
CS340 Fall 2006: Homework 3

Out Mon 25 Sep, back Mon 2 Oct

1 Maximum likelihood estimation of multinomials

SupposeX ∈ {1, 2} andY ∈ {1, 2, 3}. Define the joint distributionP (X = j, Y = k) = θj,k. Consider the training
dataD below

X Y
1 1
2 2
1 3
1 1
2 2
2 3

Find the maximum likelihood estimates

θ̂jk = arg max

n
∏

i=1

p(xi, yi|θ) (1)

where there aren = 6 training points. Hint: just normalize the counts! (The answer should be a2×3 table of numbers
that sum to one.)

2 Presidential debate

[Source:Bayesian Data Analysis 2nd edition (2004) p95, Gelman, Carlin, Stern and Rubin.]
On September 25, 1988, the evening of a presidential campaign debate in the USA, ABC News conducted two surveys
of voting intentions, one before and after the debate, with these results:

Survey Bush Dukakis Other
Pre 294 307 38
Post 288 332 19

Let us ignore the “other” responses. Letπj represent the fraction of voters who prefer Bush in surveyj (j = 1 is pre
debate survey,j = 2 is post debate survey). Assume that the two surveys are independent samples from the population
of registered voters. Letπj have abeta(1, 1) prior before the survey. Hence we havep(π1|S1) = Beta(295, 308) and
p(π2|S2) = Beta(289, 333), whereSj is thej’th survey. What is the probability that there was a shift towards Bush
as a result of the debate?
Answer: The probability there was a shift towards Bush is given by

p(π2 > π1|S1, S2) = EI(π2 > π1) (2)

=

∫ 1

0

∫ 1

0

p(π1|S1)p(π2|S2)I(π2 > π1)dπ1dπ2 (3)

where we have used the trick that the probability of a binary event,X = π2 > π1, is the expectation of its indicator,
EI(X), whereI(X) = 1 if X is true andI(X) = 0 otherwise. We can further simplify this integral thus

p(π2 > π1|S1, S2) =

∫ 1

0

∫ π2

0

p(π1|S1)p(π2|S2)dπ1dπ2 (4)
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which shows that we are just computing the posterior probability mass above the diagonal lineπ1 = π2.
We can approximately solve this integral usingMonte Carlo integration

E[f(θ)|D] =

∫

f(θ)p(θ|D) ≈=
1

N

N
∑

i=1

f(θi) (5)

whereθi ∼ p(θ|D) is a sample from the appropriate posterior andN is the number of samples (say, 1000).
In this case, we can use

p(π2 > π1|S1, S2) = EI(π2 > π1) (6)

≈
1

N

N
∑

i=1

I(πi
2 > πi

1) (7)

whereπi
1 ∼ Beta(295, 308) andπi

2 ∼ Beta(289, 333).
Question: implement Equation 7 in matlab. Turn in your code and numerical answer.
Hint: in the matlab statistics toolbox, you can usebetarnd to draw samples from a beta distribution. If you don’t
have the statistics toolbox, you can userandbeta from the lightspeed toolbox, which is freely available (google Tom
Minka’s web page).
Bonus: plot the exact (factored) posteriorp(π1, π2|S1, S2) on a grid of points, superimpose the lineπ1 = π2 and your
sampled points. The fraction of points lying above the line is your estimate. Use numerical integration to compute the
exact answer.

3 Bayesian concept learning

In this question, you will implement the Bayesian concept learning framework for the “number game” we discussed
in class. You are provided the following functions

• hypSpace = mkHypSpace() which creates the hypothesis space (a structure). The only field you should
need is called ’hyps’, which is a cell array. To extract the set of integers defined by the h’th hypothesis (this is
called the support or extension of the hypothesis), use the following:

hypSpace.hyps{h}

There arehypSpace.Hmath=23 mathematical hypotheses, andhypSpace.Nint =5050 interval hy-
potheses, stored in order in order of increasing size. Thus

hypSpace.hyps{24} = 1
hypSpace.hyps{25} = 2,
hypSpace.hyps{124} = [1,2]

etc.

• prior = mkPrior(hypSpace), which creates a (row) vector, in whichprior(h) = p(h), for h=1:5073.

Use these to answer the following questions

1. Write a functionlik = likelihood(hypSpace, X) which computes

lik(h) = p(X |h) =

{ 1
|size(h)|n if all x1, . . . , xn ∈ h

0 if any xi 6∈ h

wherelik is a vector, which one element for each possible hypothesis.Turn in your code.
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2. Write a functionpost = mkPost(hypSpace, X) which computes

post(h) =
p(X |h)p(h)

∑

h′ p(X |h′)p(h′)

wherepost is a vector. Turn in your code.

3. SupposeX = [32]. Compute the posteriorpost(h) = p(h|X). Plot the posterior over the mathematical
hypotheses
post(1 : 32) Turn in your plot.

4. What is the maximum a posterior (MAP) hypothesis

hMAP = argmax
h

p(h|X)

Print out the extension of hMAP (i.e. its list of integers). From the extension, you should be able to infer the
name of the “rule” that defines it. e.g., if hMAP is[2, 4, . . . , 96, 98, 100], then the rule is “even enumbers”; if
hMAP is [33, 34, 35], then the rule is “interval 33:35”. (You can also look atmkHypSpace.m to figure out the
rule from the indexh.) What is the rule corresponding tohMAP ?

5. Sort the hypotheses into decreasing order of posterior probability. What are the top 5 most probable hypotheses?
(Return their names/rules in addition to their numeric ids.) Hint: you may find the functioncelldisp helpful.

6. Draw a sample of 5 hypotheses from the posterior. Return their names/rules in addition to their numeric ids.
Please set the random number seed as shown below, to ensure everyone’s results are the same

seed = 0;
rand(’state’, seed);
randn(’state’, seed);

Hint: you can use the provided functiondata = sample discrete(prob, 1, n) to sample n points
from a discrete probability distribution.

7. Write a function to compute the posterior predictive distribution

pred(x) = p(y(x) = 1|X) =
∑

h∈H

p(y(x) = 1|h)p(h|X)

wherepred(x) is a vector, with one element for eachx = 1 : 100, X is the training data, andy(x) = 1 if x is
in the concept, andy(x) = 0 otherwise. (Obviouslyy(x) = 1 for all x ∈ X ; the goal is to generalize beyond
the training set, i.e., to predict which other numbers are inthe concept class.) Plot pred(x) as a histogram. Turn
in your code and plot.

8. What isp(y(6) = 1|X)? What isp(y(7) = 1|X)? What isp(y(8) = 1|X)?

9. Write a function to compute the maximum likelihood estimate

ĥML = argmax
h

p(X |h)

Turn in your code. What iŝhML? (Give its number and name/rule.)

10. Write a function to compute the plug-in estimate

predML(x) = p(y(x) = 1|ĥML(X))

Plot predML(x) as a histogram. Turn in your code and plot. Whyis predML worse thanpred?

11. Now repeat steps 3-10 usingX = [32, 2, 44, 64, 88, 2, 10]. Turn in your new plots and numbers. What are the
main qualitative differences when using this larger, less ambiguous sample?
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