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1 Simpson’s paradox

We will show a dramatic example of the dangers of not thinkiagsally. Suppose taking a drug (cad§edecreases
recovery rate (effeck) in females ¢) and males+{F)

P(E|C, F)
P(E|C,—F)

< P(B|-C,F)
< P(B|-C,—F)

but in the combined population, the drug increases recaatey

P(E|C) > P(E|-C)
By the rules of probability, this is perfectly possible, hs table of numbers below shows.
Combined Male Female

E -F Total Rate| £ —F Total Rate| £ —F Total Rate

Cc |20 20 40 50%| 18 12 30 60%| 2 8 10 20%

-C | 16 24 40  40%| 7 3 10 70% 9 21 30 30%

Total | 36 44 80 25 15 40 11 29 40

p(BIC) = p(E,C)/p(c) =20/40=0.5 (1)
p(E|-C) = 16/40=0.4 (2)
p(E|C,F) = 2/10=0.2 3)
p(E|-C,F) = 9/30=0.3 4)
p(E|C,—~F) = 18/30=0.6 (5)
p(E|-C,-F) = 7/10=0.7 (6)

But the conclusion goes counter to intuition. Why? Put aaotiay: given a new patient, do we use the drug or
not? Novick wrote “ The apparent answer is that when we knaxggmder of the patient, we do not use the drug, but
if the gender is unknown, we should use the drug. Obviously¢bnclusion is ridiculous”. (Quoted if? | p175].)

We can resolve the paradox as follows. The statement thalrtigg” causes recoverk is

P(E|do(C))

whereas the data merely tell us

P(E|C)

> P(E|do(—C))

> P(E|-C)

()

8

This is not a contradiction. Observirdgis positive evidence foF/, since more males than females take the drug, and
the male recovery rate is higher (regardless of the drug)sHyguation 8 does not imply Equation 7.

If we assume that the drug does not cause gendegr, as in Figure 1(left), then we can prove that if taking the
drug is harmful in each subpopulation (male and female)) theust be harmful overall. Specifically, if we assume

p(E|do(C), F)
p(Eldo(C), = F)

< p(E|do(=C), F)
< p(E|do(=C),—F)

)
(10)
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Figure 1: Two versios of the Simpson’s paradox. Left: F is gender andes C. Right: F is blood pressure and is caused by C.
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then we can show
p(E£]do(C)) < p(E|do(~C)) (11)

The proofis as follows? , p181]. First we assume that drugs have no effect on gender
p(F|do(C)) = p(F|do(~C)) = p(F) (12)

Now using the law of total probability,

p(E|do(C)) = p(E[|do(C), F)p(F|do(C)) + p(E|do(C), ~F)p(~F|do(C)) (13)
= p(Eldo(C), F)p(F) + p(E|do(C), = F)p(~F) (14)

Similarly,
p(Eldo(=C)) = p(E|do(=C), F)p(F) + p(E|do(~C), ~F)p(~F) (15)

Since every term in Equation 14 is less than the correspgridim in Equation 15, we conclude that
p(E[do(C)) < p(E|do(=C)) (16)

To assess the effect 6f on E, we have to take into account that there isagkdoor path from E to C via F.
Pearl [? , p79] proves that you have to adjust for (i.e., conditionsumgh backdoor variables. Intuitively, we need to be
sure the effect of’ on E is not due to their common caudé, Thus we should check thé— E relationship for each
value of F" separately. In this example, the drug redufes both tables, so we should not take the drug regardless of
gender.

Now consider a different cover story. Suppose we keep the tthat same but interpréf as something that is
affected by, such as blood pressure. Thkiss now caused by': see Figure 1(right). In this case, we can no longer
assume

p(F|do(C)) = p(F|do(~C)) = p(F) (17)

and the above proof breaks down. 8@ |do(C')) — p(E|do(—C')) may be positive or negaitve.
To assess the effect 6f on E, we should look at the combingd’, F) table. We should not condition df, since
there is no backdoor path in this case. More intuitively,ditaning on F' might block one of the causal pathways.



In other words, by comparing patients with the same postinrent blood pressure, we may mask the effect of one of

the two pathways by which the drug operates to bring abowivesc
Thus we see that different causal assumptions lead to eliffexctions. In this case, the models require distin-
guishing the direction of arcs into/ out of the latent valgals, so we need prior domain knowledge to choose the right

one.



