CS340 Machine learning

Lecture 3
Classification




« HW1 is due next Monday 18th

» Discussion section (optional, but recommended -
the TAs will go over homework problems, etc.)
— T1A, 3:00 - 4:00pm Thursdays, DMP101
— T1B, 8:30 - 9:30am Tuesdays, DMP201

e This week only: extra Matlab tutorial by
Prof lan Mitchell on Wed 13th

— 9 -10am, CS x250
— 5 -6pm, DMP 301

« My office hours (changed)
— Wed 1-2pm, CS 187



Textbook

* Required textbook "Introduction to machine
earning"”, Ethem Alpaydin

« Has arrived in bookstore, $64
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Other recommended books

more advanced

20 copies on order ($90) Order yourself from Amazon etc.

Data Mining, Inference, and
Prediction
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Learning a Class from Examples

e Class C of a “family car”
— Prediction: Is car x a family car?

— Knowledge extraction: What do people expect
from a family car?

e Qutput:

Positive (+) and negative (—) examples
 Input representation:

X,: price, X, : engine power
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Multiple Classes,

Sports car
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Today we will focus on binary classification problems



Hypothesis class H

Hypothesis = rectangle, Truth = blue rectangle
o 11f h classifies X as positive
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S, G, and the Version Space

S is the smallest rectangle that contains all the +ve's.
G is the largest rectangle that excludes all the -ve's.
The version space is the set of consistent hypotheses (zero training error).

-

most specific hypothesis, S

most general hypothesis, G

: Engine power

.12

h € H, between S and G is
consistent

and make up the
version space

. . . .+ (Mitchell, 1997)
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Training set (empirical) error
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Notation: Alpaydin uses E for error, I'll use err (since E is for expectation)



Generalization error

Eerr = p(z,y)I(h(z) # y Error rate on points
Z (& y)I (k) ) sampled from R2 -
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Notation: Alpaydin uses E for error, I'll use err (since E is for expectation)



Test set error

We can approximate the generalization error by using a set of test points
drawn from the true (blue) concept
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Cross validation

Since we don't have access to the test set (by assumption),

we hold back a fraction of the training data, called a validation set, and
measure performances on that.

This gives us an estimate of the test set error EJerr].

We can repeat this K times to get an average (K-fold CV).
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FP/FN tradeoff

S and G both have zero training error, but make different errors on the test set.
S has a lower false positive rate, and G has a lower false negative rate.

-

most specific hypothesis, S

most general hypothesis, G

: Engine power

.12
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As we vary the size of the rectangle, we can change the FP/FN rate.

A receiver operating curve (ROC) plots hit rate vs false alarm rate
and measures the discriminability between +ve and -ve examples.
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Noise and Model Complexity

The true concept (green) may not be describable by a
simple rectangle.

We may still prefer a simple rectangle
hypothesis (blue) because,

e Simpler to use
(lower computational
complexity) o

« Easier to train (lower _ &
sample complexity)

e Easier to explain i S T4
(more interpretable) S

 Generalizes better . . . L




Model Selection & Generalization

Learning is an ill-posed problem; data Is not
sufficient to find a unique solution

The need for inductive bias, assumptions about H

Generalization: How well a model performs on new
data

Overfitting: H more complex than C
Underfitting: H less complex than C

Can use cross validation to estimate the
generalization abillity.



Triple Trade-Off

e There Is a trade-off between three factors
(Dietterich, 2003):

1. Complexity of H, ¢ (H),

2. Training set size, N,

3. Generalization error, Err, on new data
As NT, Errd

As ¢ (H)T, first Errd and then ErrT
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