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1 General

e 1* € argmax, f(x) meanse* is the value ofc that maximizes the functiofj, i.e., f(z*) = max, f(z). Note
that there may be multiple global maxima, in which case walbties randomly.

e Indicator function:I(e) = 1 if evente is true,I(e) = 0 otherwise.
e Delta function:§(z) = 1 if e = 0 andd(z) = 0 otherwise.

e Sometimes probability mass functions (for discrete randariables) are writte? (X ), and probability density
functions (for continuous random variables) are writhé ). We will usep() for both.

e Usually we write random variables as capital letters andesbf random variables as lower case, @@g¥, = x)
is the probabilityX has value:. However, we do not follow this convention very closely.

e If X is distributed according to distributighwith parameters, i.e.,p(X) = f(X|0), then we writeX ~ f(6).

o We will often write probability distributions up to a constaf proportionalityp(x|6) « f(x, ). This normal-
ization constant is often denotédZ (), whereZ is called the partition function.

¢ Vectors are usually column vectofB.denotes transpose, 36 is a row vector. Sometimes we will write vectors
in bold, e.g.x, or asz, but usually we will just writer. Matrices will usually be written as capital letters,
However, using this convention we will cannot distinguishtrites from scalar (or vector) random variables. It
should be clear from context.

e We use the following matlab notation: : n denotes the sequence of integéts2,...,n} and X (i, 5, k) is
element, j, k of some matrix, wherg j, k could each be a sequence of indices.

2 Data and variables

e X, is thei'th component/ feature / variable of data casdor i = 1 : D, whereD is the number of features/
variables, andh = 1 : N, whereN is the number of training samples. (In geneialmay depend om if each
example has a different size, but we will rarely wridg .) If there is a single training/ test sample, we just write
X, for thei'th variable.

e X = X(1:N,1: D)isthe design matrix. The'th row is then’'th exampleX! (since each exampl¥,, is a
column vector); the'th column of X is all values of the'th feature. We also write this & = {z,,}2_,, which
is more general notation, since it does not assume that athples have the same number of features (e.g., a
document may contain sentences of different lengths, sooudnuseD rather thanX).

e In supervised learning problems, there is a distinguished variabley,,, soD = {z,, y,}. In classification,
yn € {1,...,C}, whereC' is the number of classes. In regressigne R.



e If X, is a scalar, theiX,,; € R or X,,; € R'. Ifitis a vector, thenX,,; € R¥, whereX,,;; is thek'th
component of the'th variable fork = 1 : K, whereK is the dimensionality of each variable. (In genefsll,
may depend om, but we rarely writek;).

e If X,,; is binary, thenX,,; € {0,1} . If X,,; is categorical, theX,,; € {1,..., K}, whereK is the number
of states of variable. (In general, K may depend om, but we rarely writeK;). We write X,,; = k if the 'th
variable is in staté;, wherek € 1 : K. Sometimes you will see a 1-df- encoding, whereX,,; € {0,1}%,
whereX,,;x = I(X,; = k). We also usg to index states, mostly of variables that are “parentsXof

Bernoullis and multinomials

o We define the Bernoulli distributioX ~ Be(0) for X € {0,1} by
Be(X|0) = 0% (1 — )% 1)

We denote the minimal sufficient statistics for a Bernoutidbution by the number of heads and tails; =
Yo I(Xn=1),No =3, I(X, = 0). Alternatively, we can us&’; andN = N; + No.

e We define the multinomial distributioN ~ Mu(0) for X € {1,..., K} by
K .
Mu(x10) = [J ;7 @)
j=1

Put another wayp(X = j|§) = ;. We denote the sufficient statistics for a multinomial disttion by
¢ We define the Beta distributich~ Beta (a1, ag) for 6 € [0,1] by

F(Oq + Oéo)

Betaflar, 20) = g T a0)

g1~ (1 — @)t (3)
whereT'(z) is the gamma function. Hereg, oy € IR™ are called hyper parameters (pseudo counts) and
a = ag + a1 is the equivalent sample size (strenght) of the prior.

¢ We define the Dirichlet distributiof ~ Dir (a4, ..., ark) for 6 € [0,1]X by
K
Dir(flas, ..., ax) o [J 057" )
j=1

Herea; € IR™ are called hyper parameters (pseudo counts)aaﬁdzj a; is the equivalent sample size.

o \We define the likelihood as
L(0) = p(D|0) (5)

and the log-likelihood as
£(9) = log p(D|0) (6)

e We denote the maximum likelihood estimate by
O6ML € arg max p(D|0) @)
We denote the maximum a posterior estimate by
OMAY € argmax p(D|0)p(0) (8)

We denote the posterior mean estimate by
gme™ = E[0|D) 9)



4 Naive Bayes classifier

e The 1d Gaussian density is denof€dz|u, o).

¢ In a generative classifer, the class prior is usually dehpt® = ¢) = ., if we assumé&” has a multinomial
distribution.

¢ In the naive Bayes model, we have
D
plaly =c) = [[ p(zily = ¢) (10)
=1
In the case of{-ary features, we have

plaly =)= [ a

whereb,., = P(X; = k|Y = ¢). The sufficient statistics ar®;.,, which is the number of timeX, = &
amongst those training cases where= c. In the case of binary features, we have

plzily = ¢) = 9= (1 — g;) (5=0) (12)

wheref,. = P(X; = 1|Y = ¢). The sufficient statistics at¥;.1, the number of times(; = 1 amongst cases
whereY = ¢, t:mdMC = N, the number of timeX(; = 0 or X; = 1 in cases wher& = c.

5 Markov chains

e The transition matrix |§7k = p(X; = k| X;—1 = j), which is independent aofif the chain is stationary. The

sufficient statistics to estimate this are the observed mumbj—k transitions:N;, = S S22 (X, =
k, Xni—1 = j). There is nad index since we assume the parameters are shared (tied} dcnes

e The initial state distribution is} = p(X; = k).

e The stationary distribution is which satisfiesrT' = = (if we treatr as a row vector).

6 Information theory

e The entropy of a random variablé € 1 : K with discrete distributiop is denoted by

K

H(p) = H(X) ==Y p(X =k)logop(X =k) == > prlogps (13)
k=1 k

The joint entropy is denoted (X,Y") and the conditional entropy & (X|Y). The mutual information is
denoted/ (X, Y") (often written as/(X;Y")). The Kullback-Leibler divergence between two distribas is
denotedK L(p||q).



