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1 Introduction
One of the key assumptions needed to make probabilistic models of large numbers of random variables isconditional
indepedence. Recall that ifXi is conditionally independent ofXj givenXk, writtenXi ⊥ Xj|Xk, it means

p(Xi, Xj |Xk) = p(Xi|Xk)p(Xj |Xk) (1)

which basically means thatXi andXj do not directly influence each other, but that their influenceis mediated via
Xk. (Note thatXi,Xj andXk can besetsof variables.) Another way of saying this is thatXi ⊥ Xj |Xk iff the joint
factorizes as follows

p(Xi, Xj|Xk) = f(Xi, Xk)g(Xj , Xk) (2)

for some functionsf andg.
Probabilistic graphical models are a way of representing conditional independence assumptions using graphs.

Nodes represent random variables andlack ofedges represent conditional independence assumptions, ina way which
we will define below. There are many kinds of graphical model,but the two most popular areBayesian (belief)
networks1, which are based ondirected acylic graphs (DAGs), andMarkov networks , akaMarkov random fields
(MRFs), which are based onundirected graphs. In a directed graphical model (DGM), we can (informally) think
of an edge from nodeXi to nodeXj as meaningXi “causes” or “directly influences”Xj , whereas in an MRF, edges
represent correlation rather than causation. In this chapter, we focus on directed graphs.

2 Example networks
The easiest way to understand DGMs is to consider a few examples.

2.1 Water sprinkler

It is common when building DGMs to interpret an edge fromi to j as meaningXi causesXj . This can be used as
the basis for a theory of causality, as discussed in Section 8. However, in the more “vanilla” statistical use of these
models, the edges (or lack thereof) simply encode conditional independence assumptions. We give the details below,
but the basic idea is that a node is independent of its non-descendants given its parents.

Let us consider the “water sprinkler” example in Figure 1, which defines a joint distribution over 4 binary variables,
representing whether it is cloudy or not (C), whether it is raining or not (R), whether the water sprinkler is on or not
(S), and whether the grass is wet or not (W). Clouds cause rain, so there is an arc from C to R. Sprinklers are usually
turned on and off by hand, or by a timer, but, for the sake of this example, suppose the sprinkler has a light sensor
on it, so cloudy days cause the sprinkler to turn off, and sunny days cause it to turn on: hence there is an arc from C
to S. However, there is no arc between S and R, since sprinklers do not cause rain or vice versa. HenceS ⊥ R|C.
Also, there is no arc fromC to W , since we assume thatC does not directly causeW . More formally, we assume that

1There is nothing inherently Bayesian about “Bayesian networks”. They are just models of probability distributions. Hence we prefer the more
neutral term “directed graphical model”. However, they arewidely used in Bayesian statistics as a convenient notational device. They are also a
useful data structure which can often be leveraged computationally.
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Figure 1: Water sprinkler Bayes net with CPDs shown.

W ⊥ C|S, R. These two independence assumptions allow us to represent the joint as aproduct of local factors, one
per node.

P (C, S, R, W ) = P (C)P (S|C)P (R|S, C)P (W |S, R, C) chain rule (3)

= P (C)P (S|C)P (R|�S, C)P (W |S, R, C) sinceS ⊥ R|C (4)

= P (C)P (S|C)P (R|�S, C)P (W |S, R,�C) sinceW ⊥ C|S, R (5)

= P (C)P (S|C)P (R|C)P (W |S, R) (6)

In general, if we number the nodes1 : d (such a total ordering always exists, since the graph is acyclic), we can
write

p(X1:d) =
∏

i

p(Xi|Xπi
) (7)

whereπi are theparentsof nodei.
Each termp(Xi|Xπi

) is called aconditional probability distribution (CPD) . In the simplest case of discrete
random variables withK states each, we can represent each CPD as a table ofO(Kfi+1) numbers, wherefi = |πi| is
the number of parents (fan-in) of nodei. In this case, the CPD is called aconditional probability table (CPT) .

2.2 Burglar alarm

Consider the network in Figure 2. This represents a distribution on 5 variables,p(B, E, A, J, M). The intuition behind
the model is that either burglaries or earthquakes can trigger an alarm (this example is due to Judea Pearl who lives in
Los Angeles, which is prone to both of these problems). If thealarm rings, either of your neighbors, John and Mary,
will call you at work to let you know. But sometimes they don’thear the alarm, e.g.,p(M = t|A = t) = 0.7 means
the probability that Mary will call you given that there is analarm is just 70%.
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Figure 2: The burglar alarm network. Source: [RN02].
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Figure 3: Two DGMs defined with different orderings. Source: [RN02].

If we pick the “wrong” (i.e., non causal) order, we will end uphaving to add extra arcs in order to not make any
false conditional independence assertions. distribution. Recall that a DGM asserts that a node is independent of its non
descendants (and hence its ancestors) given its parents. Ifyou pick the wrong parents, they may notscreen offyour
ancestors. This is illustrated in Figure 3. For example, consider the orderingM, J, E, B, A (right hand side of figure).
ObviouslyA needsB andE as parents, since they are direct causes. But this set of parents is not enough to screenA
off from its other ancestors,J andM . Specifically, we need to add an arc fromJ to A sinceA 6⊥ J |B, E (assuming
Figure 2 is the “true” distribution). Similarly we need to add theM→A arc. The orderingM, J, E, B, A is the worst
possible, since the graph is fully connected, and hence doesnot make any conditional independence assertions. The
orderingM, J, A, B, E is also bad, but not as bad.

2.3 Naive Bayes classifiers

As another simple example, consider a naive Bayes classifier. This asserts that the featuresxi are conditionally
independent given the class labely. This is illustrated in Figure 4(left), which defines the following joint probability
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Figure 4: Naive Bayes classifier represented as a DGM.y is the class label andxi are the features. In the version on the right, the
parameters are shown explicitly.

distribution

p(y, x1:D) = p(y)

D
∏

i=1

p(xi|y) (8)

We can also make the parameters explicit, as in Figure 4(right):

p(y, x1:D, θ) = p(y|π)

D
∏

i=1

p(xi|y, θi) (9)

If we assume the parameters are fixed (known) constants, theyare not usually explicitly represented in the model.

2.4 Markov chains

As another simple example, consider a discrete time Markov chain:

p(X1:T ) = p(X1)

T
∏

t=2

p(Xt|Xt−1) (10)

If we assume the state space is discrete, we can representp(Xt = j|Xt−1 = i) = At(i, j) by a transition matrix;
this is just the CPT for nodeXt. If we assume the chain is time invariant, then we can use the same matrixA for all
time slices; this is an example ofparameter tying (and is necessary in order to define the distribution for arbitrary
number of nodesT using a constant number of parameters). The initial state ofthe chain can be represented by a
probability vectorp(X1 = i) = πi. Thus the parameters of the model areθ = (π, A). From the Bayesian point of
view, parameters are just random variables, so we can add them to the graph: see Figure 5. This makes explicit the
parameter tying assumption, and also the assumption thatπ andA are independent. Obviously if we only observe one
sequence we cannot estimateπ, since we will only have one data point. However, if we have many sequences,and the
parameters are shared across sequences, they will be easy tolearn, as we discuss below.

3 Conditional independence properties of DAGs
In this section we describe more formally how graphs encode conditional independence properties. For undirected
graphs, independence corresponds to simple graph separation, but for directed graph, the story is a bit more complex,
since we need to take the direction of the edges into account.

3.1 Local markov properties for directed graphs

The local Markov property says a node is conditionally independent of its non-descendants given its parents: see
Figure 6. This means that, given anytotal ordering of the nodes (such an ordering always exists, since the graphis a
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Figure 5: Markov chain represented as a DGM.π is the initial state distribution andA is the transition matrix.
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Figure 6: (a) A node is independent of its non-descendants given its parents. (b) A node is independent of all other nodes given its
Markov blanket. Source: [RN02] Fig 14.4.

DAG), we have thatXi ⊥ Xpredi
|Xpai

, wherepai are the parents of nodeXi andpredi are all the other predecessors
of Xi in the ordering. Hence thechain rule

P (X1:N ) =

N
∏

i=1

P (Xi|X1:i−1) (11)

simplifies to

P (X1:N ) =

N
∏

i=1

P (Xi|Xπi
) (12)

Each term only involves a node and its parents (afamily ). Hence the model is defined in terms of a product of local
terms. We can therefore “mix and match” different kinds of CPDs, and build quite complex models in a modular way.

We can show that this is equivalent to an alternative local Markov property, which says that a node is conditionally
independent of all others given itsMarkov blanket . The markov blanket is the parents, children, and childrens’ parents
(co-parents): see Figure 6(b). To see why this is true, partition the nodes intoXi and the other nodes,X−i. We can
partition the other nodesX−i in those that involveXi (namely its parentsUi, its childrenYi, and its co-parents), and
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the rest of the nodesR. Then thefull conditional is given by

p(Xi|X−i) =
p(Xi, X−i)

∑

x p(Xi, X−i)
(13)

=
p(Xi, U1:n, Y1:m, Z1:m, R)

∑

x p(x, U1:n, Y1:m, Z1:m, R)
(14)

=
p(Xi|U1:n)[

∏

j p(Yj |Xi, Zj)]P (U1:n, Z1:m, R)
∑

x p(Xi = x|U1:n)[
∏

j p(Yj |Xi = x, Zj)]P (U1:n, Z1:m, R)
(15)

=
p(Xi|U1:n)[

∏

j p(Yj |Xi, Zj)]
∑

x p(Xi = x|U1:n)[
∏

j p(Yj |Xi = x, Zj)]
(16)

so the terms that do not involveXi cancel out from the numerator and denominator. We are left with a product of
terms that includeXi in their “scope”. This proves thatXi ⊥ R|MBi, whereMBi is Xi’s Markov blanket.

We can rewrite the full conditional as follows

p(Xi|X−i) ∝ p(Xi|Pa(Xi))
∏

Yj∈ch(Xi)

p(Yj |Pa(Yj) (17)

The key requirement for theGibbs sampling algorithm (defined later) is that we can sample from this distribution.
This is easy provided each of these CPDs is conjugate. If thisis not the case, we may need to use some other method
to sample from this distribution, such as adaptive rejection sampling, or the Metropolis algorithm.

3.2 Global Markov properties

By chaining together local independencies, we can infer more global independencies. We will start by doing this
informally by examining some examples. Then we will presentan algorithm and a formal definition.

First consider a chain structureX→Y→Z. When we condition ony, arex andz independent? We have

p(x, y, z) = p(x)p(y|x)p(z|y) (18)

which implies

p(x, z|y) =
p(x)p(y|x)p(z|y)

p(y)
(19)

=
p(x, y)p(z|y)

p(y)
(20)

= p(x|y)p(z|y) (21)

and thereforex ⊥ z|y. So observing the middle node of chain breaks it in two. Thinkof x as the past,y as the present
andz as the future.

Now consider the structureX←Y→Z. When we condition ony, arex andz independent?

p(x, y, z) = p(y)p(x|y)p(z|y) (22)

which implies

p(x, z|y) =
p(x, y, z)

p(y)
(23)

=
p(y)p(x|y)p(z|y)

p(y)
= p(x|y)p(z|y) (24)

and thereforex ⊥ z|y So observing a root node separates its children.
Finally consider av-structure X→Y←Z. When we condition ony, arex andz independent? We have

p(x, y, z) = p(x)p(z)p(y|x, z) (25)
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Figure 7: Bayes ball rules. A shaded node is one we condition on. If there is an arrow with a vertical bar it means the ball cannot
pass through; otherwise the ball can pass through.

so we see thatx andz aremarginally independent, but giveny they areconditionally dependent. This important
effect is calledexplaining away(and is also known as Berkson’s paradox). Thus observing a child at the bottom of a
v-structure makes its parents become inter-dependent.

As another example of explaining away, suppose we toss two coins, representing the binary numbers 0 and 1, and
we observe the “sum” of their values. A priori, the coins are independent, but once we observe their sum, they become
coupled (e.g., if the sum is 1, and the first coin is 0, then we know the second coin is 1).

Now we will summarize these 3 cases into theBayes Ball Algorithm. To check ifxA ⊥ xB|xC we need to check
if every variable inA is d-separatedfrom every variable inB conditioned on all vars inC. (This is like regular
graph separation, but takes the direction of the edges into account.) In other words, given that all the nodes inxC

are clamped, when we wiggle nodesxA can we change any of the nodexB? The Bayes-Ball algorithm is a such a
d-separation test. We shade all nodesxC , place balls at each node inxA (or xB), let them bounce around according to
some rules, and then ask if any of the balls reach any of the nodes inxB (or xA). The three cases we considered tell
us rules, which are shown in Figure 7. Notice balls can travelopposite to edge directions.

We also need the boundary conditions, which are shown in Figure 8. Note that one consequence of these boundary
conditions is that if we have a v-structureX→Y←Z, and any ofY ’s descendants is observed, thenX andZ become
coupled. To see why, letY Y be a descendant ofY , and supposeP (Y Y |Y ) is deterministic and one-to-one. Then if
we observeY Y , we effectively observeY as well, so the parentsX andZ have to compete to explain this.
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Figure 8: Bayes ball boundary conditions. A curved arrow means the ball “bounces back”.
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Figure 9: Two examples of Bayes ball algorithm

Two examples of the Bayes ball algorithm are shown in Figure 9. In the first one, we ask

x1 ⊥ x6|{x2, x3} ? (26)

The answer is yes, since 2 and 3 block 1 from 6. In the second one, we ask

x2 ⊥ x3|{x1, x6} ? (27)

The answer is no, since 6 is observed so passes the ball on from2 to 5 and then to 3.
Let us formalize the Bayes ball algorithm. We sayX1−X2 · · ·−Xn is anactive path in a DAGG given evidence

E if

1. Whenever we have a v-structure,Xi−1 → Xi ← Xi+1, thenXi or one of its descendants is inE; and

2. no other node along the path is inE

We also sayX is d-separatedfrom Y givenE if there is no active path from anyx ∈ X to anyy ∈ Y givenE. Then
we have

Theorem 1 xA ⊥ xB |xC if every variable inA is d-separated from every variable inB conditioned on all the
variables inC.

4 Graph manipulations
Sometimes it is useful to be able to reverse arcs in a DGM. In order to do so safely, we have to ensure the new graphG′

does not contain any conditional independence assertions that were not present inG. For example, consider Figure 10.
We see thatA is not independent ofE givenD in graphG, written 6 IG(A, E|D), because of theA→D→B→E path.
When we reverse theD→E arc, we lose this path, so to be safe, we add theA→E arc explicitly toG′. Similarly
6 IG(C, D|E) so we add theC→D arc explicitly toG′.

Another useful operation is to marginalize out a variable. Consider Figure 11 where we marginalize outH in the
middle. LetG′ be the resulting graph. We need to add extra edges toG′ to ensure it does not represent any conditional
independence assertions that we not present inG. Clearly all ofH ’s children become dependent, because of explaining
away. Also, all ofH ’s children inherit all ofH ’s parents, as an indirect cause. The resulting graph without theH
“bottleneck” node is obviously much more densely connected. Thus we see thathidden (latent) variables can be
used to simplify many models.
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Figure 10: We reverse the arc fromD to E, and have to add edgesA→E andC→D to compensate.

H

17 parameters
59 parameters

Figure 11: Example of node elimination. Marginalizing outH from the graph on the left results in the graph on the right. Ifall
nodes are binary and all CPDs are tabular, the total parameter counts for the two models are 17 and 59.

5 Probabilistic expert systems
Because of their intuitive nature, it is possible to construct DGMs (or at least the graph structure) by hand, using expert
knowledge. The results are sometimes calledprobabilistic expert systems, since they can be used to encode “rules”,
but they allow for exceptions.2 Below we give some examples from the field of medicine.

5.1 Alarm net

Figure 12 shows thealarm network , that was used to model Intensive Care Unit (ICU) monitoring. The structure
and parameters of the network were specified by human experts(we discuss how to learn the parameters and structure
later). At test time, some of these nodes are observed, and the network is used to infer the values of other nodes. (This
is an example of state estimation, which is discussed further below.)

5.2 QMR

Figure 14 shows thequick medical reference (QMR)network. Thebipartite graph structure shows how diseases
cause symptoms. The structure and parameters of the networkwere specified by human experts (doctors) by a process
calledknowledge elicitation.

In QMR, all nodes are binary. However, since many of the leaves (symtpoms) have high fan-in (i.e., many parents),
the number of parameters that would be needed to represent the CPDs in tabular form would be prohibitive. Consider
a leafX with parentsU1:n. A CPT requiresO(2n) parameters, since it can model arbitrary interactions amongs the
parents. A simpler approach, that needsO(n) parameters, would be to use logistic regression, i.e.,p(X = 1|u1:n) =
σ(wT ~u).

However, the approach actually used in QMR was to usenoisy-OR CPDs. This is similar to logistic regression,
but is restricted to binary nodes. Specifically, the noisy-or assumption is that if a parent is “on”, then the the child
will also be on (since it is an or-gate), but the link from eachparentui to child may fail independently at random with
probabilityqi. Put another way,λi = 1−qi is the probability thatui alone is sufficient to turnX on if all other parents
were off.

2The existence of exceptions is what makes logic-based expert systems so fragile. For example, rain does not always causethe grass to be wet,
because e.g., the grass may be covered by a tarp, the grass maybe indoors, etc. Rather than writing a rule for every exception, probabilistic systems
simply model such exceptions as “noise”, and just try to capture the main effects. Consequently they are often simpler and more robust.
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Figure 12: Alarm network.

U1 U2 P (X = 0|U1, U2) P (X = 1|U1, U2)
0 0 1 0
1 0 q1 λ1 = 1− q1

0 1 q2 λ2 = 1− q2

1 1 q1q2 1− q1q2 = λ1 + λ2 − λ1λ2

Figure 13: Noisy-or CPD for 2 parents. Note that this is not a linear function of the parameters.

If we observe thatX = 1 but allui = 0, then this contradicts the model. Hence we add a dummyleak nodewhich
is always on,u0 = 1, and we defineλ0 to be the probability thatX turns on for some reason that cannot be explained
by the parentsu1:n; hence the leak node represents “all other causes”. Hence the noisy-or model is

P (X = 0|U1:n) =
∏

i:Ui=1

qi =
∏

i:Ui=1

(1− λi) (28)

For example, Figure 13 shows the CPD for 2 parents. In the caseof QMR, theqi parameters were specified by hand.
At test time, the goal is to infer the diseases given the symptoms. Some of the symptoms are not observed, and

therefore may be removed, since they do not convey any information about their parents (the diseases); this is called
barren node removal.

5.3 Pedigree trees

Finally we consider an example that is not usually considered a probabilistic expert system, but has much in common
with them, in the sense that the structure of the model is quite complex, but all the (hidden) variables are discrete, and
the parameters are simple and usually assumed to be known. Thus the key problem isstate estimationrather than
parameter estimation or model selection.
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Figure 15: Genetic pedigree tree. Source: [KF06].

Suppose we are interested in inferring someone’s blood typegiven observations of the blood types of relatives.
Let Bi ∈ {a, b, o, ab} be the blood type (phenotype) of personi. Let the (unobserved)genotypeof personi be
Gi ∈ {a, b, o} × {a, b, o}, which represents the alleles inherited from the mother andfather. If we observei’s
bloodtype, we can infer their genotype, and hence their parents’ genotype, and hence we can predict the bloodtype of
relatives ofi. (We reason from effects to causes to effects.)

Consider the family tree in Figure 15(a). This can be converted into a Bayes net as shown in Figure 15(b). This
network has two kinds of connections:Gp → Gi ← Gm, which models how the genotype of personi depends on
their motherGm and fatherGp; andGi → Bi, which models how the genotype causes the phenotype. Mendels laws
defineP (Gi|Gp, Gm). The phenotypic expression specifiesP (Bi|Gi): see Figure 16. Note that althoughP (B|G)
is deterministic, it is many-to-one, and hence hard to invert. That is, if you knowBi, you cannot (usually) uniquely
infer Bi. However, we can perform probabilistic inference to estimate the genotype givenN observed bloodtypes,
p(Gi|b1:N ).
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G P (B = a) P (B = b) P (B = o) P (B = ab)
a a 1 0 0 0
a b 0 0 0 1
a o 1 0 0 0
b a 0 0 0 1
b b 0 1 0 0
b o 0 1 0 1
o a 1 0 0 0
o b 0 1 0 0
o o 0 0 1 0

Figure 16: CPD which encodes mapping from genotype to bloodtype. This is a deterministic, but many-to-one, mapping. For
example, A dominates O, so if a person has genotype AO or OA, their phenotype will be A. But AA also produces blood type A.
So if we observeBi = A, there are 3 possible genotypes:Gi = AA, AO or OA; we can use the blood types of relatives to help
disambiguate the evidence.

6 Plate notation
DGMs are widely used to representhierarchical Bayesian models. These are models in which the parameters are
linked together in some way; this allows us toborrow statistical strength across related subproblems, especially from
data rich problems to data poor ones. We will see examples of this later.

From a Bayesian point of view, parameters are random variables, and are therefore just nodes in the graph. The only
difference between the parametersθ and the other random variablesx is that there are a fixed number of parameters
(assuming the model is a parametric model3), butND other random variables, whereN is the number of data cases,
andD is the number of variables. Another difference is that parameters are never observed. The other variables may
be observed, or they may behidden. If they are sometimes hidden and sometimes observed, we saywe havemissing
data. If they are always hidden, we say they arelatent variables. Thus the difference between a latent variable and
a parameter is again that there are a fixed number of parameters but there may be many latent variables per data case.
We shall study latent variable models later.

Given a data setD = (x1, . . . , xN ). we usueally assume that the elements in a data set areexchangeable, i.e., the
order of the indices does not matter:

p(x1, . . . , xN ) = p(xπ(1), . . . , xπ(N)) (29)

for anypermutation π. de Finetti’s theoremsays that (roughly speaking) data is exchangeable iff it is conditionally
independent given some parameter vectorθ:

p(x1:N ) =

∫

∏

n

p(xn|θ)p(θ)dθ (30)

where we get to choose the form of the parametric modelp(xn|θ), and the parameter priorp(θ). This means that the
assumption of exchangeability implies the existence of some prior distribution.

This factorization of the joint distribution ofp(θ, D) can be represented as a tree structured DGM, withθ as the
root, and thexn as the leaves: see Figure 17(a). However, since this “motif”occurs so often, it is convenient to
develop somesyntactic sugarfor it. Platesare little boxes we can draw around variables to represent that they are
repeated, and that each one shares any common parents outside the box. See Figure 17(b). This notation can be used
to concisely define quite complex models. We give some examples below.

3The definition of aparametric model is one which has a constant number of parameters independentof the data sizeN . A non-parametric
model still has parameters, but the number of such parameters can grow as a function ofN [? , p88]. An example is kernel density estimation or
Gaussian processes. Asemi-parametric modelis one in which some parts are parametric, and others non-parametric.
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Figure 17: (a) Data pointsxi are conditionally independent given parameterθ. (b) Plate notation for (a). The box representsN

repetitions of the structure inside.

Figure 18: Plate notation for classification/ regression. (a) Training a generative classifier. Thexn andyn nodes are shown shaded,
since they are observed in the training set. (b) Plate notation for (a). The box representsN repetitions of the structure inside. (c)
Discriminative classifier. (d) Applying a generative classifier to test casex∗.

6.1 Classification/ regression

Recall that in classification and regression, we fit a model toa training set of iid input/ output pairs,D = (xn, yn). If
we use a generative model, the likelihood becomes

p(D|θ) =

N
∏

n=1

p(yn|θy)p(xn|yn, θx) (31)

If we assume the parameters of the class priorθy and the class conditional densitiesθx are independent, we get the
Bayes net in Figure 18(a). We can redraw this with plate notation as in Figure 18(b).

Learning the parameters of a discriminative model is very similar: we simply reverse the arc fromy to x, so now
we need to specifyp(y|x, θy) andp(θy). However, we do not need to specifyp(x) or θx, since this is a conditional (dis-
criminative) model, in which we assume thexn are fixed constants that are always observed (exogeneous variables).
See figure 18(c).

We can interpret the difference between full Bayesian prediction and the simpler plug-in principle using pictures.
To predict future outputsy∗ given future inputs~x∗ and the training dataD, probability theory tells us

p(y|~x, D) =

∫

p(y|~x, θ)p(θ|D)dθ (32)
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This amounts to integrating out the nuisance variablesθx, θy in Figure 18(d). A common approximation is to use a
point-estimate to the parameter posterior

p(θ|D) ≈ δ(θ − θ̂MAP ) (33)

where
θ̂MAP = arg max

θ
p(D|θ)p(θ) (34)

and then use this as aplug-in estimatefor the predictive density

p(y|x, D) ≈ p(y|x, θ̂) (35)

This approximation is reasonable if the posterior over parameters is well peaked at the MAP estimate. This amounts to
setting the nuisance variablesθ = (θx, θy) in Figure 18(d) to their MAP estimate, based on the training set, and then
treating them as observed (known) when applied to the testing set. This requires preventing information from flowing
backwards from~x∗ to θx andθy, since the assumption is thatθ is estimated only based on the training data. Allowing
the test set inputs to be used in the learning stage is calledtransductive learning. Obviously such a model can do
better at predicting the test data, but it runs a greater riskof overfitting.

6.2 Nested plates

It is possible to “nest” plates one (partially) inside the other, as shown in Figure 19. This example, the first one in
the BUGS manual4, is an example of a hierarchical Bayesian analysis of Gaussian data. The data,yij , represent the
weight of thei’th rat measured at agexj . The CPDs of the bottom-most nodes are

yij ∼ N (µij , τc) (36)

µij = αi + βi(xj − x) (37)

So the mean weight is modelled as a deterministic (linear) function of time. Note that the input/ covariatexj is shared
across ratsi and hence is outside thei plate, and the coefficientsαi andβi are shared across timej and so are outside
of thej plate. Only the meanµij and datayij are doubly indexed and hence inside both plates.

7 Parameter estimation from fully observed data
Parameter estimation in DGMs is particularly easy if we maketwo assumptions: (1) thecomplete dataor completely
observed dataassumption, which means that all random variables (except the parameters) are fully observed in every
data case; and (2) theglobal parameter independenceassumption, which means that the parameters for each CPD
are apriori independent. Given these two assumptions, it iseasy to see that the parameter posterior is also factorized,
and hence we can estimate the parameters for each CPD separatelt.

For example, consider the generative classifier in Figure 18(a). If we assume the parameters are a prior indepen-
dent,θx ⊥ θy, then it is easy to see thatθx ⊥ θy|D, since the data d-separatesθxfromθy (because it is fully observed!).
Hence the posterior factorizes

p(θ|D) ∝ p(D|θ)p(θ) (38)

= [p(y1:N |θy)p(θy)][p(x1:N |θx, y1:N)p(θx)] (39)

∝ p(θy|y1:N )p(θx|x1:N , y1:N) (40)

Soθy can be estimated just from the class labelsy1:N , andθx can be estimated fromxn, yn pairs.
If the parent nodesy are discrete, then the parameter vector for the child,θx, can have a different value for each

value of the parent; we shall denote this asθx|y. (In the context of generative classifiers, these would be called
the parameters of theclass conditional densities.) If we assumelocal parameter independence, which means the
parametersθx|y are independent, then we can separately estimateθx|y for each possible value ofy.

4BUGS stands for “Bayesian updating using Gibbs Sampling” and is a very popular sofware package for hierarchical Bayesian modeling. See
http://www.mrc-bsu.cam.ac.uk/bugs/.
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Figure 19: The rats model

For example, supposey is binary, andx is 1D Gaussian. Let us assume global and local parameter independence.
GivenN iid cases, the complete probability model becomes

p(x1:N , y1:N , θy, θx) = p(θy)p(θx|0)p(θx|1)

N
∏

n=1

p(yn|θy)p(xn|yn, θx) (41)

=

[

p(θy)

N
∏

n=1

p(yn|θy)

] [

p(θx|0)
∏

n:yn=0

p(xn|yn, θx|0)

] [

p(θx|1)
∏

n:yn=1

p(xn|yn, θx|1)

]

(42)

= [p(Dy|θy)p(θy)]
[

p(Dx|0|θx|0)p(θx|0)
] [

p(Dx|1|θx|1)p(θx|1)
]

(43)

whereDy is all the data needed to estimateθy, whereDx|0 is all the data needed to estimateθx|0, etc. Since the
likelihood and prior both factorize into a product of local terms, so does the posterior. Hence we can estimate each
parameter vector separately. For example, suppose the variance is known but the mean is unknown, soθx|y=c = µc.
If p(µc) ∝ 1 is a flat prior, we can use the MLE:

µ̂ML
c = argmax

µ
p(Dx|c|µ) =

1

Nc

∑

n:yn=c

xn (44)

whereNc is the number of cases that are labeled with classc.
If some of the variables havemissing values, and/or there arehidden (latent) variables, then the data no longer

d-separates the parameters. Hence the parameter posteriors are no longer independent, and we must use more so-
phisticated methods, such asEM or gradient descentfor MLE/MAP estimation, orGibbs samplingor variational
methodsfor Bayesian estimation.

15



Figure 20: Surgical intervention onX. Source: [D05].

8 Causal interpretation of DGMs
DGMs are a very useful framework for makingcausal models[Pea00, SGS00]. These are (probabilistic) models
which compactly encode the effects ofinterventions. A perfect intervention means setting a variable to some known
value, say settingXi to xi. We need some notational convention to distinguish this from observing thatXi happens
to have valuexi. We use Pearl’sdo calculusnotation (as in the verb “to do”) and write do(Xi = xi) to denote the
event that we setXi to xi. A causal model defines a joint distributionp(x), which can be used to make inferences of
the formp(x|(Xi = xi)), which is different from making inferences of the formp(x|Xi = xi).

To understand the difference between conditioning on interventions and conditioning on observations, consider a
2 node DGMS→Y , in which S = 1 if you smoke andS = 0 otherwise, andY = 1 if you have yellow-stained
fingers. If I observe you have yellow fingers, I am licensed to infer that you are probably a smoker (since nicotine
causes yellow stains):

p(S = 1|Y = 1) > p(S = 1) (45)

However, if I intervene andpaint your fingers yellow, I am no longer licensed to infer this, since I have disrupted the
normal causal mechanism. Thus

p(S = 1|do(Y = 1)) 6> p(S = 1) (46)

One way to model perfect interventions is to usegraph surgery: simply cut the arcs coming into any nodes that
were set by intervention. See Figure 20 for an example. A realworld example of such a perfect intervention is agene
knockout experiment, in which a gene is “silenced” (i.e., forced to enter the “off” state).

To reason about the effects of interventions, just perform graph surgery and then perform probabilistic inference
in the resulting “mutilated” graph. We state this formally as follows.

Theorem 2 (Manipulation theorem [Pea00, SGS00]). To computep(Xi|do(Xj)) for sets of nodesi, j, perform
surgical intervention on theXj nodes and then use standard probabilistic inference in the mutilated graph.

8.1 Simpson’s paradox

We will show a dramatic example of the dangers of not thinkingcausally. Suppose taking a drug (causeC) decreases
recovery rate (effectE) in females (F ) and males (¬F )

P (E|C, F ) < P (E|¬C, F )

P (E|C,¬F ) < P (E|¬C,¬F )

but in the combined population, the drug increases recoveryrate

P (E|C) > P (E|¬C)
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By the rules of probability, this is perfectly possible, as the table of numbers below shows.
Combined Male Female

E ¬E Total Rate E ¬E Total Rate E ¬E Total Rate
C 20 20 40 50% 18 12 30 60% 2 8 10 20%
¬C 16 24 40 40% 7 3 10 70% 9 21 30 30%

Total 36 44 80 25 15 40 11 29 40

p(E|C) = p(E, C)/p(c) = 20/40 = 0.5 (47)

p(E|¬C) = 16/40 = 0.4 (48)

p(E|C, F ) = 2/10 = 0.2 (49)

p(E|¬C, F ) = 9/30 = 0.3 (50)

p(E|C,¬F ) = 18/30 = 0.6 (51)

p(E|¬C,¬F ) = 7/10 = 0.7 (52)

But the conclusion goes counter to intuition. Why? Put another way: given a new patient, do we use the drug or
not? Novick wrote “ The apparent answer is that when we know the gender of the patient, we do not use the drug,
but if the gender is unknown, we should use the drug. Obviously that conclusion is ridiculous”. (Quoted in [Pea00,
p175].)

We can resolve the paradox as follows. The statement that thedrugC causes recoveryE is

P (E|do(C)) > P (E|do(¬C)) (53)

whereas the data merely tell us

P (E|C) > P (E|¬C) (54)

This is not a contradiction. ObservingC is positive evidence forE, since more males than females take the drug, and
the male recovery rate is higher (regardless of the drug). Thus Equation 54 does not imply Equation 53.

If we assume that the drugC does not cause genderF , as in Figure 21(left), then we can prove that if taking the
drug is harmful in each subpopulation (male and female), then it must be harmful overall. Specifically, if we assume

p(E|do(C), F ) < p(E|do(¬C), F ) (55)

p(E|do(C),¬F ) < p(E|do(¬C),¬F ) (56)

then we can show
p(E|do(C)) < p(E|do(¬C)) (57)

The proof is as follows [Pea00, p181]. First we assume that drugs have no effect on gender

p(F |do(C)) = p(F |do(¬C)) = p(F ) (58)

Now using the law of total probability,

p(E|do(C)) = p(E|do(C), F )p(F |do(C)) + p(E|do(C),¬F )p(¬F |do(C)) (59)

= p(E|do(C), F )p(F ) + p(E|do(C),¬F )p(¬F ) (60)

Similarly,

p(E|do(¬C)) = p(E|do(¬C), F )p(F ) + p(E|do(¬C),¬F )p(¬F ) (61)

Since every term in Equation 60 is less than the corresponding term in Equation 61, we conclude that

p(E|do(C)) < p(E|do(¬C)) (62)
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Figure 21: Two versios of the Simpson’s paradox. Left: F is gender and causes C. Right: F is blood pressure and is caused by C.

To assess the effect ofC on E, we have to take into account that there is abackdoor path from E to C via F .
Pearl [Pea00, p79] proves that you have to adjust for (i.e., condition on) such backdoor variables. Intuitively, we need
to be sure the effect ofC on E is not due to their common cause,F . Thus we should check theC→E relationship
for each value ofF separately. In this example, the drug reducesE in both tables, so we should not take the drug
regardless of gender.

Now consider a different cover story. Suppose we keep the data the same but interpretF as something that is
affected byC, such as blood pressure. ThusF is now caused byC: see Figure 21(right). In this case, we can no
longer assume

p(F |do(C)) = p(F |do(¬C)) = p(F ) (63)

and the above proof breaks down. Sop(E|do(C)) − p(E|do(¬C)) may be positive or negaitve.
To assess the effect ofC onE, we should look at the combined(C, E) table. We should not condition onF , since

there is no backdoor path in this case. More intuitively, conditioning onF might block one of the causal pathways.
In other words, by comparing patients with the same post-treatment blood pressure, we may mask the effect of one of
the two pathways by which the drug operates to bring about recover.

Thus we see that different causal assumptions lead to different actions. In this case, the models require distin-
guishing the direction of arcs into/ out of the latent variableF , so we need prior domain knowledge to choose the right
one.

8.2 Markov equivalence

X → Y andX ← Y represent the same set of conditional independence statements (namely, none) and hence are
calledMarkov equivalent. However, thev-structure X→Y←Z encodesX ⊥ Z andX 6⊥ Z|Y , so is not Markov
equivalent.

We can represent an equivalence class using aPDAG (partially directed acyclic graph), akaessential graph
in which edges some edges are directed and some undirected. The undirected ones represent reversible edges; any
combination is possible so long as no new v-structures are created. The directed edges are calledcompelled edges,
since changing their orientation would change the v-structures and hence change the equivalence class (see Figure 23).
For example, the PDAGX − Y − Z represents{X→Y→Z, X←Y←Z, X←Y→Z} which encodesX 6⊥ Z and
X ⊥ Z|Y . See Figure 22.
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Figure 22: PDAG representation of Markov equivalent DAGs. Source:[D05]

Figure 23: The 3 rules for inferring compelled edges in PDAGs. Source: [D05].

Theorem 3 (Verma and Pearl [VP90]) Two structures are Markov equivalent if they have the same undirected skele-
ton and the same set of v-structures.

9 Structure learning (model selection)*
Structure learning means inferring the graph structure given data. The simplest approach is to try to find a single best
graph

G∗ = arg max
G

score(G) (64)
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Figure 24: Top left: the “cancer network”, from [FMR98]. (a-d) are Markov equivalent. (c-g) are equivalent under an intervention
onB. (h) is the unique member under an intervention onA. Based on [TP01b].

Some possibilities for thescoring function include penalized likelihood criteria5 such as MDL/BIC, or the (unnor-
malized) Bayesian posterior

p(G, D) = p(G)p(D|G) = p(G)

∫

p(D|G, θ)p(θ|G)dθ (65)

wherep(D|G) is called the marginal likelihood.
Alternatively, we may seek a sample of graphs from the posterior, p(G|D). The reason a sample may be better

than a point estimate is that there may be many graphs that have similar posterior probability, especially if|G| � |D|.
These graphs differ in various ways; by looking at a sample, we can find the features they have in common.

Structure learning can be used to uncover gene regulatory networks from microarray expression data, social net-
work structure from email traces, etc. We discuss this later.

9.1 Inferring causal structure

An important problem in causal inference is learning the causal newtork structure from data. Suppose we had an
infinite data set. Then we could perfectly determine whetherA ⊥ B|C for any set of nodesA,B andC given the data.
That is, we could simulate a conditional independency testoracle. Given such an oracle, we can identify all of the
v-structuresA→C←B, since they have a unique statistical signature of the formA ⊥ B andA 6⊥ B|C. The direction
of the remaining edges will be ambiguous (since “correlation does not imply causation”), but by using the rules for
compelling edges, we can infer some of their directions, too.

Even given an oracle, we can only identify the structure up toMarkov equivalence. To distinguish between such
members, we need to perform interventions: “no causation without manipulation”. Essentially every time we perform
a perfect intervention on a node, we are able to orient all edges into and out of that node. The result is called an
intervention equivalence class. Thus by using a conditional independency test oracle to getthe PDAG and then
performing the “right” interventions, we can uniquely recover the generating DAG [TP01b, TP01a, EGS05]. See
Figure 24 for an example.

Algorithmically, there are essentially two approaches to learning causal structure. The first is called theconstraint
based approach. It is essentially a deductive approach: we use a conditional independency test (with some fixed
threshold) to answer yes or no to questions of the formA ⊥ B|C for all setsA, B, C in increasing size ofC. We
then construct a PDAG that is consistent with these results.The second approach is to use standardBayesian model
selectiontechniques. It is essentially an inductive approach. We define a hypothesis space of DAGs, and evaluate their
score (e.g., posterior probability) and return the “best”.Since the hypothesis space is exponentially large, we need to
combine the scoring function with search techniques. Although this is less computationally efficient than constraint
based approaches, the Bayesian approach has the advantage that it can combine weak sources of evidence in a coherent

5We cannot use maximum likelihood, since that will always favor the fully connected graph.
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fashion. The constraint based approach, on the other hand, relies on hard thresholding at the very first stage, and can
never recover from errors made at this stage.

If there arehidden common causes(i.e.,confounders), then both techniques may learn the wrong structure. For
example, if the true structure isA←C→B, whereC is a hidden common cause, then if we don’t observeC, the best
we can do is to learn the correlation betweenA andB.
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