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1 Introduction

One of the key assumptions needed to make probabilistic lImoflarge numbers of random variables@ditional
indepedence Recall that ifX; is conditionally independent of ; given X, written X; L X;| X}, it means

(X, X5 Xk) = p(Xs| Xp)p(X;| X) 1)

which basically means thaf; and X; do not directly influence each other, but that their influeiscenediated via
Xi. (Note thatX;,X; and X, can besetsof variables.) Another way of saying this is thait 1 X ;| X}, iff the joint
factorizes as follows

p(Xs, X1 Xk) = f(Xi, Xo)g(X;, X) ()

for some functiong andg.

Probabilistic graphical models are a way of representing conditional independence assumspising graphs.
Nodes represent random variables &k ofedges represent conditional independence assumpticasyay which
we will define below. There are many kinds of graphical modet, the two most popular aBayesian (belief)
networks!, which are based odirected acylic graphs (DAGs) andMarkov networks, akaMarkov random fields
(MRFs), which are based oandirected graphs In a directed graphical model (DGM), we can (informallynth
of an edge from nodg; to nodeX; as meaningX; “causes” or “directly influencesX;, whereas in an MRF, edges
represent correlation rather than causation. In this emnawe focus on directed graphs.

2 Example networks
The easiest way to understand DGMs is to consider a few exampl
2.1 Water sprinkler

It is common when building DGMs to interpret an edge froto j as meaningX; causesX;. This can be used as
the basis for a theory of causality, as discussed in Sectidfid8vever, in the more “vanilla” statistical use of these
models, the edges (or lack thereof) simply encode conditimdependence assumptions. We give the details below,
but the basic idea is that a node is independent of its noocedésints given its parents.

Let us consider the “water sprinkler” example in Figure lichldefines a joint distribution over 4 binary variables,
representing whether it is cloudy or not (C), whether it isirag or not (R), whether the water sprinkler is on or not
(S), and whether the grass is wet or not (W). Clouds causegaithere is an arc from C to R. Sprinklers are usually
turned on and off by hand, or by a timer, but, for the sake of &éhiample, suppose the sprinkler has a light sensor
on it, so cloudy days cause the sprinkler to turn off, and gutays cause it to turn on: hence there is an arc from C
to S. However, there is no arc between S and R, since sprinéienot cause rain or vice versa. Heritel R|C.
Also, there is no arc from' to IV, since we assume thatdoes not directly caudd’. More formally, we assume that

1There is nothing inherently Bayesian about “Bayesian neksio They are just models of probability distributions. iée we prefer the more
neutral term “directed graphical model”. However, they aidely used in Bayesian statistics as a convenient nottidevice. They are also a
useful data structure which can often be leveraged compuoély.
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Figure 1: Water sprinkler Bayes net with CPDs shown.

W L C|S, R. These two independence assumptions allow us to reprémejuint as goroduct of local factors, one
per node.

P(C,S,R,W) = P(C)P(S|C)P(R|S,C)P(W|S,R,C) chain rule 3)
= P(C)P(S|C)P(R|8,C)P(W|S, R,C) sinceS | R|C 4)
= P(O)P(S|C)P(R|8,C)P(W|S, R, sinceW L C|S,R (5)
= P(C)P(S|C)P(R|C)P(WIS, R) (6)

In general, if we number the nodés d (such a total ordering always exists, since the graph isliagywe can
write

p(X1;d) = Hp(X7|X.,“) (7)

wherer; are theparents of node:.

Each termp(X;|X,,) is called aconditional probability distribution (CPD) . In the simplest case of discrete
random variables witli states each, we can represent each CPD as a tablgofi+1) numbers, wherg; = |r;| is
the number of parents (fan-in) of noddn this case, the CPD is callectanditional probability table (CPT).

2.2 Burglar alarm

Consider the network in Figure 2. This represents a dididhwn 5 variablesy(B, E, A, J, M). The intuition behind

the model is that either burglaries or earthquakes candrigg alarm (this example is due to Judea Pearl who lives in
Los Angeles, which is prone to both of these problems). Ifalaem rings, either of your neighbors, John and Mary,
will call you at work to let you know. But sometimes they dohéar the alarm, e.gp(M = t|A = t) = 0.7 means

the probability that Mary will call you given that there is alarm is just 70%.
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Figure 2: The burglar alarm network. Source: [RN02].
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Figure 3: Two DGMs defined with different orderings. Source: [RN02].
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If we pick the “wrong” (i.e., non causal) order, we will end bpving to add extra arcs in order to not make any
false conditional independence assertions. distributRatall that a DGM asserts that a node is independent ofiits no
descendants (and hence its ancestors) given its parentsu [ick the wrong parents, they may rsatreen offyour
ancestors. This is illustrated in Figure 3. For exampleswer the orderind/, J, E, B, A (right hand side of figure).
Obviously A needsB and E as parents, since they are direct causes. But this set aitpasenot enough to screeh
off from its other ancestors] and M. Specifically, we need to add an arc frohto A sinceA t J|B, E (assuming
Figure 2 is the “true” distribution). Similarly we need tocathe M/ — A arc. The ordering/, J, E, B, A is the worst
possible, since the graph is fully connected, and hence matemake any conditional independence assertions. The
orderingM, J, A, B, E is also bad, but not as bad.

2.3 Naive Bayes classifiers

As another simple example, consider a naive Bayes classifieis asserts that the features are conditionally
independent given the class lahelThis is illustrated in Figure 4(left), which defines theldsling joint probability
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Figure 4: Naive Bayes classifier represented as a D@l the class label and; are the features. In the version on the right, the
parameters are shown explicitly.

distribution

D
p(y, 21.0) = p(y) Hp(xily) (8)

We can also make the parameters explicit, as in Figure 4jrigh

D
p(yvxl:D79) :p(y|ﬂ-)Hp(xl|y79l) (9)
i=1

If we assume the parameters are fixed (known) constantsatieayot usually explicitly represented in the model.
2.4 Markov chains
As another simple example, consider a discrete time Markainc

T
p(X1r) = p(X1) [ [ p(Xe[ Xi-1) (10)

t=2

If we assume the state space is discrete, we can repreSEpt= j|X;—1 = i) = A:(4,j) by a transition matrix;
this is just the CPT for nod&’;. If we assume the chain is time invariant, then we can useame snatrixA for all
time slices; this is an example parameter tying (and is necessary in order to define the distribution forteaty
number of noded’ using a constant number of parameters). The initial stateethain can be represented by a
probability vectorp(X;, = ¢) = m;. Thus the parameters of the model ére- (7, A). From the Bayesian point of
view, parameters are just random variables, so we can addtthéhe graph: see Figure 5. This makes explicit the
parameter tying assumption, and also the assumptiomrthatl A are independent. Obviously if we only observe one
sequence we cannot estimatesince we will only have one data point. However, if we havenyrsequences,and the
parameters are shared across sequences, they will be daaytoas we discuss below.

3 Conditional independence properties of DAGs

In this section we describe more formally how graphs encaxhelitional independence properties. For undirected
graphs, independence corresponds to simple graph sepafatit for directed graph, the story is a bit more complex,
since we need to take the direction of the edges into account.

3.1 Local markov properties for directed graphs

Thelocal Markov property says a node is conditionally independent of its non-desm@isdyiven its parents: see
Figure 6. This means that, given atofal ordering of the nodes (such an ordering always exists, since the gsaph
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Figure 6: () A node is independent of its non-descendants given ienpa (b) A node is independent of all other nodes given its
Markov blanket. Source: [RN02] Fig 14.4.

DAG), we have thai; 1 X, cq,|Xpa,;, Wherepa; are the parents of nod€; andpred; are all the other predecessors
of X, in the ordering. Hence thehain rule

N
P(Xuy) = HP(X71|X1:7:—1) (11)
1=1
simplifies to
N
P(Xyy) = [[ P(XilXx,) (12)

i=1

Each term only involves a node and its parenttaaily). Hence the model is defined in terms of a product of local
terms. We can therefore “mix and match” different kinds oD3Pand build quite complex models in a modular way.
We can show that this is equivalent to an alternative locald@aproperty, which says that a node is conditionally
independent of all others given Karkov blanket. The markov blanketis the parents, children, and childigarents
(co-parenty: see Figure 6(b). To see why this is true, partition the sad® X; and the other nodes ;. We can
partition the other node& _; in those that involveX; (namely its parent¥;, its childrenY;, and its co-parents), and



the rest of the nodeB. Then thefull conditional is given by

p(Xi| X)) = % (13)
_ p(XiyUl:nyyl:maZI:maR)
B pr(x, Ul:nyyl:myZl:myR) (14)
p(Xi|U1:n)[ij(Yj|Xi’ZJ’)]P(Ul:mZl:va) (15)
>0 P(Xi = 2|Urn) [T, p(Y;| Xs = 2, Z;)|P(Urin, Z1:m, R)
ORI p051% %) s

S p(Xs = 2lUra) [T, (Y, X = @, Z;)

so the terms that do not involvg; cancel out from the numerator and denominator. We are léft viproduct of
terms that includeX; in their “scope”. This proves that; | R|M B;, whereM B; is X;’s Markov blanket.
We can rewrite the full conditional as follows

p(X|X_i) ccp(XilPa(Xy)) [ p(¥ilPa(Y)) (17)
Yj€ch(Xq)

The key requirement for th&ibbs sampling algorithm (defined later) is that we can sample from thisritiistion.
This is easy provided each of these CPDs is conjugate. Ifdmst the case, we may need to use some other method
to sample from this distribution, such as adaptive rejacsmmpling, or the Metropolis algorithm.

3.2 Global Markov properties

By chaining together local independencies, we can inferengdobal independencies. We will start by doing this
informally by examining some examples. Then we will presenélgorithm and a formal definition.
First consider a chain structudé—Y — 7. When we condition oy, arex andz independent? We have

p(x,y,2) = p(z)p(y|z)p(z|y) (18)
which implies

p(@)p(ylz)p(z|y)

p(x,zly) = o) (19)
_ pl@yp(zly) (20)

p(y)
= plzly)p(zly) (21)

and therefore: L z|y. So observing the middle node of chain breaks it in two. Thihk as the pasty as the present
andz as the future.
Now consider the structur® <Y — 7. When we condition ory, arex andz independent?

p(@,y,2) = py)p(z|y)p(2|y) (22)
which implies
_ plx,y,2)
p(z,zly) = o) (23)
PP — oty (24)

and therefore: L z|y So observing a root node separates its children.
Finally consider av-structure X —Y 2. When we condition om, arex andz independent? We have

p(x,y, z) = p(x)p(2)p(yle, 2) (25)
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Figure 7: Bayes ball rules. A shaded node is one we condition on. I&tigean arrow with a vertical bar it means the ball cannot
pass through; otherwise the ball can pass through.

so we see that andz are marginally independentut giveny they areconditionally dependentThis important
effect is calledexplaining away (and is also known as Berkson’s paradox). Thus observingdatthe bottom of a
v-structure makes its parents become inter-dependent.

As another example of explaining away, suppose we toss tims cae@presenting the binary numbers 0 and 1, and
we observe the “sum” of their values. A priori, the coins ar@gpendent, but once we observe their sum, they become
coupled (e.g., if the sum is 1, and the first coin is 0, then wenaktine second coin is 1).

Now we will summarize these 3 cases into Beyes Ball Algorithm. To check ifx 4 | x|z we need to check
if every variable inA is d-separatedfrom every variable inB conditioned on all vars ir. (This is like regular
graph separation, but takes the direction of the edges odoumt.) In other words, given that all the nodescin
are clamped, when we wiggle nodeg can we change any of the nodg? The Bayes-Ball algorithm is a such a
d-separation test. We shade all nodes place balls at each node:ify (or x3), let them bounce around according to
some rules, and then ask if any of the balls reach any of thesiiod: 5 (or z4). The three cases we considered tell
us rules, which are shown in Figure 7. Notice balls can trappbsite to edge directions.

We also need the boundary conditions, which are shown inr€iguNote that one consequence of these boundary
conditions is that if we have a v-structuke—Y <7, and any oft”’'s descendants is observed, thErandZ become
coupled. To see why, |&tY be a descendant &f, and suppos®(YY'|Y) is deterministic and one-to-one. Then if
we observg Y, we effectively observ& as well, so the parenfs andZ have to compete to explain this.
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Figure 8: Bayes ball boundary conditions. A curved arrow means the'thalinces back”.

Xa
Xz X.
6{ ; o
~@— (O—
X3 Xs X.

3 Xs

Xa

Figure 9: Two examples of Bayes ball algorithm

Two examples of the Bayes ball algorithm are shown in Figuie ¢he first one, we ask
x1 L xgl{xa, 23} 7 (26)

The answer is yes, since 2 and 3 block 1 from 6. In the secondamask

To 1 LC3|{£C1, {Ee,} ? (27)
The answer is no, since 6 is observed so passes the ball or2ftom and then to 3.
Let us formalize the Bayes ball algorithm. We sdy— X» - - - — X, is anactive pathin a DAG G given evidence
Eif

1. Whenever we have a v-structusg;, ; — X; «— X, 11, thenX; or one of its descendants is iy and
2. no other node along the path isiin

We also sayX is d-separatedfrom Y given F if there is no active path from any< X to anyy € Y givenE. Then
we have

Theorem1 x4 L xp|zc if every variable inA is d-separated from every variable iB conditioned on all the
variables inC'.

4 Graph manipulations

Sometimes it is useful to be able to reverse arcs in a DGM.demo do so safely, we have to ensure the new géph
does not contain any conditional independence assertiahg/ere not present i#. For example, consider Figure 10.
We see that is not independent of given D in graphG, written /¢ (A, E|D), because of thd— D— B—FE path.
When we reverse th®—E arc, we lose this path, so to be safe, we add4heFE arc explicitly toG’. Similarly
Ac(C, D|E) so we add th&€'— D arc explicitly toG’.

Another useful operation is to marginalize out a variablen€ider Figure 11 where we marginalize d@iitin the
middle. LetG’ be the resulting graph. We need to add extra edgé% to ensure it does not represent any conditional
independence assertions that we not presefit i@learly all of H’s children become dependent, because of explaining
away. Also, all ofH’s children inherit all of H’s parents, as an indirect cause. The resulting graph wittheu/
“bottleneck” node is obviously much more densely connecfBaus we see thdtidden (latent) variables can be
used to simplify many models.
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Figure 11: Example of node elimination. Marginalizing oéf from the graph on the left results in the graph on the righallif
nodes are binary and all CPDs are tabular, the total parammeatats for the two models are 17 and 59.

5 Probabilistic expert systems

Because of their intuitive nature, it is possible to condtiuGMs (or at least the graph structure) by hand, using éxper
knowledge. The results are sometimes cafieababilistic expert systems since they can be used to encode “rules”,
but they allow for exception$Below we give some examples from the field of medicine.

5.1 Alarm net

Figure 12 shows thalarm network, that was used to model Intensive Care Unit (ICU) monitarifige structure
and parameters of the network were specified by human expertdiscuss how to learn the parameters and structure
later). At test time, some of these nodes are observed, antetivork is used to infer the values of other nodes. (This
is an example of state estimation, which is discussed fultblew.)

52 QMR

Figure 14 shows thquick medical reference (QMR)network. Thebipartite graph structure shows how diseases
cause symptoms. The structure and parameters of the netveoekspecified by human experts (doctors) by a process
calledknowledge elicitation

In QMR, all nodes are binary. However, since many of the lsgsgmtpoms) have high fan-in (i.e., many parents),
the number of parameters that would be needed to reprege@fbs in tabular form would be prohibitive. Consider
a leaf X with parentd/;.,,. A CPT requiresD(2") parameters, since it can model arbitrary interactions gsdime
parents. A simpler approach, that neélls:) parameters, would be to use logistic regression,p(€X, = 1|u1.,) =
o(wt').

However, the approach actually used in QMR was tonasy-OR CPDs. This is similar to logistic regression,
but is restricted to binary nodes. Specifically, the noisyassumption is that if a parent is “on”, then the the child
will also be on (since it is an or-gate), but the link from eaehentu; to child may fail independently at random with
probabilityg;. Put another way); = 1 — ¢; is the probability that:; alone is sufficient to turX on if all other parents
were off.

2The existence of exceptions is what makes logic-based esypstems so fragile. For example, rain does not always dhesgrass to be wet,
because e.g., the grass may be covered by a tarp, the gragenmalpors, etc. Rather than writing a rule for every exceptprobabilistic systems
simply model such exceptions as “noise”, and just try towagpthe main effects. Consequently they are often simplémnaore robust.
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Figure 12: Alarm network.
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Figure 13: Noisy-or CPD for 2 parents. Note that this is not a linear fiorcof the parameters.

If we observe thak = 1 but allu; = 0, then this contradicts the model. Hence we add a duteak/nodewhich
is always onyy = 1, and we define\; to be the probability thak turns on for some reason that cannot be explained
by the parents;.,,; hence the leak node represents “all other causes”. Herawoiky-or model is

PX=0Un)= [[ «= [] @-x) (28)

ZULII i:Uizl

For example, Figure 13 shows the CPD for 2 parents. In theafaZ3#IR, theq; parameters were specified by hand.

At test time, the goal is to infer the diseases given the sgmpt Some of the symptoms are not observed, and
therefore may be removed, since they do not convey any irgtiom about their parents (the diseases); this is called
barren node removal

5.3 Pedigree trees

Finally we consider an example that is not usually consilarprobabilistic expert system, but has much in common
with them, in the sense that the structure of the model iequamplex, but all the (hidden) variables are discrete, and
the parameters are simple and usually assumed to be knowrs tié key problem istate estimationrather than
parameter estimation or model selection.

10
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Figure 15: Genetic pedigree tree. Source: [KF06].

Suppose we are interested in inferring someone’s blood gyysn observations of the blood types of relatives.
Let B, € {a,b,0,ab} be the blood typephenotypg of personi. Let the (unobservedjenotypeof person: be
G; € {a,b,0} x {a,b,0}, which represents the alleles inherited from the mother fatiter. If we observe’s
bloodtype, we can infer their genotype, and hence theimgirgenotype, and hence we can predict the bloodtype of
relatives ofi. (We reason from effects to causes to effects.)

Consider the family tree in Figure 15(a). This can be comekinto a Bayes net as shown in Figure 15(b). This
network has two kinds of connection&;, — G, <« G,,, which models how the genotype of persodepends on
their motherz,,, and fatheiG,,; andG; — B;, which models how the genotype causes the phenotype. Meladed
define P(G;|G,, G,,). The phenotypic expression specifiesB;|G;): see Figure 16. Note that although{ B|G)
is deterministic, it is many-to-one, and hence hard to invéhat is, if you knowB;, you cannot (usually) uniquely
infer B;. However, we can perform probabilistic inference to estenthe genotype giveiV observed bloodtypes,
p(Gilbi:n).

11



G P(B=a) PB=0b) PB=o0) P(B=ab)
aa 1 0 0 0
ab 0 0 0 1
ao 1 0 0 0
ba 0 0 0 1
bb 0 1 0 0
bo 0 1 0 1
oa 1 0 0 0
ob 0 1 0 0
00 0 0 1 0

Figure 16: CPD which encodes mapping from genotype to bloodtype. Ehe deterministic, but many-to-one, mapping. For
example, A dominates O, so if a person has genotype AO or G, phenotype will be A. But AA also produces blood type A.
So if we observeB; = A, there are 3 possible genotyp&s; = AA, AO or OA; we can use the blood types of relatives to help
disambiguate the evidence.

6 Plate notation

DGMs are widely used to represdrierarchical Bayesian models These are models in which the parameters are
linked together in some way; this allows udatorrow statistical strength across related subproblems, especially from
data rich problems to data poor ones. We will see exampldgfater.

From a Bayesian point of view, parameters are random vasabhd are therefore just nodes in the graph. The only
difference between the parametérand the other random variabless that there are a fixed number of parameters
(assuming the model is a parametric méjldut N D other random variables, wheré is the number of data cases,
andD is the number of variables. Another difference is that patans are never observed. The other variables may
be observed, or they may béalden. If they are sometimes hidden and sometimes observed, weesagvemissing
data. If they are always hidden, we say they &tent variables. Thus the difference between a latent variable and
a parameter is again that there are a fixed number of parasietethere may be many latent variables per data case.
We shall study latent variable models later.

Given a data seb = (x1,...,xy). we usueally assume that the elements in a data sekahangeablei.e., the
order of the indices does not matter:

p(xlw"axN):p(‘xﬂ'(l)a"'axﬂ'(]\f)) (29)

for anypermutation 7. de Finetti’'s theorem says that (roughly speaking) data is exchangeable iff ibigliionally
independent given some parameter veétor

parn) = [ T]otanlo)p(o)ao (30)

where we get to choose the form of the parametric mp¢lel |#), and the parameter prigf6). This means that the
assumption of exchangeability implies the existence ofesprior distribution.

This factorization of the joint distribution f(6, D) can be represented as a tree structured DGM, &k the
root, and ther,, as the leaves: see Figure 17(a). However, since this “moti€urs so often, it is convenient to
develop someyntactic sugarfor it. Platesare little boxes we can draw around variables to represanthiey are
repeated, and that each one shares any common parentedhtsiobx. See Figure 17(b). This notation can be used
to concisely define quite complex models. We give some exasriyglow.

3The definition of gparametric model is one which has a constant number of parameters indepeotit data sizeéV. A non-parametric
model still has parameters, but the number of such parametersroanas a function ofV [? , p88]. An example is kernel density estimation or
Gaussian processes.s&mi-parametric modelis one in which some parts are parametric, and others namgric.

12
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Figure 18: Plate notation for classification/ regression. (a) Trajrargenerative classifier. The, andy,, nodes are shown shaded,
since they are observed in the training set. (b) Plate motditr (a). The box represenfs repetitions of the structure inside. (c)
Discriminative classifier. (d) Applying a generative ciiss to test case:*.

6.1 Classification/ regression

Recall that in classification and regression, we fit a modaltr@ining set of iid input/ output pair& = (x,,, yn). If
we use a generative model, the likelihood becomes

N
p(D|6) =H (Wnl0y)P(@0 |y, 0) (31)

If we assume the parameters of the class ptjoand the class conditional densitigs are independent, we get the
Bayes net in Figure 18(a). We can redraw this with plate raiats in Figure 18(b).

Learning the parameters of a discriminative model is vanjlar: we simply reverse the arc frognto =, so now
we need to specify(y|z, 6,) andp(6, ). However, we do not need to specifii) or 0., since this is a conditional (dis-
criminative) model, in which we assume thg are fixed constants that are always obserea@geneous variablés
See figure 18(c).

We can interpret the difference between full Bayesian ptéxi and the simpler plug-in principle using pictures.
To predict future outputg, given future inputs’, and the training dat®), probability theory tells us

p(y|7, D) = / p(y|7. 6)p(6]D)do (32)

13



This amounts to integrating out the nuisance variabled, in Figure 18(d). A common approximation is to use a
point-estimate to the parameter posterior .
p(9|D) ~ 5(9 — GJWAP) (33)

where R
Orap = arg meaxp(DIH)p(@) (34)

and then use this aspdug-in estimatefor the predictive density

p(ylz, D) ~ p(ylz,0) (35)

This approximationis reasonable if the posterior over ipetars is well peaked at the MAP estimate. This amounts to
setting the nuisance variablés= (6., 6, ) in Figure 18(d) to their MAP estimate, based on the trainigig and then
treating them as observed (known) when applied to the geseh This requires preventing information from flowing
backwards front, to ¢, andd,, since the assumption is thtats estimated only based on the training data. Allowing
the test set inputs to be used in the learning stage is cimiedductive learning. Obviously such a model can do
better at predicting the test data, but it runs a greatemfigiverfitting.

6.2 Nested plates

It is possible to “nest” plates one (partially) inside théet as shown in Figure 19. This example, the first one in
the BUGS manud] is an example of a hierarchical Bayesian analysis of Gansiata. The datay;, represent the
weight of thei'th rat measured at age;. The CPDs of the bottom-most nodes are

Yij N(,Uij; Tc) (36)
i = o+ Gi(x; —7T) (37)

So the mean weight is modelled as a deterministic (lineagtian of time. Note that the input/ covariate is shared
across rats and hence is outside thiglate, and the coefficients, andg; are shared across tinmjeand so are outside
of thej plate. Only the meap;; and datay;; are doubly indexed and hence inside both plates.

7 Parameter estimation from fully observed data

Parameter estimation in DGMs is particularly easy if we mskeassumptions: (1) theomplete dataor completely
observed dataassumption, which means that all random variables (exbepiarameters) are fully observed in every
data case; and (2) tiidobal parameter independenceassumption, which means that the parameters for each CPD
are apriori independent. Given these two assumptionsg#sy to see that the parameter posterior is also factorized,
and hence we can estimate the parameters for each CPD sdfparat

For example, consider the generative classifier in Figufa)18f we assume the parameters are a prior indepen-
dent,d, L 6,,thenitis easytoseeth@t L 6,|D, since the data d-separate$rom ¢, (because it is fully observed!).
Hence the posterior factorizes

p(0|D) o p(D]0)p(0) (38)
= [p(W1:n10y)p(0y)][p(21:N102, y1:8)P(02)] (39)
X p(9y|y1N)p(ea:|llNale) (40)

Sod, can be estimated just from the class labgls;, andd,, can be estimated from,, ,, pairs.

If the parent nodeg are discrete, then the parameter vector for the childcan have a different value for each
value of the parent; we shall denote thistasg,. (In the context of generative classifiers, these would beda
the parameters of thelass conditional densitieg If we assumdocal parameter independencewhich means the
parameterg, |, are independent, then we can separately estithajdor each possible value gf

4BUGS stands for “Bayesian updating using Gibbs Samplingl’iara very popular sofware package for hierarchical Bayesiadeling. See
http://ww. nrc- bsu. cam ac. uk/ bugs/ .
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Figure 19: The rats model

For example, supposegis binary, and: is 1D Gaussian. Let us assume global and local parametgréndence.
Given N iid cases, the complete probability model becomes

N
P($1;N7y1:N,9y,9z) = p(@v TlO ’I'll H yn|9 xn|yna9m) (41)

[p(%)Hp(an@y)} [p(%m) 11 p(wnlynﬁmo)] [p(ﬂm) 11 p(xnIymeu(%Z)

n=1 n:y,=0 n:yYyp=1

= [P(Dy|9y)p(9u)] [p(DT|0|9T|O)p(9T|O)} [p(Dr\1|9T|1)p(9r\1)] (43)

where D, is all the data needed to estim#tg whereD,, is all the data needed to estimdtg,, etc. Since the
likelihood and prior both factorize into a product of locatms, so does the posterior. Hence we can estimate each
parameter vector separately. For example, suppose tranearis known but the mean is unknown 650, = ..

If p(u.) x 1is a flat prior, we can use the MLE:

et = argmaxp(Dyjelp) = 5 Y- (44)

whereN., is the number of cases that are labeled with ctass

If some of the variables havaissing values and/or there arbidden (latent) variables then the data no longer
d-separates the parameters. Hence the parameter pastaeono longer independent, and we must use more so-
phisticated methods, such BM or gradient descentfor MLE/MAP estimation, orGibbs sampling or variational
methodsfor Bayesian estimation.
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Figure 20: Surgical intervention otX . Source: [DO5].

8 Causal interpretation of DGMs

DGMs are a very useful framework for makimgusal models[Pea00, SGS00]. These are (probabilistic) models
which compactly encode the effectsinferventions. A perfect intervention means setting a variable to some known
value, say settind(; to z;. We need some notational convention to distinguish thisifotoserving thafX; happens
to have valuer;. We use Pearl'slo calculusnotation (as in the verb “to do”) and write (8, = x;) to denote the
event that we sek; to x;. A causal model defines a joint distributipfi:), which can be used to make inferences of
the formp(z|(X; = z;)), which is different from making inferences of the foprf| X; = «;).

To understand the difference between conditioning onwetgiions and conditioning on observations, consider a
2 node DGMS—Y, in which S = 1 if you smoke andS = 0 otherwise, and” = 1 if you have yellow-stained
fingers. If | observe you have yellow fingers, | am licensednferi that you are probably a smoker (since nicotine
causes yellow stains):

p(S=1Y =1)>p(S=1) (45)

However, if | intervene angaintyour fingers yellow, | am no longer licensed to infer thiscgin have disrupted the
normal causal mechanism. Thus
p(S =1]do(Y = 1)) # p(S =1) (46)

One way to model perfect interventions is to gsaph surgery: simply cut the arcs coming into any nodes that
were set by intervention. See Figure 20 for an example. Awedd example of such a perfect intervention igene
knockout experiment, in which a gene is “silenced” (i.e., forced to enter the "cffate).

To reason about the effects of interventions, just perforaply surgery and then perform probabilistic inference
in the resulting “mutilated” graph. We state this formals/fallows.

Theorem 2 (Manipulation theorem [Pea00, SGS00]) To computep(X;|do(X;)) for sets of nodes, j, perform
surgical intervention on thel; nodes and then use standard probabilistic inference in thelated graph.

8.1 Simpson’s paradox

We will show a dramatic example of the dangers of not thinkdagsally. Suppose taking a drug (cad§edecreases
recovery rate (effeck) in females ¢) and males+{F)

P(E|C,F) < P(E|-C,F)
P(E|C,~F) < P(E|~C,~F)

but in the combined population, the drug increases recaatey

P(E|C) > P(E|-C)
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By the rules of probability, this is perfectly possible, hs table of numbers below shows.
Combined Male Female
E -F Total Rate| £ —F Total Rate| £ —F Total Rate
Cc |20 20 40 50%| 18 12 30 60%| 2 8 10 20%
-C | 16 24 40  40%| 7 3 10 70% 9 21 30 30%
Total | 36 44 80 25 15 40 11 29 40
p(EIC) = p(E,C)/p(c) =20/40=105 (47)
p(E|-C) = 16/40=0.4 (48)
p(E|C,F) = 2/10=0.2 (49)
p(E|-C,F) = 9/30=0.3 (50)
p(E|C,—~F) = 18/30=0.6 (51)
p(E|-C,—-F) = 7/10=0.7 (52)

But the conclusion goes counter to intuition. Why? Put aaotiay: given a new patient, do we use the drug or
not? Novick wrote “ The apparent answer is that when we knangibnder of the patient, we do not use the drug,
but if the gender is unknown, we should use the drug. Obwuathsit conclusion is ridiculous”. (Quoted in [Pea00,
pl75].)

We can resolve the paradox as follows. The statement thalrtigg” causes recoverk is

P(E|do(C))

> P(E|do(~C)) (53)

whereas the data merely tell us

P(E|C) > P(E|-C) (54)
This is not a contradiction. Observirdgis positive evidence foF/, since more males than females take the drug, and
the male recovery rate is higher (regardless of the drug)s Hguation 54 does not imply Equation 53.

If we assume that the drug does not cause gendgr, as in Figure 21(left), then we can prove that if taking the

drug is harmful in each subpopulation (male and female)) theust be harmful overall. Specifically, if we assume

p(E[do(C), F) < p(E|do(=C), F) (55)
p(Eldo(C),~F) < p(E|do(~C),~F) (56)
then we can show
p(£]do(C)) < p(E|do(=C)) (57)
The proofis as follows [Pea00, p181]. First we assume thagsihave no effect on gender
p(F|do(C)) = p(F|do(~C)) = p(F) (58)
Now using the law of total probability,
p(Eldo(C)) = p(E|do(C), F)p(F|do(C)) + p(E|do(C), ~F)p(—F[do(C)) (59)
= p(E[do(C), F)p(F) + p(E|do(C), ~F)p(~F) (60)
Similarly,
p(Eldo(=C)) = p(E|do(=C), F)p(F) + p(E|do(=C), ~F)p(~F) (61)
Since every term in Equation 60 is less than the correspgridim in Equation 61, we conclude that
p(E[do(C)) < p(E[do(=C)) (62)
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Figure 21: Two versios of the Simpson’s paradox. Left: F is gender andes C. Right: F is blood pressure and is caused by C.

To assess the effect 6f on E, we have to take into account that there isaekdoor path from E to C' via F.
Pearl [Pea00, p79] proves that you have to adjust for (iomdition on) such backdoor variables. Intuitively, we need
to be sure the effect af’ on E is not due to their common causg, Thus we should check thé— F relationship
for each value oft” separately. In this example, the drug redugem both tables, so we should not take the drug
regardless of gender.

Now consider a different cover story. Suppose we keep the ttigt same but interprét as something that is
affected byC, such as blood pressure. Thisis now caused by’: see Figure 21(right). In this case, we can no
longer assume

p(F|do(C)) = p(F|do(~C)) = p(F) (63)

and the above proof breaks down. 8@ |do(C')) — p(E|do(—C')) may be positive or negaitve.

To assess the effect 6f on E, we should look at the combingd’, E') table. We should not condition @, since
there is no backdoor path in this case. More intuitively,ditaning on F' might block one of the causal pathways.
In other words, by comparing patients with the same postiinent blood pressure, we may mask the effect of one of
the two pathways by which the drug operates to bring abowivesc

Thus we see that different causal assumptions lead to eliffexctions. In this case, the models require distin-
guishing the direction of arcs into/ out of the latent valgals, so we need prior domain knowledge to choose the right
one.

8.2 Markov equivalence

X — Y andX < Y represent the same set of conditional independence stateifmamely, none) and hence are
calledMarkov equivalent. However, thes-structure X —Y 7 encodesX L Z andX [ Z|Y, so is not Markov
equivalent.

We can represent an equivalence class usiRfPAG (partially directed acyclic graph), akaessential graph
in which edges some edges are directed and some undiredbedunlirected ones represent reversible edges; any
combination is possible so long as no new v-structures @@&ed. The directed edges are catedhpelled edges
since changing their orientation would change the v-stmestand hence change the equivalence class (see Figure 23).
For example, the PDAX — Y — Z represent{ X —Y —Z, XY 7, XY —Z} which encodesX } Z and
X L Z|Y. See Figure 22.

18



FDAG

Figure 22: PDAG representation of Markov equivalent DAGs. Source§P0

Figure 23: The 3 rules for inferring compelled edges in PDAGs. Sourb&5]].

Theorem 3 (Verma and Pearl [VP90]) Two structures are Markov equivalent if they have the sand@ected skele-
ton and the same set of v-structures.

9 Structure learning (model selection)*
Structure learning means inferring the graph structurergdata. The simplest approach is to try to find a single best
graph

G* = arg max SCoré@) (64)



7/ N\ 7/ N 7N
B c¢c B C B C B C
Z \ 7\ VRN 7\
o0 'E D E D E D E
@) (b) ©) (d)
A A A
KRN KRN N ‘_'@J
C C cC B C
N N\ N N N N N
D E D E D E E
(e) (f) (@) (h)

Figure 24: Top left: the “cancer network”, from [FMR98]. (a-d) are Markequivalent. (c-g) are equivalent under an intervention
on B. (h) is the unigue member under an interventiondorBased on [TP01b].

Some possibilities for thecoring function include penalized likelihood critefiasuch as MDL/BIC, or the (unnor-
malized) Bayesian posterior

p(G, D) = p(G)p(D|G) = p(G) /p(DIG 0)p(0|G)do (65)

wherep(D|G) is called the marginal likelihood.

Alternatively, we may seek a sample of graphs from the piwster(G|D). The reason a sample may be better
than a point estimate is that there may be many graphs thatdiavar posterior probability, especially|iff| > |D|.
These graphs differ in various ways; by looking at a sampéecan find the features they have in common.

Structure learning can be used to uncover gene regulatbmories from microarray expression data, social net-
work structure from email traces, etc. We discuss this.later

9.1 Inferring causal structure

An important problem in causal inference is learning thesehmewtork structure from data. Suppose we had an
infinite data set. Then we could perfectly determine whether B|C for any set of noded,B andC' given the data.
That is, we could simulate a conditional independencydestle. Given such an oracle, we can identify all of the
v-structuresA—C«— B, since they have a unique statistical signature of the férin B andA £ B|C'. The direction

of the remaining edges will be ambiguous (since “correfatioes not imply causation”), but by using the rules for
compelling edges, we can infer some of their directions, too

Even given an oracle, we can only identify the structure ubl#émkov equivalence. To distinguish between such
members, we need to perform interventions: “no causatidmout manipulation”. Essentially every time we perform
a perfect intervention on a node, we are able to orient aleedgto and out of that node. The result is called an
intervention equivalence class Thus by using a conditional independency test oracle talgePDAG and then
performing the “right” interventions, we can uniquely reeo the generating DAG [TPO1b, TPOla, EGS05]. See
Figure 24 for an example.

Algorithmically, there are essentially two approachegtohing causal structure. The first is called¢bastraint
based approach It is essentially a deductive approach: we use a conditiod@pendency test (with some fixed
threshold) to answer yes or no to questions of the ferm. B|C for all setsA, B, C' in increasing size of’. We
then construct a PDAG that is consistent with these restilis.second approach is to use standzaglesian model
selectiontechniques. It is essentially an inductive approach. Wendefihypothesis space of DAGs, and evaluate their
score (e.g., posterior probability) and return the “beSihce the hypothesis space is exponentially large, we reed t
combine the scoring function with search techniques. Algiothis is less computationally efficient than constraint
based approaches, the Bayesian approach has the advéuwatiaigean combine weak sources of evidence in a coherent

5We cannot use maximum likelihood, since that will alwaysofathe fully connected graph.
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fashion. The constraint based approach, on the other haliel on hard thresholding at the very first stage, and can
never recover from errors made at this stage.

If there arehidden common causesi.e.,confounderg, then both techniques may learn the wrong structure. For
example, if the true structure ¥—C— B, whereC' is a hidden common cause, then if we don’t obseryé¢he best
we can do is to learn the correlation betwetandB.
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