(we) = eXp[—Ec(xc)] (21)

This is called theBoltzmann distribution. Low energy states are more probable than high energy oneswillv
examples of this below.



3.3 Maxent models *
A maximum entropy (maxent) model is an MRF in which all the potentials have the form
Yelwe) = expD_ Ooj foj(e)] (22)
j=1

wheref.;(x.) is thej'th feature for cliquec, applied toz., andd.; is the corresponding weight. In other words, the
potentials are linear functions of a fixed set of featuresiddehe joint is

ﬁ H eXp[Z Ocjfej(ze)] (23)

p(x|6)

= % exp[z Or fr(x)] (24)
k

where we have combined all the features into one long feata®r f, and all the parameters into one long parameter
vectord. This is obviously a member of the exponential family. In imae, this model is sometimes calledogy-
linear model, although this means something slightly different in stats, so we don’t recommend this usage. We
will explain the “maxent” term below.

Note that feature based potentials include tabular patisndéis a special case: we create one binary feature for
every possible value of,, and just sef.; to be the log of the original potential entries. For exampdssider a clique
¢ = (i,7) on binary nodes. If the original potential

=% 50) (25)

then we Se]fcl(a:i,a:j) = I(Jz = O,J?j = 0), fcg(],‘i,],‘j) = I(]}z = O,JJj = 1), fcg(],‘i,xj) = I(]}z = 1,Z‘j = 0), and
fea(zi,x;) = I(z; = 1,2; = 1), and then se.; = log0.1, 62 = log0.5, 0.3 = log 1, andf.4 = log 20.

One example where a feature based representation of @isastuseful is when the number of staf€ds large
and/or the cliques are large. In this case, the tabular septation of potentials may require too many parameters. Fo
example, if we create a Markov model of language, we have e ger word, sdC ~ 50, 000. But K2 parameters
in eachy(X;, X;41) potential is too many to reasonably estimate. Instead aidening all possible word pairs, we
can use log-linear potentials. Features might include $dbe first word begin with a capital letter”, “is the first word
a noun and the second word a verb”, etc. Typically these festare hand-constructed, but theights (parameters)
0. are learned from data (see below). Such models have beeriaragtsupervised learning of the rules of English
spelling [PPL97].

We now explain the origin of the term “maximum entropy”. Sopp we want to build a probability distribution
that satisfies certain expectation constraints wrt sonteifesy;:

E[fj(X)] = a; (26)

For example, we might want our model to generate English svavith a certain proportion of each letter of the
alphabet. Also, we may want to enforce hard constraints'‘tike always followed by u”; we just sef; (X) = 1if X
satisfies the constraint, arfg(X') = 0 otherwise, and set; = oc.

Apart from these constraints, we want pick as general ailolision as possible. In other words, we want to find
a distributionp with maximum entropy, subject to the above constraintss file sum-to-one constraint. (We assume
p. IS a finite length vector of elements.) We can formalize tkisasaconvex optimization problem subject to linear
constraints:

- T 1 x 27

max zw:p 0gp 27)
subject to mefj(x) =aq; (28)
> pe=1 (29)

5



Figure 4: Chain graphs in which the clique potentials are explicidpresented as random variables (square nodes). Left: one
potential per maximal clique. Right: one potential per edge

We write the Lagrangian as

J = _melogpx+/\(zpm_1)+Zoj(szfj(x)_aj) (30)
T x J T
Taking derivatives wrt a specific element
oJ 0 0
. = Pelg,-logp] = [ o-pallogpe + A+ EJ: 0;f;(x) (31)
= —1—logp,+ > 0;f;(x) (32)
j
- 0 (33)
Hence
logpe = —1+A+> 0;f(x) (34)
j
pe = € lexp]> 0;f5(x)] (35)
j
Since}__ p, = 1, we have
1
Al —Z (36)
exp[y_; 0;f;(x)]
Hence )
Pe=— exp[)_ 0, f;(x)] (37)
J

So we have derived the exponential family using the maximatropy principle, where the weights (parameters)
are the Lagrange multipliers. Typically the values are derived from data, as we discuss below.

4 Factor graphs *

In a Bayesian model, the parameters are treated as rand@ablear and can therefore be viewed as nodes in the
graph. Although the “main” graph of an MRF is undirected, #uges from the parameter nodes will be directed,
since the priors on the parameters will usuallylbeally normalized. For example, referring to Figure 4(left), we



have

p(z1a,¥) = p(1a]0)p(¥h) (38)
= {ﬁ%m(lﬁm) X 234(2234) | [P(¥124)P(234)] (39)
Z(yp) = Z V124(T124) X P234(T234) (40)

x1,T2,T3,T4

wherey = (1934, 1124) are the parameters. This is an example afiain graph, which (loosely speaking) is a graph
in which some nodes have directed arrows to sets of nodegctethtogether in undirected maximal cliques.

Now imagine that instead of associating a potential witrheaaximal clique, we associate potentials with non
maximal cliques. For example, referring to Figure 4(right)ppose)ios = 112114 aNdihazy = 1231341024, SO WE
have one potential for each edge. (This is callgdimwise MRF.) Then

p(zraly) = % IT ¢ii(eiy) (41)
<ij>
= %1/112(9612)1/)14(5614)1/)23(1‘23)2/}24(9624)1/)34(1‘34) (42)

Note that they, edge potential is shared (tied) across different max ctigee the clique potentials are no longer
independent.

One way to make the parameterization of the MRF graphicalbjigt, without any committment to a Bayesian
approach, is to usefactor graph. A factor graph is an undirected bipartite graph with twodsrof nodes. Round
nodes represent variables, square nodes represent fgudteatials), and there is an edge from each variable toyever
factor that mentions it. In Figure 5, we show factor graphstiie@ two models mentioned above. It is possible to
extend the conditional independence semantics of grajphizdel to include factor graphs [Fre03], but here we just
use them as a convenient notation for making the paramatierzmore explicit.

5 Decomposable graphs *

An undirected graph is said to lehordal or triangulated if every undirected loop/ cycl&; — X5 --- X, — X5 of
lengthk > 4 has a chord, i.e., an edge connek&ts X; for all non-adjacent nodes;j in the cycle. The process of
converting a non-chordal graph to chordal form is cattéghgulation . The importance of triangulated graphs will be
explained later.

Some simple examples of chordal and non chordal graphs annsh Figure 6. A less obvious example is shown
in Figure 7: this illustrates that triangulation is morertt@vering the graph with little triangles. In particulare w
may have to add a lot of edges to ensure the graph is triargiatich edges are callélirin edges). Furthermore,
there may be many ways to do this. Let us definegpiémal triangulation as the one which adds the least number
of fill-in edges. LetC(G) be the size of the largest maximal clique in the optimal gidation of graphG. Then we
define thetree width of the graph ag'(G) = C(G) — 1. (Itis defined this way so that for tre€B(G) = 1.) For
example, in Figure 7(right), we see th@tG) = 4 (look at the 2-4-5-6 clique or the 4-5-6-8 clique), whichasger
than the maximal cliques in the non-triangulated graph guFe 7(left). In this case, the max clique size is not very
large, but in general, one can show that for planar 2D gridszgfD = d x d, the treewidth iO(d) [LT79]. The
importance of this result will be discussed later.

Triangulated graphs are also caldetomposable graphsA simple example of a decomposable graph is a chain,
X1 — X5 — X3 — X,. Inthis case the cliques afé, = {X;, X5}, Cy = {X3, X3}, andC5 = {X3, X, }. Define
the separatorsas the intersection of neighboring cliques; = C;NC;. For the chain, the separators are the internal
nodesSi 2 = {X2}, S2.3 = {X3}. See Figure 8.

Let us denote the clique potentials By and the separator potentials by. If we definey,. = p(X.) and
s = p(Xs), then we can write the joint as

_ H(z wc(wc)
S | RTEN )



Figure 5: Some factor graphs. (a) and (b) are topologically equitageaphs, and represent the MRF in Figure 4(left), with one
potential per maximal clique. (c) and (d) are topologic&tuivalent graphs, and represent the MRF in Figure 4(rigkth one
potential per edge.

Figure 6: Left: a non triangulated graph. Right: one possible tridaiga version.



Figure 7: Left: a non triangulated grid. Note the dotted 2-4-6-8 lo®p chordless 4-cycle. Right: one possible triangulation.
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Figure 8: Cliques (ovals) and separators (squares) for a chain stectcMRF.

For example, in the case of the chain, we have

p(X1, Xo)p(Xa, X3)p(X3, X4)

P P(X)p(Xs) o
(X1, Xo)p(X3| Xo)p(X4|X3) (45)
= p(X1|X2)p(X2|X3)p(X3, X4) (46)

which corresponds to the joint distribution of a Markov e¢hgoing forwards or backwards in time. (Undirected graphs

are acausal, and have no notion of directionality.) It tuwasthat Equation 43 applies to any decomposable graph,
not just chains. The reason is that by dividing by the sepapaitentials, we convert marginals into conditionals, and

then the chain rule applies.

6 Applications of MRFs

6.1 Image denoising

One important application of MRFs is to low level vision. Gater the image in Figure 9 (top left). Let each “true”
pixel bex; € {—1,+1}. Suppose this image gets sent over some channel and getpteorby noise. What we



sigma=2.0 initial guess sample 10000

Figure 9: Example of image denoising using Gibbs sampling. We useiag sior with J = 1 and a Gaussian noise model with
o=2.
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Figure 10: Grid-structured MRF. The shaded nodgsre observed, the unshaded nodeare hidden and need to be estimated.



receive is the image in Figure 9 (top middle). Let each oletobserved pixel bg; € IR. Our goal is toestimate
the underlying image from the noisy signal. There are two formulations of this. The first is to find thegénbest
interpretation:

"t = argmfxp(xl:DwLD, 0) (47)

This is called themaximum a posteriori (MAP) estimate. An alternative is to find the single most probable guess
for each pixel locally:
x} = argmax p(z;|y1.p, 0) (48)

These are called thmax marginals. Both of these are examples sfate estimation (inference)which we will
discuss later.

The simplest model would be to assume that pixels are indkperand have a uniform prior (i.e., +1 and -1 are
equally likely). For the likelihood, let us assume a Gaussiaise model

p(yilzi) = N(yilzi, 0) (49)
If o is very small, then ifc; = —1 theny; ~ —1, and similarly ifz; = +1 theny; ~ +1, so we will can easily
estimater from y by thresholding each value separately. But if the noisel isvgigh, we need to use some prior to

help.

A simple prior is to assume that nearby pixels “like” to be lire tsame state. In other wordsif is “on”, its
neighbors are more likely to be on; and vice versg; ifs off. This is called amoothness prior More precisely, we
can write the probability model as

p(r,y) = p@)pyle) (50)
= [% H ¢ij($i7$j)] [Hp(yv:m)] (51)

whereo; (x;) = p(y;|z;) is called thelocal evidence potentialfor node:, and;; is called theedge potentialfor
edgei — j. (We write ¢;(x;) as a function ofr; only, since they;’s are observed constants.) The notat]qgij>
means “product over all edges in the graph”. We define the pdtgtial as

edii e
Vij(wi, x5) = exp[Jijriz;] = (ef'if i ) (52)

whereJ;; = 0if ¢ — j are not neighbors in the graph.:lf- j are neighbors, we set; = .J > 0 which gives higher
probability (lower energy) to configurations in which = z; (sincez;z; = 1if «; = z;, andz;x; = —1if z; # ;).
J is thestrength of our smoothness prior.

Using this model, we can then perform inference to estimpétey, 0), whered = (J, o) are the parameters of the
prior and likelihood. In Figure 9, we show the result of ustilpbs samplingto draw samples from(z|y, 6). We
also show an estimate of the posterior meapx |y, ]. We will explain this and other algorithms for inferenceslat

6.2 Ising models

The image denoising model above is closely related tddimg model, which is used in statistical physics for mod-
elling magnets. In particulag,; € {—1, +} represents the atomic spin of a particle, either spin dovupotn an Ising
model we assume that tlteupling strength J;; = J is the same for all edges, and that theernal field h; = H is
the same for all nodes. In this case, the model becomes

pa) = g el -BEE) (53)
E(x) = —[Z in;vj—i—ZH;L'i] (54)

where E(x) is the energy of the system, amd= 1/(kT), whereT is the temperature of the system, ahds
Boltzmann’s constant. Hete= (J, H, 3) are the parameters of the system. Often we fdke 0.

11
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Figure 11: Markov random fields and some variants. BM = Boltzmann machRBM = Restricted Boltzmann machine (bipartite
graph). PoE = product of experts. AMN = Associative Markotwak.

In aferromagnet, neighboring spins want to be the same,Jsp 0. In this case, the lowest energy (most probable)
states are all -1s or all +1s. In amti-ferromagnet, neighboring spins want to be different, o< 0. In this case,
the lowest energy (most probable) states are alternatieagkeiboards of +1/-1; these are called gneund statesof
the system. However, the system can only enter this stagemgdraturd” = 0 (so3 = oo). At higher temperatures,
differences in energy matter less, so the system will flutetaaound, and will spend time in other states (this is the
motivation behind simulated annealing).

If the J;;'s and h;'s are not constant, the result is calledin glassin physics, or aBoltzmann machine or
Hopfield network in machine learning. If thd;;’s have mixed sign, then resulting system might exHitistration ,
since some states will want to be +1, and some -1. We discussdeto learn the parametefg below.

If we generalize the Ising model from binary to multiple s&gtwe get @&otts model For example, for 3 state
variables, the edge potentials look like this

Vij(zi, ;) = expld x I(x; = x;)]= [e™ e/ e/ (55)

Obviously we can makd;; be non-constant in this case, too. If d}, > 0, this is called arassociative Markov
network. See Figure 11 for some other model variants.

7 Parameter estimation*

In this section, we will assume that all the variables areréi®, and that there is one parameter for each possible
assignment to a clique potential, i.€:,(z.) can be represented as a tablefofc| numbers, wheréc| is the size

of cliquec. (The results in this section also apply to Gaussian MRFAs.$dction 7.3, we consider a more general
parameterization in whick.. is defined in terms of a set of “features”. This can requirediethiank|c| parameters,
which is useful if K or || is large. We will focus on maximum likelihood estimationthalugh Bayesian approaches
can also be used (see e.g., [MGO04]).

12



The log-likelihood of a set olV iid datasets:,, is

(o) = log]] % [T ¢e(@n.cloe) (56)
= ) logte(tnclfe) — Nlog Z (57)
Z Z N(xc) 1Og wc(xc) - NlOg Z (58)

whereN(z.) = Y, I(zc,xn.) is the number of times clique is in configurationz. in the data. For example,
consider a chailX; — X3 — X3 — X,4. Then

00) = > N(zi,z2)logvna(zr,22) + Y N(x2,w3)logs(z2, 73) (59)
x1,T2 T2,T3
+ Z .133,.234 10g¢34($3,$4) NlogZ (60)
I3,T4

So the derivative wrt one of the clique potentials, gay, is

ol N (z, zh) 0
- = — N log 7 61
Toandy) © tn@hth) o) 8 (61)

The key question is: what are the derivatives wrt the logif@ntfunction? In this example we find

dlog Z 1 0

- - 2
1o (2, ) Z Or1a(f, x/z) o T;&M U12(21, 22)V23(22, 23)1h3a (23, 74) (62)
= 3z T32;4 8%2 e 2)1#12(3317332)1#23(332,$3)¢34(x3,x4) (63)
= E > tas(ah, w3)hsa(ws, 24) (64)
xr3,Tq
_ Z 1 a2y, 75) P23 (2h, 73) 3423, 74) (65)
=7 Yo, )
p ]}1, an zs3, .134)
= 66
$32;4 P12 xpxg) (66)
p(xla x2)
= — = 67
Y227, 5) 67
And in general we have
dlog Z p(xe)
= 68
awc(xc) 1/%:(%) ( )
so the derivative of the log-likelihood is
ot N(z.) p(zc))
= - N 69
e e ela) ©9
Henceaw o = = 0 implies the following constraint must hold at the MLE:
N c er -~
P (o) = S o (70)
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wherep(z.) is the empirical distribution on clique. In other words, at the maximum likelihood setting of the
parameters, for each cliquiae model marginals must be equal to the observed marginals (empirical counts).

This doesn'’t tell us how to get the ML parameters, it just gius a condition that must be satisfied when we have
them. The method we have to use depends on whether the grdpbamposable or not, and whether the potentials
are defined on maximal cliques or on sub cliques, and on whetagotentials are “fully parameterized” (one param-
eter per clique configuration, as in a tabular represemtptar whether they are parameterized more generally. We
summarize the options below.

Decomposable? Max. Cliques| Potential| Method

Yes Yes Tabular | Closed form

- - Tabular | IPF

- - - Gradient descent

7.1 MLE for decomposable graphs with tabular potentials on he max cliques

If the graph is decomposable, and the clique potentialsefinetl on maximal cliques, and the potentials are tabular,
then we can just write down the MLEs in terms of the empiricalrts, since these simultaneously satisfy all the
above constraints. Recall that for a decomposable MRF

I1. ve(z.) -

Plera) = 1175 ()

The MLE is gotten by setting. = p(z.) andys = p(xs). For example, consider a chalfy — X, — X5. We set

gt (@, ws) = plar, ) (72)
Uoat (w2, 23) = Pla2,73), (73)
M3t (@) = Blan) (74)
7.2 lterative proportional fitting (IPF)
Consider the graph in Figure 5(d):
p(z14) = % I i) (75)
<ij>

Although this is decomposable, the potentials are not deéfomethe maximal cliques. So th&, term contributes
to both,54 ands34. Hence we cannot just set the potentials to the empiricagimals. Instead, we will use an
iterative scheme.
Recall that
Wc(xc) wc(xc) ¢c(x6)

From this we infer
N(xv) 1 - pt(IC)

where thet superscript denotes the values of the parameters at @eratiWWe can solve this fixed point equation
iteratively

(77)

G () = D) (78)

This is called theterative proportional fitting (IPF) algorithm. In pseudo code, we have

for each clique:
De = normalize(empirical counts{,))
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while not converged
for each clique
Pt = plaelv?) ()
t+1 _ )t Pe
wc - wc X ﬁi

The line marked (*) requires inference to compute the maiginNote that if the graph is decomposable, IPF will
terminate in one iteration.

IPF is essentially @oordinate ascentmethod, where we update a whole clique potential at each B&pw we
will consider gradient-based methods that update all thamaters at each step.

We now give an example of fitting an MRF with two disconnectedes. We use brute force enumeration for
inference. Since there are only two variables, we can use an2iix to represent the joint, and 1D vectors to
represent the marginals. We observed some count@data, X-) and want to choose potentials andw, such that
they match the marginalS(X,;) = 0.4157,0.2584,0.3258 andC'(X2) = 0.3596, 0.3596, 0.2809 respectively. We
find that the potentials stop changing after the first itergtas expected. The final answers are

Y1 = 0.1386,0.0861,0.1086 (79)
Vo = 1.0787,1.0787,0.8427 (80)

If J(z1,22) = ¥1(21) x92(x2), You can check manually that . J(z1,z2) = ca(x2) and) . J(x1,22) = c1(z1).
% | PFdeno

% Approxi mate joint density as a product of two marginals

%i.e., fit a 2 node disconnedted MRF X1 X2

Ci2 = [25 10 2;

3 19 1;

4 3 22];
C12 = normalise(C12);
Cil sum(C12,2);

C2 = sum(C12, 1);

nstates = [3 3];
psil = ones(1,3);
psi2 = ones(1,3);

for iter=1:2
joint = psil() * psi2();

M1 = sum(joint,2);
psil = psil . = (C1 ./ M1y

joint = psil() * psi2();

M2 = sum(joint,1);

psi2 = psi2 . * (C2 ./ M2)
end

joint = psil() * psi2(l)’;
assert(approxeq(C1, sum(joint,2)))
assert(approxeq(C2, sum(joint,1)))

We now give an example of fitting a loopy- 2 — 3 — 1 graph. Again we use brute force enumeration for inference.
This takes about 10 iterations to converge. Because theigimow on three variables, we use the tabular potential
class to take care of all the bookkeeping involved in maggkiimensions.

% | PFdenp3
% Fit loopy MRF 1-2-3-1 using iterative proportional fitting

clgs = {[1 2], [2 3], [1 3]}
NC = length(clgs);
N = 3;

% Sonme count data

C = reshape([53 414 11 37 0 16 4 139], [2 2 2]);
C = normalise(C);

Cpot = tabularPot(1:N, 2 *ones(1,N), C);

for c=1:NC
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counts{c} = marginalizePot(Cpot, clgs{c});
end

% Initial guess is all 1's

for c=1:NC
pots{c} = tabularPot(clgs{c}, 2 *ones(1,length(clgs{c})));
end
converged = O;
iter = 0O;

thresh = 1e-3; % conver gence threshol d
while “converged
converged = 1;
for c=1:NC
potsOld{c} = pots{c};
end
iter = iter + 1;
fprintf(iter %d\n’, iter);
for c=1:NC
J = multiplyPots(pots{:});
Mc = marginalizePot(J, clgs{c});
pots{c}.T = pots{c}.T . * (counts{c}.T ./ Mc.T);
if “approxeq(pots{c}.T, potsOld{c}.T, thresh)
converged = O;
end
fprintf(c=%d\n’, c)
printTable(pots{c})
end
end

J = multiplyPots(pots{:});
for c=1:NC
Mc = marginalizePot(J, clgs{c});
assert(approxeq(counts{c}.T, Mc.T))
end

7.3 Gradient based methods for maxent models

For a maxent model with general features, wherér.) = 67 f.(z.), the previous derivation simplifies somewhat.
The log-likelihood becomes

00) = 3" 6 fulwn) — Nlog Z(6) (81)
n k
Hence the derivative is
ol 0
= ; filan) — Na_ej log Z (82)
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Let us focus on the second term, the derivative wrt the logtjmar function.

0log Z(0) 1 0Z(0)

90; ~Z00) 06 (83)
- ﬁz%exp[z O i) (84

= Z%@) Z 7, Hexp Or fr(x)] (85)

- ZEQZ[(;; explf ()] [T explt ()] (86)

k#j
= gy X @) ool ] ol oo ®7)
k#j
- ? 3 o [T exwlonsite) (89)
k
= ng (89)
= [fj( )] (90)
Hence the gradient is

ij zn) — NE[f;(X)] (91)

We can find the globally optimal MLE by passing this gradienahygradient-based optimization algorithm, such
as conjugate gradient, quasi-Newton, etc. (In matlab, youusefminunc  (function minimization unconstrained)
in the optimimization toolbox.) However, to compute thedjeat, we have to evaluate

= p(a)fy(a) (92)

for every featuref;, which might be expensive. Typically, each feature onlyedefs on a subset of the variables. In
particular, for a graphical model, each feature only depamdthe variables in its clique, so what we need are ways to
computep(z.) for each cligue. We discuss this later.

At the optimum,-2- ao = 0, so the expected features according to the model shoulchntfaécexpected features
according to the data:

= 3 i) = B () (99

Hence maximum likelihood of an exponential family modelggwhe same results as maximum entropy, where the
constraints are that the expected features match the ealdfieatures. In the case that there is one feature for each
possible clique value, thefi[f.; (X.)] = p(X. = j), so this is saying the model's marginal probabilities sHagual

the empirical marginal probabilities, as we saw before.

7.4 Regularization
Since maximum likelihood often overfits, it is very commorfital MAP estimates

OMAP — arg max 0(0) = arg max log p(0) + log p(D10) (94)
where@(@) is thepenalized (regularized) log likelihood It is common to use a Gaussian prior,

p(0) = N0}, %) = s expl—4(0 — )"0 = ) (95)
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Figure 12: A Laplace prior

If we sety = 0 andX = A~'1, where) is called the precision, then the log prior becomes
log p() = —\||0]|* + const (96)

where||0]|3 = > 07. The objective function becomes
1(6) = log p(D|0) — Al|6]13 (97)

Hence) reflects the degree of regularization. This is called2ipenalty term, since it penalizes the, norm of the
parameters. It is also calledeight decay since it encourages parameters to become small. (A p@oarpeters are
most likely to be zero.)

The derivative of the penalized log likelihood becomes

ol
20, = [; fi(@n)] = NE[f;(X)] - 200, (98)

and can be optimized using gradient methods. The teisroften set by cross validation.
An alternative to a Gaussian prior is to uskeaplace (double-sided exponentialprior:

p(6) = [T Laplacet; ) = TT 5 exp(-xi) = = (3 ) expl-Alol) (99)
j=1

J

See Figure 12. Hence the objective function becomes

£(0) = logp(DI0) — All6] | (100)

This is calledL1 regularization. Note that this function is non-differentiable if afly = 0, so care must be taken
when optimizing this objective. The details are beyond taps of this chapter.

In the context of linear regression, L2 regularization ilechridge regressionand L1 regularization is called
lasso(least absolute shrinkage and selection operator). Thalifieyence between them is that L2 encourages all
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Figure 13: lllustration of L1 (left) vs L2 (right) regularization. Sece: [HTFO1] Figure 3.12.

parameters to become small, whereas L1 encourages sonmegbarsito become exactly zero, and the rest to remain
more or less unchanged. Thus L1 can be used to pefffieaiture selection
To see why this happens, note that an L2 penalty on the pagawettord = (1,0) is the same as o =

(1/4/(2),1/4/(2)), since

(1, 0)ll2 = [1(1/3/(2), 1//(2)]]a = 1 (101)
However, for L1, setting = (1,0) is cheaper than settiry= (1/+/(2),1/+/(2)), since
(L0l =1 < [|(1//(2),1/V @)l = V(2) (102)

Hence lasso prefesparse solutions
Figure 13 shows this result visually. The ellipses repregenquadratic log likelihood function. The shaded blobs
represent the log prior, whose size is controlled\byrhe MAP estimate is at the intersection point. It is appeifest
with the L1 prior, the solution will always be at one of the wers (since they will “touch” the likelihood surface first).
When performing regression with discrete features (fagtove need to include or exclude a block of columns for
the result to be meaningful. This is called ty@up lassa See [YLO6] for details.

8 Structure learning *

Given a dataset, we might want to find a graph structure thaesents it. More formally, the dataset defines an
empirical distribution

PP (z) = % > I(z=a") (103)

and we want to find a graph that models the independencigsim. Since the fully connected graph is an I-map of
all distributions, this can represesft”?. However, what we really want israinimal I-map, i.e., the one that makes
as few additional independence assumptions as necessary.

One approach to this is to apply a series of conditional iedence tests to the data (e.g., usigests, and
then to fit a model consistent with those test results (seev(Bil for details). Since there al@(QDQ) possible
graphs onD nodes (since each edge in the adjacency matrix can be p@sabsent), this can be computationally
expensive. In addition to computational cost, there areldinmental statistical problems: conditional independency
tests return yes/no answers (based on a threshold). Whehimiogn such results, inconsistencies can arise. An
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alternative approach is to perforBayesian model selectionwhich solves the statistical problem, at the cost of
making the computational problem harder. We discuss tles. la

A final approach, in the case of log-linear models, is to paparsity promoting prior on the parameters.,
which encourages them to go to zero, and then to perform MAR&ton. If all the weights between two nodes are
zero, then the edge is effectively removed from the graph.
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