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1 General

• x∗ ∈ arg maxx f(x) meansx∗ is the value ofx that maximizes the functionf , i.e.,f(x∗) = maxx f(x). Note
that there may be multiple global maxima, in which case we break ties randomly.

• Indicator function:I(e) = 1 if evente is true,I(e) = 0 otherwise.

• Delta function:δ(x) = 1 if e = 0 andδ(x) = 0 otherwise.

• Sometimes probability mass functions (for discrete randomvariables) are writtenP (X), and probability density
functions (for continuous random variables) are writtenp(X). We will usep() for both.

• Usually we write random variables as capital letters and values of random variables as lower case, e.g.,p(X = x)
is the probabilityX has valuex. However, we do not follow this convention very closely.

• If X is distributed according to distributionf with parametersθ, i.e.,p(X) = f(X |θ), then we writeX ∼ f(θ).

• We will often write probability distributions up to a constant of proportionality,p(x|θ) ∝ f(x, θ). This normal-
ization constant is often denoted1/Z(θ), whereZ is called the partition function.

• Vectors are usually column vectors.T denotes transpose, soxT is a row vector. Sometimes we will write vectors
in bold, e.g.,x, or as~x, but usually we will just writex. Matrices will usually be written as capital letters,X .
However, using this convention we will cannot distinguish matrices from scalar (or vector) random variables. It
should be clear from context.

• We use the following matlab notation:1 : n denotes the sequence of integers{1, 2, . . . , n} andX(i, j, k) is
elementi, j, k of some matrix, wherei, j, k could each be a sequence of indices.

2 Data and variables

• Xni is thei’th component/ feature / variable of data casen, for i = 1 : D, whereD is the number of features/
variables, andn = 1 : N , whereN is the number of training samples. (In general,D may depend onn if each
example has a different size, but we will rarely writeDn.) If there is a single training/ test sample, we just write
Xi for thei’th variable.

• X = X(1 : N, 1 : D) is the design matrix. Then’th row is then’th exampleXT
n (since each exampleXn is a

column vector); thei’th column ofX is all values of thei’th feature. We also write this asD = {xn}N
n=1, which

is more general notation, since it does not assume that all examples have the same number of features (e.g., a
document may contain sentences of different lengths, so we would useD rather thanX).

• In supervised learning problems, there is a distinguished output variableyn, soD = {xn, yn}. In classification,
yn ∈ {1, . . . , C}, whereC is the number of classes. In regression,yn ∈ IR.
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• If Xni is a scalar, thenXni ∈ IR or Xni ∈ IR+. If it is a vector, thenXni ∈ IRK , whereXnik is thek’th
component of thei’th variable fork = 1 : K, whereK is the dimensionality of each variable. (In general,K
may depend oni, but we rarely writeKi).

• If Xni is binary, thenXni ∈ {0, 1} . If Xni is categorical, thenXni ∈ {1, . . . , K}, whereK is the number
of states of variablei. (In general,K may depend oni, but we rarely writeKi). We writeXni = k if the i’th
variable is in statek, wherek ∈ 1 : K. Sometimes you will see a 1-of-K encoding, whereXni ∈ {0, 1}K,
whereXnik = I(Xni = k). We also usej to index states, mostly of variables that are “parents” ofXi.

3 Bernoullis and multinomials

• We define the Bernoulli distributionX ∼ Be(θ) for X ∈ {0, 1} by

Be(X |θ) = θX(1 − θ)1−X (1)

We denote the minimal sufficient statistics for a Bernoulli distribution by the number of heads and tails:N1 =∑
n I(Xn = 1), N0 =

∑
n I(Xn = 0). Alternatively, we can useN1 andN = N1 + N0.

• We define the multinomial distributionX ∼ Mu(θ) for X ∈ {1, . . . , K} by

Mu(X |θ) =

K∏

j=1

θ
I(X=j)
j (2)

Put another way,p(X = j|θ) = θj . We denote the sufficient statistics for a multinomial distribution by
Nj =

∑
n I(Xn = j).

• We define the Beta distributionθ ∼ Beta(α1, α0) for θ ∈ [0, 1] by

Beta(θ|α1, α0) =
Γ(α1 + α0)

Γ(α1)Γ(α0)
θα1−1(1 − θ)α0−1 (3)

whereΓ(x) is the gamma function. Hereα0, α1 ∈ IR+ are called hyper parameters (pseudo counts) and
α = α0 + α1 is the equivalent sample size (strenght) of the prior.

• We define the Dirichlet distributionθ ∼ Dir(α1, . . . , αK) for θ ∈ [0, 1]K by

Dir(θ|α1, . . . , αK) ∝
K∏

j=1

θ
αj−1
j (4)

Hereαj ∈ IR+ are called hyper parameters (pseudo counts) andα =
∑

j αj is the equivalent sample size.

• We define the likelihood as
L(θ) = p(D|θ) (5)

and the log-likelihood as
`(θ) = log p(D|θ) (6)

• We denote the maximum likelihood estimate by

θ̂ML ∈ argmax
θ

p(D|θ) (7)

We denote the maximum a posterior estimate by

θ̂MAP ∈ argmax
θ

p(D|θ)p(θ) (8)

We denote the posterior mean estimate by
θ̂mean = E[θ|D] (9)
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4 Naive Bayes classifier

• The 1d Gaussian density is denotedN (x|µ, σ).

• In a generative classifer, the class prior is usually denoted p(Y = c) = πc, if we assumeY has a multinomial
distribution.

• In the naive Bayes model, we have

p(x|y = c) =
D∏

i=1

p(xi|y = c) (10)

In the case ofK-ary features, we have

p(xi|y = c) =
∏

k

θ
I(Xi=k)
ick (11)

whereθick = P (Xi = k|Y = c). The sufficient statistics areNick, which is the number of timesXi = k
amongst those training cases whereY = c. In the case of binary features, we have

p(xi|y = c) = θ
I(Xi=1)
ic (1 − θic)

I(Xi=0) (12)

whereθic = P (Xi = 1|Y = c). The sufficient statistics areNic1, the number of timesXi = 1 amongst cases
whereY = c, andNic = Nc, the number of timesXi = 0 or Xi = 1 in cases whereY = c.

5 Markov chains

• The transition matrix isT i
jk = p(Xi = k|Xi−1 = j), which is independent ofi if the chain is stationary. The

sufficient statistics to estimate this are the observed number of j→k transitions:Njk =
∑N

n=1

∑D

i=2 I(Xni =
k, Xni−1 = j). There is noi index since we assume the parameters are shared (tied) across time.

• The initial state distribution isπ1
k = p(X1 = k).

• The stationary distribution isπ which satisfiesπT = π (if we treatπ as a row vector).

6 Information theory

• The entropy of a random variableX ∈ 1 : K with discrete distributionp is denoted by

H(p) = H(X) = −
K∑

k=1

p(X = k) log2 p(X = k) = −
∑

k

pk log pk (13)

The joint entropy is denotedH(X, Y ) and the conditional entropy asH(X |Y ). The mutual information is
denotedI(X, Y ) (often written asI(X ; Y )). The Kullback-Leibler divergence between two distributions is
denotedKL(p||q).
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