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Healthy levels game
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Hypothesis space
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h = (41,42,51,52)

Healthy levels of insulin/ cholestrol must lie between a minimum
and maximum. Healthy levels of a chemical presumably lie between
Zero and a maximum.



Likelihood (strong sampling)

o p(X]h) =1/|h["if all x, € h,
where |h| =s, x s,

* p(X|h) =0 if any x; outside h



Prior p(h)

e Use uninformative, but location and scale-
Invariant, prior (Jeffrey’s principle)
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This also happens to be conjugate to p(X|h).
* \We will explain this later...



Posterior predictive

p(y € C|X) = /her(y c Clh)p(h|X)dh

Since the hypothesis space Is continuous, we must use an
Integral instead of a sum...



Insert hairy math
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To compute the generalization fimction, let us suppese v 13 outside the range spammed by the examples (otherwisze
the probability of gensralization is 1). Without loss of zensrality assume 4 > (. Lat d be the distance from g to the
clozast obzerved example. Then we can compute the munsrator in Equation 1.33 by replacing » with v + o in the limits
of miegration (since we have expanded the range of the data by adding ), wielding
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And the answer Is...

N 1
ply € U|X) = = =
(1 +d1/r1)(1+do/r2).
dl—u
ry x
d; 0 if y € range of X; )

distance of y from closest X;

1Tn—1



Behavior for n=3, 6, 12

Strong Bayes

The size principle implies the smallest rectangle

f j has highest likelihood, but there are many other
* consistent rectangles which are only slightly less

likely. These get averaged to give a smooth

generalization gradient.

&
-+
+
* -
+

As N — oo, the larger hypotheses become
exponentially less likely, so we converge on the

ML solution (the most specific/ MIN hypothesis)



Behavior for different shapes

* n=3 In both cases, but on right, r, <<,
so we generalize more along dimension 2
 Algebraically, d,/r;isbig, so p(y € C| X) is
small unless y Is Inside X
 Intuitively, it would be a suspicious coincidence if
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Behavior of max likelthood/ MAP

MIN RULE (ML)

There 1s no generalization gradient
] (a point is either in or out of h).
The ML/MAP hyp. is the smallest
enclosing rectangle.
This Is a good approximation to
Bayes when N is large.




Weak sampling

o Examples are not sampled from the concept,
they are just labeled as consistent or not.

. 1 leIZ‘l ..... CEnEh
p(X|h)—{ 0 ifany z; € h

[Iabel (+,r'—)J [ concept } [ example J [ concept ]

~N N J

[ example ] [Iahel (+f—)]

Strong sampling Weak sampling



Behavior of weak Bayes

MAX SIM {Weak Bayes) Strong Bayes

(7 =\ ; We do not get convergence
W) ( j to the ML hypothesis.

| N— If truth is a rectangle, we do

not converge to It
(not a consistent estimator).




A more realistic example

A discrete hypothesis space (the number
game)

A continuous hypothesis space (the healthy
levels concept)

« \Word learning



Herme is a pog:

Can you give Mr. Frog all the other pogs?




subordinate

Hierarchical categories

Vegetables

Vehicles

Animals

basic




Human data

Example sets: Vegetables Vehicles Animals

1 subordinate

3 subordinate
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Generalize up to least common ancestor



Hypothesis space

Examplers: 1

Structure
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Hypothesis space

Derived by applying agglomerative clustering to
human similarity matrix
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Hierarchical Clustering

e Cluster based on similarities/distances

e Distance measure between instances
X" and xS

Minkowski (L) (Euclidean for p = 2)

d, b o) =[5 —xep]

r S
Xj =X

City-block distance 9e [xx*)= 21



Agglomerative Clustering

o Start with N groups each with one instance

and merge two closest groups at each
Iteration

« Distance between two groups G; and G;:
— Single-link:
dG.G, ):Xrerqn’ixgedo(xr x°)
— Complete-link:
d(G,,G.)z max d(xr,xs)

. X' G X° G

— Average-link, centroid



Example: Single-Link Clustering
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Prior/ likelihood

Cluster height Likelihood Prior probability
(within—cluster dissimilarity) (~1/height) (branch length)
i 1

.. 1
| 236 4.24 ]41?"36 181

- 208 . 481 1 236-208= 028

1 717
height(h)
p(h) = height(parent(h)) — height(h)

op(X|h) =




Strong Bayves (w/ basic—level bias)

Example sefs: Vegetables Vehicles Animals
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Word learning vs healthy levels

 |In the word domain, after about N=3 we have an "aha"
moment (rule-like learning), but for healthy levels, we
need a large sample size, because in the former, hypotheses
differ dramatically in size, so we rapidly prefer the
smallest consistent, whereas latter averages many.

Healthy levels:

densely overlapping
hypotheses
+ +

Word learning: |

sparsely overlapping anmals
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Rules and exemplars in the

number game
* Hyp. space Is a mixture of sparse
(mathematical concepts) and dense
(intervals) hypotheses.

o |f data supports mathematical rule (eg
X={16,8,2,64}), we rapidly learn a rule,
otherwise (eg X={6,23,19,20}) we learn by
similarity, and need many examples to get
sharp boundary.
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