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Abstract

Correlated binary data arise in many applications. Any analysis of this
type of data should take into account the correlation structure among the
variables. The multivariate Probit model (MVP), introduced by Ashford
and Snowden (1970), is a popular class of models particularly suitable for
the analysis of correlated binary data. In this class of models, the response is
multivariate, correlated and discrete. Generally speaking, the MVP model
assumes that given a set of explanatory variables the multivariate response is
an indicator of the event that some unobserved latent variable falls within a
certain interval. The latent variable is assumed to arise from a multivariate
normal distribution. Difficulties with the multivariate Probit are mainly due
to computation as the likelihood of the observed discrete data is obtained by
integrating over a multidimensional constrained space of latent variables. In
this work, we adopt a Bayesian approach and develop an an efficient Markov
chain Monte Carlo algorithm for estimation in MVP models under the full
correlation and the structured correlation assumptions. Furthermore, in
addition to simulation results, we present an application of our method to
the Six Cities data set. Our algorithm has many advantages over previous
approaches, namely it handles identifiability and uses a marginally uniform
prior on the correlation matrix directly.
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Chapter 1

Introduction

1.1 Motivation

Correlated discrete data, whether be it binary, nominal or ordinal, arise in
many applications. Examples range from the study of group randomized
clinical trials to consumer behavior, panel data, sample surveys and lon-
gitudinal studies. Modeling dependencies between binary variables can be
done using Markov random fields (e.g., Ising models). However, an attrac-
tive alternative is to use a latent variable model, where the observed binary
variables are assumed independent given latent Gaussian variables, which
are correlated. An example of such model is the multivariate Probit model
(MVP), introduced by Ashford and Snowden (1970). In this class of models,
the response is multivariate, correlated and discrete. Generally speaking, the
MVP model assumes that given a set of explanatory variables the multivari-
ate response is an indicator of the event that some unobserved latent variable
falls within a certain interval. The latent variable is assumed to arise from
a multivariate normal distribution. The likelihood of the observed discrete
data is then obtained by integrating over the multidimensional constrain
space of latent variables.

P (Yij = 1|Xi, β,Σ) =
∫
AiT

. . .

∫
Ai1

φT (Zi|Xi, β, R)dZ1 . . . dZT (1.1)

where i = 1, . . . , n indexes the independent observation, j = 1, . . . , T indexes
the dimension of the response, Yij is a T -dimensional vector taking values
in {0, 1}, Aij is the interval (0,∞) if Yij = 1 and the interval (−∞, 0]
otherwise, β is the regression coefficient, Σ is the covariance matrix, and
φT (Zi|Xi, β, R) is the probability density function of the standard normal
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Chapter 1. Introduction

distribution defined in A.1.
The MVP model has been proposed as an alternative to the multivariate

logistic model, which is defined as:

P (Yij = 1|Xi, β,Σ) =
exp(x′iβj)∑T
k=1 exp(x′iβk)

(1.2)

The appeal of the probit model is that it relaxes the independence of the
irrelevant alternatives (IIA) property assumed by the logit model. This
IIA property assumption states that if choice A is preferred to choice B
out of the choice set {A,B}, then introducing a third alternative C, thus
expanding the choice set to {A,B,C} must not make B preferred to A. This
means that adding or deleting alternative outcome categories does not affect
the odds among the remaining outcomes. More specifically in the logistic
regression model, the odds of choosing m versus n does not depend on which
other outcomes are possible. That is, the odds are determined only by the
coefficient vectors for m and n, namely βm and βn:

P (Yim = 1|Xi, β,Σ)
P (Yin = 1|Xi, β,Σ)

=
exp(x′iβm)/

∑T
k=1 exp(x′iβk)

exp(x′iβn)/
∑T

k=1 exp(x′iβk)
= exp(X(βm − βn))

(1.3)
In many cases, this is considered to be an unrealistic assumption (see for

example McFadden (1974)), particularly when the alternatives are similar
or redundant as is the case in many econometric applications.

Until recently, estimation of MVP models, despite its appeal, has been
difficult due to computational intractability especially when the response is
high dimensional. However, recent advances in computational and simula-
tion methods made this class of models more widely used.

Both classical and Bayesian methods have been extensively developed
for estimation of these models. For a low dimensional response, finding
the maximum likelihood estimator numerically using quadrature methods
for solving the multidimensional integral is possible, but becomes quickly
intractable as the number of dimensions T increases usually past 3.

3



Chapter 1. Introduction

Lerman and Manski (1981) suggest the method of simulated maximum
likelihood (SML). This method is based on Monte Carlo simulations to ap-
proximate the high dimensional integral to estimate the probability of each
choice. McFadden (1989) introduced the method of simulated moments
(MSM). This method also requires simulating the probability of each out-
come based on moment conditions. Natarajan et al. (2000) introduced a
Monte Carlo variant of the Expectation Maximization algorithm (MCEM)
to find the maximum likelihood estimator without solving the high dimen-
sional integral. Other frequentist methods were also developed using Gen-
eralized Estimation Equations (GEE) (eg. Chaganty and Joe (2004)).

On the Bayesian side, Albert and Chib (1993) introduced a method
that involves a Gibbs Sampling algorithm using data augmentation for the
univariate probit model. McCulloch and Rossi (1994) extended this model
to the multivariate case. The Bayesian method entails iteratively alternating
between sampling the latent data and estimating the unknown parameters
by drawing from their conditional distributions. The idea is that under mild
conditions, successive sampling from the conditional distributions produces a
Markov chain which converges in distribution to the desired joint conditional
distribution. Other work on the Bayesian side includes that of Chib and
Greenberg (1998), and more recently Liu (2001), Liu and Daniels (2006),
and Zhang et al. (2006). These methods will be examined in more detail in
Chapter 2.

Geweke et al. (1994) compared the performance of the classical frequen-
tist methods SML and MSM with the Bayesian Gibbs sampling method and
found the Bayesian method to be superior especially when the covariates
are correlated and the error variances vary across responses.

1.2 Outline

In this work we adopt a Bayesian approach for estimation in the multivariate
Probit class of models. The multinomial and the ordinal models are gener-
alizations of the binary case. The multivariate binary response is a special
case of the multinomial response with only two categories. The ordinal
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Chapter 1. Introduction

model is also a special case of the multinomial model, where the categories
are expected to follow a certain order. All the methods developed herein are
developed for the multivariate binary model, but could be easily extended
to include the multinomial and ordinal cases. The aim is to find a general
framework to estimate the parameters required for inference in the MVP
model, especially in high dimensional problems. We particularly focus on
the estimation of an identifiable correlation matrix under a full correlation
assumption and a constrained partial correlation assumption.

This thesis will be structured as follows:
In Chapter 2, we introduce the notation that will be used throughout

the thesis. We discuss the problem of identifiability in the MVP class of
models. We briefly compare several possible choices of prior distributions for
Bayesian modeling, as well as review some methods that have been proposed
in the literature to deal with identifiability and prior selection.

In Chapter 3, we detail a method for estimating an identifiable corre-
lation matrix under the saturated model. The saturated model admits a
full covariance matrix where all off-diagonal elements are assumed to be
non-zero. We show simulation results on a low dimensional and a higher di-
mensional problem. Finally, we further investigate the method, by applying
it to a widely studied data set: The Six Cities Data.

In Chapter 4, we extend the method developed in Chapter 3 to the
case where a structure on the partial correlation matrix is imposed. To
do so, we motivate the use of Gaussian graphical models and the Hyper-
inverse Wishart Distribution. We provide a general introduction to Gaussian
graphical models, and we adapt the algorithm and the priors developed in
Chapter 3 to the new framework. Throughout this chapter, we assume
that the structure of the inverse correlation matrix is known and given.
Simulation results are presented as well as an application to the Six Cities
Data set from Chapter 3.

We conclude in Chapter 5, by summarizing the work and the results.
We also discuss possible extensions, applications and future work.
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Chapter 2

The Multivariate Probit

Model

2.1 Model Specification and Notation

The multivariate Probit model assumes that each subject has T distinct bi-
nary responses, and a matrix of covariates that can be any mixture of discrete
and continuous variables. Specifically, let Yi = (Yi1, . . . , YiT ) denote the T -
dimensional vector of observed binary 0/1 responses on the ith subject,
i = 1, . . . , n. Let Xi be a T × p design matrix, and let Zi = (Zi1, . . . , ZiT )′

denote a T -variate normal vector of latent variables such that

Zi = Xiβ + εi, i = 1, . . . , n (2.1)

The relationship between Zij and Yij in the multivariate probit model is
given by

Yij =

{
1 if Zij > 0;
0 otherwise.

j = 1, . . . , T (2.2)

So that

P (Yi = 1|β,Σ) = Φ(Zi)

Zi ∼ N(Xiβ,Σ) (2.3)

where Φ is the Probit link which denotes the cumulative distribution function
of the normal distribution as defined in A.1. Here β = ( ~β1

′
, . . . , ~βT

′
) is a

p×T matrix of unknown regression coefficients, εi is a T×1 vector of residual
error distributed as NT (0,Σ), where Σ is the T ×T correlation matrix of Zi.

6



Chapter 2. The Multivariate Probit Model

1iZ 3iZ

3iY

2iZ

2iY
1iY

1iXβ

Σ 1:i n=

3iX

2iX

Figure 2.1: A graphical representation of the model in 2.3 under a full correlation
structure. Observed nodes are shaded.

The posterior distribution of Zi is given by

f(Zi |Yi, β, R) ∝ φT (Zi|Xi, β, R)
T∏
j=1

{I(zij > 0)I(yij = 1) + I(zij < 0)I(yij = 0)}

(2.4)
This is a multivariate truncated Gaussian where φT (Z) is the probability
density function of the normal distribution as in A.1.

The likelihood of the observed data Y is obtained by integrating over
the latent variables Z:

P (Yi = yi|Xi, β, R) =
∫
AiT

. . .

∫
Ai1

ΦT (Zi|Xi, β, R)dZi (2.5)
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Chapter 2. The Multivariate Probit Model

where Aij is the interval (0,∞) if Yij = 1 and the interval (−∞, 0] otherwise.
This formulation of the model is most general, since it allows the re-

gression parameters as well as the covariates to vary across categories T .
In this work, we let the covariates vary across categories, however, we con-
strain the regression coefficients β to be fixed across categories by requiring
~β1 = . . . = ~βT = ~β.

2.2 Difficulty with Multivariate Probit

Regression: Identifiability

In the multivariate Probit model, the unknown parameters (β,Σ) are not
identifiable from the observed-data model (e.g: Chib and Greenberg (1998),
Keane (1992)). This could be easily seen if we scale Z by a constant c > 0,
we get

cZ = c(Xβ + ε) (2.6)

= X(cβ) + cε (2.7)

from equation 2.2, clearly Y will have the same value given Z and given
cZ, which means that the likelihood of Y |X,β,Σ is the same as that of
Y |X, cβ, c2Σ. Furthermore, we have no way of estimating the value of c.

In order to handle this identifiability issue in MVP, restrictions need to be
imposed on the covariance matrix. In the univariate case, this restriction is
handled by setting the variance to one. However, imposing such a restriction
in the multivariate case is a little more complicated.

It is not uncommon to ignore the identifiability problem and perform the
analysis on the unidentified model and post-process samples by scaling with
the sampling variance using the separation strategy R = D−1ΣD−1, where
D is a diagonal matrix with diagonal elements dii =

√
Σii. This method is

adopted by McCulloch and Rossi (1994), and is widely used (e.g Edwards
and Allenby (2003)).

Many researchers are uncomfortable working with unidentified parame-
ters. For instance, ignoring identifiability adds difficulty in the choice of prior
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Chapter 2. The Multivariate Probit Model

distributions, since priors are placed on unidentified parameters. Therefore,
if the prior is improper, it is difficult to verify that the scaled draws are from
a proper posterior distribution. Koop (2003, p. 227) gives an empirical il-
lustration of the effect of ignoring identifiability. From simulation results,
he shows that unidentifiable parameters have higher standard errors, and
furthermore with non-informative priors there is nothing stopping estimates
from going to infinity.

McCulloch et al. (2000) address identifiability by setting the first diago-
nal element of the covariance matrix σ11 = 1. However, this means that the
standard priors for covariance could no longer be used, they propose a prior
directly on the identified parameters, but their method is computationally
expensive, and is slow to converge as pointed out by Nobile (2000). Nobile
suggests an alternative way of normalizing the covariance by drawing from an
inverse Wishart conditional on σ11 = 1 (Linardakis and Dellaportas, 2003).
The approach of constraining one element of the covariance adds difficulty
in the interpretability of the parameters and priors, and is computationally
demanding and slow to converge.

Other approaches impose constraints on Σ−1, the precision matrix. Webb
and Forster (2006) parametrize Σ−1 in terms of its Cholesky decomposition:
Σ−1 = ΨTΛΨT . In this parametrization, Ψ is an upper triangular matrix
with diagonal elements equal to 1, and Λ is a diagonal matrix. The elements
of Ψ could be regarded as the regression coefficients obtained by regressing
the latent variable on its predecessors. Each λjj is interpreted as the con-
ditional precision of the latent data corresponding to variable j given the
latent data for all the variables preceding j in the decomposition. Identifia-
bility is addressed in this case by setting λjj to 1. This approach only works
if the data follows a specific ordering, for example time series. Dobra et al.
(2004) propose an algorithm to search over possible orderings, however this
becomes very computationally expensive in high dimensions.

Alternatively, identifiability could be handled by restricting the covari-
ance matrix Σ to be a correlation matrix R (Chib and Greenberg (1998)).
The correlation matrix admits additional constraints, since in addition to
being positive semi-definite, it is required to have diagonal elements equal to
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1 and off-diagonal elements ∈ [−1, 1]. Furthermore, just as in the covariance
case, the number of parameters to be estimated increases quadratically with
the dimension of the matrix.

Barnard et al. (2000) use the decomposition Σ = DRD, and place a
separate prior on R and D directly. They use a Griddy Gibbs sampler
(Ritter and Tanner, 1992) to sample the correlation matrix. Their approach
involves drawing the correlation elements one at time and requires setting
grid sizes and boundaries. This approach is inefficient, especially in high
dimensions. Chib and Greenberg (1998) use a Metropolis Hastings Random
Walk algorithm to sample the correlation matrix. This is more efficient than
the Griddy Gibbs approach because it draws the correlation coefficient in
blocks. However the resulting correlation matrix is not guaranteed to be
positive definite, which requires the algorithm to have an extra rejection
step. Furthermore, as with random walk algorithms in general, the mixing
is slow in high dimensions.

Alternatively, some approaches use parameter expansion as described
in Liu and Wu (1999) together with data augmentation, for example Liu
(2001), Zhang et al. (2006), Liu and Daniels (2006), and others. The idea is
to propose an alternative parametrization, to move from a constrained corre-
lation space to sampling a less constrained covariance matrix and transform
it back to a correlation matrix. These approaches differ mainly with the
choice of priors and how the covariance matrix is sampled. The different
possibilities for priors will be discussed in more detail in the next section,
and an in-depth explanation of parameter expansion with data augmenta-
tion algorithm is in the next Chapter. Table 2.1 gives a summary of the
how identifiability has been handled in the Probit model.

2.3 Bayesian Inference in Multivariate Probit

Models

A Bayesian framework treats parameters as random variables and there-
fore requires the computation of the posterior distribution of the unknown

10



Chapter 2. The Multivariate Probit Model

Table 2.1: Summary of how identifiability has been handled in some previous work

Identifiability Paper
Ignored McCulloch and Rossi (1994)

Restrict σ11 = 1 McCulloch et al. (2000)
Nobile (2000)

Restrict λjj = 1 in Σ−1 = ΨTΛΨT Webb and Forster (2006)
Restrict Σ to R Barnard et al. (2000)

Liu (2001)
Liu and Daniels (2006)

Zhang et al. (2006)

random parameters conditional on the data. A straightforward application
of Bayes rule results in the posterior distribution of (β,R) where R is the
correlation matrix, β is the matrix of regression coefficients, and D is the
data.

π(β,R|D) ∝ f(D|β,R)π(β,R) (2.8)

In order to estimate the posterior distribution, a prior distribution on
the unknown parameters β and R needs to be specified. In the absence of
prior knowledge, it is often desirable to have uninformative flat priors on
the parameters we are estimating

2.3.1 Prior Specification on β

It is common to assume that a priori β and R are independent. Liu (2001)
propose a prior on β that depends on R to facilitate computations. There are
several other choices of priors in the literature on the regression coefficients
β. The most common choice is a multivariate Gaussian distribution centered
at B, with known diagonal covariance matrix Ψβ. It is typical to choose large
values for the diagonal elements of Ψβ so that the prior on β is uninformative.
This is the proper conjugate prior. In addition, without loss of generality,

11



Chapter 2. The Multivariate Probit Model

we could set B to 0

π(~β) ∼ NpT (0,Ψβ ⊗ IT ) (2.9)

where ~β is the nT -dimensional vector obtained by stacking up the columns
of the p× T regression coefficient matrix β. In this work, we constrain the
regression parameter to be constant across T .

2.3.2 Prior Specification on the correlation matrix R

To handle identifiability, we restrict the covariance matrix Σ to be a correla-
tion matrix, which means that the standard conjugate inverse Wishart prior
for covariances cannot be used. Instead, a prior needs to be placed on R

directly. However, as mentioned previously there does not exist a conjugate
prior for correlation matrices.

Barnard et al. (2000) discuss possible choices of diffuse priors on R. The
first is the proper jointly uniform prior:

π(R) ∝ 1, R ∈ <T (2.10)

Where the correlation matrix space <T is a compact subspace of the hyper-
cube [−1, 1]T (T−1)/2. The posterior distribution resulting from this prior is
not easy to sample from. Barnard et al. use the Griddy Gibbs approach
(Ritter and Tanner, 1992), which is inefficient. The approach in Chib and
Greenberg (1998) uses this prior as well. Liu and Daniels (2006) use this
prior for inference. However, they use a different prior to generate their
sampling proposal.

It is important to note that using a jointly uniform prior would not result
in uniform marginals on each rij . Barnard et al. (2000) show that a jointly
uniform prior will tend to favor marginal correlations close to 0, making it
highly informative, marginally. This problem becomes more apparent as T
increases (see Figure 2.2).

12



Chapter 2. The Multivariate Probit Model

Another commonly used uninformative prior is the Jeffrey’s prior

π(R) ∝ |R|−
(p+1)

2 (2.11)

This prior is used by Liu (2001). Liu and Daniels (2006) use it for generating
their proposal.
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Figure 2.2: Marginal prior density for r12 when T = 3 and T = 10 under the
jointly uniform prior p(R) ∝ 1, based on 2000 draws. (Figure 1 reproduced from
Barnard et al. (2000))

It has been shown that in the context of parameter expansion, this prior
helps facilitate computations. However, it suffers from the disadvantage
of being improper. Improper priors are not guaranteed to have a proper
posterior distribution and, in addition, cannot be used for model selection
due to Lindley’s paradox. Furthermore, it has been shown that the use of
improper priors on covariance matrices is in fact informative and tends to
favor marginal correlations close to ±1 (Rossi et al., 2005, Chapter 2).

Alternatively, Barnard et al. (2000) propose a prior on R such that
marginally each rij is uniform on the interval [−1, 1]. This is achieved by
taking the joint distribution of R to be:
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Chapter 2. The Multivariate Probit Model

π(R) ∝ |R|
T (T−1)

2
−1(
∏
i

|Rii|)−(T+1)/2 (2.12)

The above distribution is difficult to sample from directly. However, they
show that sampling from it can be achieved by sampling from a standard
inverse Wishart with degrees of freedom equal to ν = T+1 and transforming
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Figure 2.3: Marginal correlations obtained using the prior in 2.12 by sampling
from a standard inverse Wishart with degrees of freedom ν = T + 1

back to a correlation matrix using the separation strategy (Σ = DRD).
The proof is reproduced in Appendix B and the result is illustrated in Figure
2.3.

The marginally uniform prior seems convenient, since it is proper and we
are able to compute its normalizing constant. It does not push correlations
toward 0 or ±1 even in high dimensions. Most importantly, because it is
proper, it opens the possibility for Bayesian model selection.

However, multiplying together the distribution of Z in equation 2.4 and
the marginally uniform prior in 2.12, results in a posterior distribution that
is complicated and not easily sampled from.
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Chapter 2. The Multivariate Probit Model

Nevertheless, we show in the next chapter that the marginal prior, when
used in the context of parameter expansion, is actually computationally
convenient for sampling from the posterior distribution.
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Chapter 3

Correlation Estimation in

the Saturated Model

3.1 Introduction

As we have seen from the previous chapter, inference in the MVP model is
complicated due to the identifiability issue which requires constraining the
covariance to be a correlation matrix. There is no conjugate prior for cor-
relation matrices and therefore the posterior is not easily sampled from. In
this Chapter, we build on previous work and adopt a Bayesian approach that
uses a combination of Gibbs sampling and data augmentation. Furthermore,
we use a re-parametrization leading to an expansion of the parameter space.
This helps significantly with the computation of the posterior distribution.
We focus on R being a full T × T correlation matrix.

3.2 Parameter Expansion and Data

Augmentation

3.2.1 Data Augmentation

Data Augmentation (DA) is an algorithm introduced by Tanner and Wong
(1987), very popular in statistics, used mainly to facilitate computation.
These methods center on the construction of iterative algorithms by intro-
ducing artificial variables, referred to as “missing data” or latent variables.
These variables may or may not have a physical interpretation but are mainly
there for computational convenience.

Let Y be the observed data, and θ be the unknown parameter of interest.
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Chapter 3. Correlation Estimation in the Saturated Model

If we are interested in making draws from f(Y |θ), the idea is to find a latent
variable Z such that the joint distribution f(Y,Z|θ) is easily sampled from.
The distribution of the observed data model is recovered by marginalizing
the latent variable:

f(Y |θ) =
∫
f(Y,Z|θ)dZ (3.1)

Algorithm 3.1 Data Augmentation
At iteration i

1. Draw Z ∼ f(Z|θ, Y ) ∝ f(Y,Z|θ)

2. Draw θ ∼ f(θ|Z, Y ) ∝ f(Y,Z|θ)f(θ)

The data augmentation algorithm 3.1 iterates between an imputation
step where the latent variables are sampled and a posterior estimation step
until convergence. The samples of the unknown parameter θ could then be
used for inference.

3.2.2 Parameter Expansion for Data Augmentation

Parameter Expansion for Data Augmentation (PX-DA) , introduced by Liu
and Wu (1999), is a technique usually useful for accelerating convergence.
The idea is that if we can find an hidden parameter α in the complete
data model f(Y,Z|θ), we can then expand this model to a larger model
p(Y,W |θ, α), that would preserve the distribution of the observed data
model: ∫

p(Y,W |θ, α)dW = f(Y |θ) (3.2)

We adopt the notation used in Liu and Wu (1999), and use W instead of Z
and p instead of f to denote the latent data and the distributions under the
expanded model. To implement the DA algorithm in this setting, a joint
prior on the expansion parameter α and the original parameter of interest θ
needs to be specified such that the prior on θ is the same under the original
model and the expanded model (

∫
p(θ, α)dα = f(θ)). This can be done by

maintaining the prior for θ at f(θ) and specifying a prior p(α|θ).

17
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By iterating through the steps of algorithm 3.2, we are able to achieve a
faster rate of convergence than the DA algorithm in 3.1.

Algorithm 3.2 PX-DA Algorithm
At iteration i

1. Draw (α,W ) jointly by drawing

α ∼ p(α|θ)
W ∼ p(W |θ, α, Y ) ∝ p(Y,W |θ, α)

2. Draw (α, θ) jointly by drawing

α, θ|Y,W ∼ p(Y,W |θ, α)p(α|θ)f(θ)

3.2.3 Data Transformation

Under certain conditions, an alternative view of the PX-DA treats W as the
result of a transformation on the latent data Z induced by the expansion
parameter α (Liu and Wu, 1999, Scheme 1). For this interpretation to hold,
a transformation Z = tα(W ), needs to be defined such that for any fixed
value of α, tα(W ) is a one-to-one differentiable mapping between Z and W:

p(Y,W |θ, α) = f(Y, tα(W )|θ)|Jα(W )| (3.3)

where |Jα(W )| is the determinant of the Jacobian of the transformation Tα
evaluated at W. The algorithm is detailed in 3.3. Note that in the second
step of algorithm 3.3, α is sampled from its prior distribution.

This interpretation of the PX-DA algorithm is particularly useful in the
case of MVP regression.

3.3 Proposed Model

In the model we are proposing, we want to use PX-DA mainly to simplify
computation. We adopt the scheme described in algorithm 3.3 (correspond-
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Algorithm 3.3 PX-DA Algorithm/ Data Transformation (scheme 1)
At iteration i

1. Draw Z ∼ f(Z|Y, θ), compute W = t−1
α (Z)

2. Draw (α, θ) jointly conditional on the latent data

α, θ|Y,W ∼ p(Y, tα(W )|θ)|Jα(W )|p(α|θ)f(θ)

ing to scheme 1 in Liu and Wu (1999)).

3.3.1 Imputation Step

Let θ = (R, β), be the identifiable parameter of interest. The first step of
algorithm 3.3, involves drawing Z conditional on the identifiable parameter
θ. This is achieved by sampling from a multivariate truncated Gaussian as
in equation (2.4).

For the generation of multivariate truncated Gaussian variables, we fol-
lowed the approach outlined in Appendix D. This approach uses Gibbs steps
to cycle through a series of univariate truncated Gaussians. In each step Zij
is simulated from Zij |Zi,−j , β, R, which is a univariate Gaussian distribution
truncated to [0,∞) if Yij = 1 and to (−∞, 0] if Yij = 0. The parameters
of the untruncated distribution Zij |Zi,−j , β, R are obtained from the usual
formulae for moments of conditional Gaussians.

3.3.2 Posterior Sampling Step

Given the latent data sampled in step 1, we would like to draw (α, θ) from
its posterior distribution. In order to implement step 2 of algorithm 3.3, we
need to find an expansion parameter α, not identifiable from the observed
data model, but identifiable from complete data-model. Subsequently, we
need to define a transformation on the latent data.
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Defining the Expansion Parameter and the Transformation

If we let
Z = tα(W ) = D−1W (3.4)

or alternatively W = DZ, where D is a diagonal matrix with positive
diagonal elements dii =

√
Σii. The scale parameter D is not identifi-

able. For reasons which will become clear later, we could conveniently pick
α = (α1, . . . , αT ) to be a function of D by taking

αi =
rii

2d2
i

(3.5)

where rii is the ith diagonal element of R−1 and di is the ith diagonal element
of D.

In this case, for any fixed value of α, D is a one-to-one function of α and
tα(W ) is a one-to-one differentiable mapping between Z and W.

This choice of α is not arbitrary. It is conveniently picked so that when
combined with the prior of (R, β), the transformed likelihood, and the Ja-
cobian, it results in a posterior distribution that is easily sampled from.

The Transformed Complete Likelihood: p(Y, tα(W )|θ)|Jα(W )|

For a given α, the determinant of the Jacobian 1 resulting by going from
(Z →W ) under the transformation in 3.11 is given by:

|J : Z →W | =
∣∣∣∣ ∂(Z1, . . . Zn)
∂(W1 . . .Wn)

∣∣∣∣ (3.6)

=
∣∣(In ⊗D−1)

∣∣ (3.7)

= |D|−n (3.8)

Combining the complete likelihood in equation 2.4 with the Jacobian,
and after doing some algebra, we get:

1see a 3× 3 example in Appendix C
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p(Y, tα(W )|β,R) |J : Z →W |

= p(Y, Z|β,R)× |J : Z →W | (3.9)

= |R|−
n
2 exp

(
−1

2

n∑
i=1

(Zi −Xiβ)′R−1(Zi −Xiβ)

)
× |J : Z →W |

= |D|−n|R|−
n
2 exp

(
−1

2

n∑
i=1

(D(Zi −Xiβ))′(DRD)−1(D(Zi −Xiβ))

)

= |DRD|−
n
2 exp

(
−1

2

n∑
i=1

(Wi −XiβD)′(DRD)−1(Wi −XiβD)

)

If we define

Σ = DRD (3.10)

ε∗ = D(Z −Xβ) (3.11)

We can re-write the likelihood under the expanded data model in equa-
tion 3.10 as

p(Y, tα(W )|R, β)|Jα(W )| ∝ |Σ|−
n
2 exp tr

(
Σ−1ε∗′ε∗

)
(3.12)

The Prior: p0(α|θ)f(θ)

For Bayesian inference, we need to define a joint prior on θ = (β,R) and
α. We assume that β and R are independent a priori so that π(β,R, α) =
p0(α|R)f(R)f(β).

Under the transformation Σ = DRD, Barnard et al. (2000) showed that
if we take Σ to be a standard inverse Wishart distribution as in A.4 we can
re-write the distribution of Σ as in B.11:

π(Σ) = π(α,R)× |J : Σ→ D,R| = f(R)p(α|R) (3.13)

Where with a particular choice of parameters, namely ν = T + 1, the
distribution f(R) is as in 2.12 such as each rij is uniform on the interval
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[−1, 1]. Furthermore, the distribution of p0(α|R) is Gamma with shape
parameter (T + 1)/2 and rate parameter 1. Therefore, we are able to get
the desired prior distribution π(α|R)π(R) by sampling Σ from a standard
inverse Wishart with degrees of freedom ν = T + 1, and transforming using
Σ = DRD.

Here, we like to point out that both the prior distributions of R and β are
the same under the expanded model and the observed data model. This is
a condition required for the PX-DA algorithm. In addition, we note that R
and α are not a priori independent. The independence of these parameters
is a necessary condition only to prove the optimality of the convergence
of algorithm 3.3. In this case, their independence is not key since we are
using PX-DA mainly for the convenience in that it results in a posterior
distributions that is easily sampled from.

Posterior Distribution of (α, θ)

Now that we have specified the expanded likelihood and prior on the param-
eters of interest (R, β) and the expansion parameter α, the joint posterior
distribution of (β,R, α) conditional on the latent data can be computed:

β,R, α|Y,W ∼ p(Y, tα(W )|β,R)|Jα(W )|f(R)f(β)p0(α|R) (3.14)

where tα(W ) = Z = D−1W is the transformation of the latent data and
|Jα(W )| is the determinant of the Jacobian of going from Z →W .

We could therefore put together the likelihood in 3.12 and the marginally
uniform prior on R in 2.12, the Gamma prior on α in 3.13, and the prior on
β in 2.9, we get:

π(R,α, β|Y,W ) ∝ |Σ|−
n
2 exp tr

(
Σ−1ε∗′ε∗

)
× |R|

T (T−1)
2
−1(
∏
i

|Rii|)−(T+1)/2 ×Gamma
(
T + 1

2
, 1
)

× exp(β′ψ−1
β β) (3.15)
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where the Gamma distribution is defined as in A.2.
In order to sample from the joint posterior distribution in 3.15, we use

a Gibbs Sampling framework, where we sample β|Z,R and then sample
R,α|W . Since given R, the parameter β is identifiable, we sample it prior
to transforming the data.

Straightforward computations give the posterior distribution of β|Y,Z,R.
The normal distribution is the conjugate prior, therefore the posterior dis-
tribution of β will also follow a multivariate normal distribution with mean
parameters β∗ and covariance Ψ∗β where

Ψ∗β = Ψβ +
n∑
i=1

X ′iR
−1Xi

β∗ = Ψ∗−1
β (

n∑
i=1

X ′iR
−1Z)

The joint posterior π(R,α|Y,W, β) can be obtained from 3.15:

π(R,α|Y,W, β) ∝ |Σ|−
n
2 exp tr

(
Σ−1ε∗′ε∗

}
(3.16)

× |R|
T (T−1)

2
−1(
∏
i

|Rii|)−(T+1)/2 ×Gamma
(
T + 1

2
, 1
)

We perform a change of variable Σ = DRD:

π(Σ|Y,W, β) ∝ π(R,α|Y,W, β)× |Jα : (D,R)→ Σ|

= |Σ|−
n
2 exp tr

(
Σ−1ε∗′ε∗

}
× |Σ|−

1
2

2(T+1) exp(−1
2
tr(Σ−1))

= |Σ|−
1
2

(ν+T+1) exp(−1
2
tr(Σ−1S)) (3.17)

This is an inverse Wishart distribution with ν = n+T +1 and S = ε∗′ε∗.
The second line in the equation above is obtained by reversing the steps of
the proof in Appendix B.
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Algorithm 3.4 Full PX-DA Sampling Scheme in Multivariate Probit
At iteration i

1. Imputation Step

• Draw Z ∼ f(Z|Y, β,R) from a truncated Multivariate Normal
distribution TMVN(Xβ,R) as described in Appendix D.

2. Posterior Sampling Step Draw (β,R, α) jointly conditional on the la-
tent data :

• Draw β|Z, Y,R from a Multivariate Normal distribution β ∼
MVN(β∗,Ψ∗β)

• Draw α ∼ p0(α|R) from a Gamma distribution G(T+1
2 , 1)

• Compute the diagonal matrix D, where each diagonal element

di =
√

rii

2αi
and rii is the ith diagonal element of R−1.

• compute W = tα(Z) = DZ or equivalently ε∗ = D(Z −Xβ).

• Draw Σ|β, Y,W from an inverse Wishart distribution Σ ∼
IW (ν, S) where ν = n+ T + 1 and S = ε∗′ε∗.

• compute R = D−1ΣD−1

Repeat until convergence

3.4 Simulations

In order to test the performance of the algorithm developed in the previous
section, we conduct several simulation studies first with T = 3 and then
we increase the dimension to T = 8. The data is simulated as follows: we
generate a design matrix with p = 2 covariates from a uniform distribution
from [−0.5, 0.5], we set the coefficients β = (−1, 1)′ and we generate random
error from a multivariate Gaussian distribution centered at 0 and a full
correlation matrix R. We fix R such that all ρij off-diagonal elements are
of equal value. We try for different values of ρ namely 0.2, 0.4, 0.6, and 0.8.
The following two loss functions are considered to evaluate the accuracy of
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the estimated correlation matrix:

L1(R̂, R) = tr(R̂R−1)− log |R̂R−1| − T (3.18)

L2(R̂, R) = tr(R̂R−1 − I)2 (3.19)

Where R̂ is the estimated correlation and R is the true correlation used to
generate the data.

The first loss function is the entropy loss and the second is the quadratic
loss. These loss functions are discussed in more detail in Yang and Berger
(1994).

In each case, N = 10000 Gibbs samples are drawn and the first 500 are
discarded as “Burn-in”. We tried multiple runs, to ensure convergence of
results. The correlation is always initialized at the identity matrix, and the
latent variables are initialized at 0.

3.4.1 Results for T = 3

For T = 3, three parameters in the correlation matrix are estimated. Table
3.1 outlines results from the simulations for the correlation matrix. The
posterior median estimate is reported, the number of parameters falling
within the 95% credible interval, the average interval length, as well as the
entropy loss and the quadratic loss. 95% credible intervals are calculated
based on 2.5% and 97.5% quantiles of the estimates.

We can see that the likelihood carries more information with larger cor-
relation values, estimation of the correlation becomes more accurate and
confidence intervals become smaller on average. Similarly with more data,
estimates become more precise and furthermore, we see a decrease in both
the entropy and the quadratic loss. Except in one case (rij = 0.2, n = 500),
the true correlation coefficient was always included in the 95% credible in-
terval.

Figures 3.1 and 3.2, provide examples of traceplots and density plots
for the correlation matrix with ρij = 0.4 and ρij = 0.8 respectively. Sub-
figures (a) and (b) in each case show how the density becomes narrower by
increasing the sample size from n = 100 to n = 1000. Furthermore, we see
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that the algorithm mixes very well and converges fast.

Table 3.1: Correlation results from simulations for T = 3

Sample CI Contains Average CI Entropy Quadratic
Size rij True Length Loss Loss

0.2 3/3 0.644 0.206 0.557

0.4 3/3 0.580 0.122 0.296

100 0.6 3/3 0.511 0.185 0.496

0.8 3/3 0.423 0.336 0.923

0.2 2/3 0.290 0.064 0.135

0.4 3/3 0.269 0.031 0.061

500 0.6 3/3 0.226 0.051 0.102

0.8 3/3 0.164 0.127 0.329

0.2 3/3 0.202 0.028 0.056

0.4 3/3 0.188 0.027 0.053

1000 0.6 3/3 0.165 0.037 0.075

0.8 3/3 0.113 0.067 0.173

Table 3.2, shows simulation results for the regression coefficients β. For
each coefficient, we report the median of the posterior distribution, a 95%
credible interval and the standard error

The true regression coefficients seems to always fall within the 95% credi-
ble interval. Standard errors and consequently credible intervals lengths tend
to become smaller with the increase of correlation as well as the increase in
sample size.

Figures 3.3, 3.4, 3.5, and 3.6 provide trace plots, density and autocor-
relation plots for the regression coefficient in the case where the correlation
matrix has elements ρij = 0.4 and ρij = 0.8 and increasing the sample size
from n = 100 to n = 1000 respectively. The density becomes narrower with
a larger sample size and here too, the algorithm seems to be mixing well.
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Table 3.2: Regression coefficients results from simulations for T = 3

Sample Confidence Standard Confidence Standard
Size rij β̂1 Interval Error β̂2 Interval Error

0.2 -1.34 (-1.88,-0.83) 0.27 1.32 (0.79, 1.86) 0.27

0.4 -1.20 (-1.72,-0.72) 0.26 0.88 (0.38, 1.37) 0.25

100 0.6 -0.99 (-1.47,-0.52) 0.24 0.88 (0.41, 1.36) 0.24

0.8 -1.28 (-1.73,-0.82) 0.23 1.05 (0.62, 1.49) 0.22

0.2 -1.22 (-1.45,-0.99) 0.12 1.18 (0.95, 1.40) 0.12

0.4 -1.23 (-1.45,-1.00) 0.11 1.04 (0.82, 1.26) 0.11

500 0.6 -0.92 (-1.11,-0.71) 0.10 1.15 (0.93, 1.35) 0.11

0.8 -1.14 (-1.33,-0.95) 0.10 0.93 (0.75, 1.11) 0.09

0.2 -1.12 (-1.28,-0.96) 0.08 1.14 (0.98, 1.30) 0.08

0.4 -1.09 (-1.25,-0.94) 0.08 0.96 (0.81, 1.12) 0.08

1000 0.6 -1.08 (-1.23,-0.93) 0.08 1.12 (0.97, 1.26) 0.08

0.8 -1.09 (-1.22,-0.96) 0.07 0.98 (0.85, 1.11) 0.07
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Figure 3.1: Correlation estimates for ρ = 0.4 , T = 3 and increasing sample size
from n = 100 to n=1000
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Figure 3.2: Correlation estimates for ρ = 0.8 , T = 3 and increasing sample size
from n = 100 to n=1000
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Figure 3.3: β estimates for ρ = 0.4 , T = 3 and sample size n = 100
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Figure 3.4: β estimates for ρ = 0.4 , T = 3 and sample size n = 1000
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Figure 3.5: β estimates for ρ = 0.8 , T = 3 and sample size n = 100

32



Chapter 3. Correlation Estimation in the Saturated Model

0 2000 4000 6000 8000 10000
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Traceplot

β
1
 

-1.5 -1 -0.5 0
0

200

400

600

800

1000

Samples

True

0 20 40 60
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Autocorrelation

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Traceplot

β
2
 

0 0.5 1 1.5
0

200

400

600

800

1000

Samples

True

0 20 40 60
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Autocorrelation

Figure 3.6: β estimates for ρ = 0.8 , T = 3 and sample size n = 1000
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3.4.2 Results for T = 8

For T = 8, we are estimating T (T −1)/2 = 28 parameters in the correlation
matrix in addition to two regression coefficients. Table 3.3 shows the number
of parameters falling within the 95% credible interval, the average interval
length, the entropy loss and the quadratic loss.

In this case, we see that with more parameters to be estimated, we did
not loose very much on the accuracy, as the average 95% credible interval
length has remained within the same range as in the case of T = 3. We
also note that five of the experiments had only one out of 28 parameters not
contained in the 95% credible interval.

Furthermore, we could see that average CI length decreases with larger
correlation values and a larger sample size, while loss improves only with an
increased sample size.

Figure 3.7 and 3.8 show the density and the trace plot of the correlation
matrices with ρij = 0.2 and ρij = 0.6 respectively. The density becomes
more peaky and narrow with an increase in sample size as expected.

For the regression coefficients, we see from figures 3.9, 3.10, 3.11, and
3.12 that with more information in the data, the median is closer to the true
parameters.

In addition, similar to the results we saw in the previous simulation, the
credible intervals decrease in length with an increase in sample size. We also
note from table 3.4, that the true value of β is always included in the 95%
credible interval.
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Table 3.3: Correlation Results from simulations for T = 8

Sample CI Contains Average CI Entropy Quadratic
Size rij True Length Loss Loss

0.2 28/28 0.577 2.306 10.445

0.4 27/28 0.511 4.327 29.895

100 0.6 28/28 0.492 4.879 75.270

0.2 27/28 0.279 0.439 1.133

0.4 28/28 0.254 0.489 1.312

500 0.6 27/28 0.221 0.560 1.436

0.2 27/28 0.200 0.180 0.400

0.4 28/28 0.181 0.186 0.421

1000 0.6 27/28 0.157 0.358 0.880

Table 3.4: Regression coefficients results from simulations when T = 8

Sample Confidence Standard Confidence Standard
Size rij β̂1 Interval Error β̂2 Interval Error

0.2 -1.20 (-1.51,-0.89) 0.16 0.90 (0.60, 1.21) 0.15

0.4 -1.08 (-1.37,-0.81) 0.14 0.99 (0.71, 1.27) 0.14

100 0.6 -1.06 (-1.33,-0.79) 0.14 1.04 (0.78, 1.31) 0.14

0.2 -1.12 (-1.26,-0.98) 0.07 0.98 (0.85, 1.11) 0.07

0.4 -1.01 (-1.14,-0.88) 0.07 0.95 (0.82, 1.08) 0.07

500 0.6 -1.04 (-1.16,-0.92) 0.06 0.97 (0.86, 1.09) 0.06

0.2 -1.09 (-1.18,-0.99) 0.05 1.01 (0.91, 1.11) 0.05

0.4 -1.00 (-1.09,-0.91) 0.05 0.94 (0.85, 1.03) 0.05

1000 0.6 -1.00 (-1.08,-0.91) 0.04 0.97 (0.88, 1.05) 0.04
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Figure 3.7: Correlation estimates for ρ = 0.2 , T = 8 and increasing sample size
from n = 100 to n=1000
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Figure 3.8: Correlation estimates for ρ = 0.6 , T = 8 and increasing sample size
from n = 100 to n=500
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Figure 3.9: β estimates for ρ = 0.2 , T = 8 and sample size n = 100
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Figure 3.10: β estimates for ρ = 0.2 , T = 8 and sample size n = 1000
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Figure 3.11: β estimates for ρ = 0.6 , T = 8 and sample size n = 100
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Figure 3.12: β estimates for ρ = 0.6 , T = 8 and sample size n = 500
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3.4.3 Convergence Assessment

As with any Markov Chain Monte Carlo Algorithm, it is important to en-
sure that the algorithm has converged. Unfortunately, there is no measure
that can tell us definitively whether this has happened. The most common
method of assessing convergence is by considering trace plots, which show
the evolution of the MCMC output as a time series. These plots provide
a simple way to examine the convergence behavior of the algorithm for the
parameters under consideration. Trace plots are useful for immediately di-
agnosing lack of convergence and poor mixing, if the MCMC sampler covers
the support of the posterior distribution very slowly. Poor mixing invali-
dates the density estimates, as it implies that the MCMC output is not a
representative sample from the posterior distribution.

From previous figures, it appears that the algorithm is mixing well, since
we do not see any particular trends in the time series plots, and the algorithm
seems to be leveling off to a stationary state. We also consider the mixing
speed by looking at the effect of drawing more samples. For examples, Figure
3.13 shows the effect of increasing the number of Gibbs draws from 500 to
5000, for the simulation where T = 3 and n = 100. We could see that with
1000 iterations post burn-in, the algorithm has started to converge to the
target density.

Next we consider correlation plots of the estimated parameters. These
plots depict the autocorrelation of the sequence of simulated values as a
function of lag time. The autocorrelation plots can be useful in identifying
slow mixing.

Figure 3.14 shows the standardized autocorrelation plots of the different
values of the correlation coefficients when T = 3 and n = 100. Standardized
plots mean that at lag time 0 the autocorrelation is 1. We could note that
autocorrelation drops near zero at around lag 10-20. Similar results where
observed for the regressions coefficients β, in previous plots.

Finally, under convergence, the estimated parameter of interest is ex-
pected to converge to a flat region near the true parameter and then fluctu-
ate around that region. However, a statistic like the mean of the parameter
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Figure 3.13: n = 100, T = 3, Trace plots as the number of iterations increase
from N = 500 to N = 5000 post “Burn-in”. The algorithm has started to converge
after about 1000 iteration post “Burn-in”.

is expected to converge in the limit to a constant. Diagnostic plots such as
the cumulative mean and the cumulative standard deviation of the estimates
provide a way to see if this has happened.

Figure 3.15 shows a plot of the cumulative means and standard devia-
tions for the 10000 iteration from a randomly selected set of parameters from
the simulation with n = 100 and T = 3. Both mean and standard deviation
indeed level off to a flat line early on in the simulation. Furthermore, it
appears that the value we have chosen to use for “Burn-in” is reasonable
since it cuts off all the fluctuations that happen early on.

Finally, it is important to note that starting values are critical for the
speed of convergence. If the starting values of a parameter are poor, it may
take some time for the mean to stabilize. The fluctuations caused by the
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Figure 3.14: n = 100, T = 3, Autocorrelation plots of a randomly chosen pa-
rameter from correlation matrices for the cases where the marginal correlations is
ρ = 0.2, ρ = 0.4, ρ = 0.6, and ρ = 0.8

poorly sampled values early on in the simulation are difficult to overcome,
but in the long run, the mean will eventually stabilize. In the case of the
Multivariate Probit, many have reported the sensitivity of convergence to
the starting values of the parameters. In our case, many initialization values
were tried, the initial values that we chose to use are equivalent to running T
univariate Probit models with 0 mean, these values provided optimal results.
When the algorithm was initialized randomly, it took much longer to reach
convergence.
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Figure 3.15: Trace plots of the cumulative mean and cumulative standard devi-
ation of randomly chosen parameters from correlation matrices as the correlation
is varied from ρ = 0.2, ρ = 0.4, ρ = 0.6, and ρ = 0.8 and n = 100, T = 3. The
vertical line marks the “Burn-in” value (500) used in the simulations
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3.5 Application: Six Cities Data

In order to further evaluate our method and our prior, we apply it to the Six
Cities data. This data set is based on a subset of data from the Six Cities
study, a longitudinal study of the health effects of air pollution, which has
been analyzed by Chib and Greenberg (1998) in the context of multivariate
Probit and by others (eg. Glonek and McCullagh (1995)) with a multivariate
Logit model. The data contain repeated binary measures of the wheezing
status (1 = yes, 0 = no) for 537 children at ages 7, 8, 9 and 10 years. The
objective of the study is to model the probability of wheeze status Yij over
time as a function of a binary indicator variable representing the mother’s
smoking habit during the first year of the study and the age of the child.
We fit the same model as in Chib and Greenberg (1998):

P (Yij = 1|β,R) = β0 + β1Xij1 + β2Xij2 + β3Xij3 (3.20)

where j in {1,2,3,4} indexes the time at which the response was observed
(ages 7,8,9 and 10), and Xij1 is the age centered at 9 years agej − 9, Xij2

is a binary variable representing the smoking status of the mother Xij2 =
Xi2 = Imother−smokes, and Xij3 is the interaction between smoking status
and age Xij1 ∗Xij2. Here we would like to note that age is used both as a
category in the response and as a covariate.

We use the algorithm developed in this chapter to fit a full correlation
matrix among the responses. N = 8000 samples are obtained and the first
500 were discarded as “Burn-in”. Furthermore, conforming with what was
done in simulations methods, initial values for β were sampled from their
prior distribution, the latent data was initialized at zero and the correlation
matrix was initialized at the identity matrix.

Table 3.5 summarizes the parameters’ posterior means and standard
errors. It also provides, for comparative purposes, the results reported in
Chib and Greenberg (1998) using both the maximum likelihood estimator
and the posterior means resulting from the MCMC algorithm they develop
in their paper. From comparing these results, we could see that they are very
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similar for both means and standard errors. We could note however, that
the estimates obtained using the joint uniform priors are smaller compared
to ones we obtained using the marginally uniform prior. This is consistent
with what is expected, since the jointly uniform prior will tend to favor
values closer to 0.

We could also note that the intervals for β2 and β3 contain 0. This could
be an indication that the mother’s smoking habit may not have contributed
to the wheezing status of the child at any age.

Table 3.5: Six Cities Data: Posterior estimates using Marginal Prior, MLE esti-
mate using MCEM and Posterior estimates using the Jointly Uniform Prior (Chib
and Greenberg (1998))

Marginal Uniform Prior MCEM Jointly Uniform Prior
Mean 95% CI s.e MLE s.e Mean s.e

β̂0 -1.13 (-1.26,-1.01) 0.06 -1.12 0.06 -1.13 0.06
β̂1 -0.08 (-0.14,-0.02) 0.03 -0.08 0.03 -0.08 0.03
β̂2 0.18 (-0.02, 0.38) 0.10 0.15 0.10 0.16 0.10
β̂3 0.04 (-0.06, 0.14) 0.05 0.04 0.05 0.04 0.05
r12 0.59 (0.45, 0.73) 0.07 0.58 0.07 0.56 0.07
r13 0.54 (0.38, 0.68) 0.08 0.52 0.08 0.50 0.07
r14 0.55 (0.40, 0.69) 0.07 0.59 0.09 0.54 0.07
r23 0.73 (0.60, 0.83) 0.06 0.69 0.05 0.66 0.06
r24 0.57 (0.40, 0.69) 0.08 0.56 0.08 0.51 0.07
r34 0.64 (0.40, 0.69) 0.08 0.63 0.08 0.60 0.06

In their paper, Chib and Greenberg (1998) do not show trace plots for
any of their estimates and they do not discuss convergence diagnostics. It
is therefore difficult to compare their algorithm to ours with that respect.
Figures 3.16 and 3.17 depict the density plots and the trace plots of the cor-
relation coefficients and the regression coefficients respectively. Trace plots
do not seem to exhibit any patterns or poor mixing. The autocorrelation
plot in 3.17 shows that there is a lag of 10 before autocorrelation goes down
to 0.
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Figure 3.16: Six Cities Data: Trace plots and density plots of the correlation
coefficients. The vertical lines denote 95 % credible interval and the line in red
indicates the posterior mean reported by Chib and Greenberg (1998).
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Figure 3.17: Six Cities Data : Trace plots, density plots and autocorrelation plots
of the regression coefficients. Vertical lines denote 95 % credible interval and the
line in red indicates the posterior mean reported by Chib and Greenberg (1998).
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Chapter 4

Correlation Estimation in

the Structured Model

4.1 Introduction

Often times, when dealing with high dimensional problems, it is useful to
impose a structure of association between the outcome variables Y1, . . . , YT .
In certain cases, the researcher may be interested in comparing different
hypotheses of patterns of association. In other cases, the data might follow
a natural grouping, where certain subsets of variables will express a higher
degree of association within and less association between other groups of
variables. For example, in longitudinal models, a variable might only be
associated to the one preceding it at the previous time point. Furthermore,
imposing a structure on the correlation matrix helps simplify computation.
This is because the number of free parameters to be estimated is a smaller
subset of the total number of parameters under the saturated model. Im-
posing a structure helps both statistically and computationally.

4.2 Conditional Independence

When variables exhibit a high marginal association, the pairwise estimate
of their correlation is high. However, these two variables might be affected
by a third variable, which acts as a mediating variable or confounder. As an
example, consider the following three variables: smoking, drinking coffee and
lung cancer. Drinking coffee and lung cancer might express a high degree of
correlation, however once information about smoking is available, drinking
coffee and lung cancer become decoupled. Therefore, smoking accounts for
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the association between drinking coffee and lung cancer. In order to get
around this problem, one could control for the other variables in the model,
by considering the conditional dependence. Partial correlation represents
the correlation between two variables conditional on all the other variables
in the model. It can be obtained from the precision matrix Ω = Σ−1, with
elements ωij , through the following relation:{

ρ̃ij = − ωij√
ωiiωjj

for i 6= j;

ρ̃ii = ρii for i = j.
(4.1)

From this, we could see that a 0 in the precision matrix Ω would result in
a partial correlation of 0, meaning that the two variables are conditionally
independent.

In general, the correlation coefficient is a weak criterion for measuring
dependence because marginally most variables will be correlated. This im-
plies that zero correlation is in fact a strong indicator for independence.
On the other hand, partial correlation coefficients provide a strong measure
of dependence and, correspondingly, offer only a weak criterion of indepen-
dence.

In the multivariate Probit (MVP) class of models, the response is dis-
crete and viewed as an indicator variable to a latent construct. Imposing a
structure on the latent variables Z1, . . . , ZT (see figure 4.1) results in a par-
tial correlation matrix that is sparse, however this does not imply that the
correlation matrix is sparse. In this section we shift our attention to the par-
tial correlation matrix using undirected Gaussian graphical models (GGM).
We impose the structure on the partial correlation matrix and subsequently
estimate marginal correlations given this structure.

4.3 Gaussian Graphical Models

Gaussian graphical models are a graphical representation of the conditional
independence between multivariate Normal variables. In these graphs, vari-
ables are represented by nodes. An edge is drawn between any two nodes
unless these two nodes are conditionally independent. This way, graphs pro-
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Figure 4.1: A graphical representation of a structured MVP model for T = 3. The
edge between Zi1 and Zi3 is missing, this is equivalent to r̃13 = 0. This structure
is typical of longitudinal models where each variable is strongly associated with the
one before it and after it, given the other variables in the model.

vide a clear representation of the interrelationship between variables in the
model. This approach to modeling data is known as covariance selection
(Dempster, 1972). The introduction of the hyper-inverse Wishart by Dawid
and Lauritzen (1993) as a conjugate prior for structured covariance matrices
was central in the development of Bayesian approaches for inference in this
class of models.

4.3.1 Graph Theory

In this section we review some graph theory used in this chapter, for a full
account on graphical models, we refer the reader to Lauritzen (1996) or
Whittaker (1990).

An undirected graph is a pair G = (V,E), where V is a set of vertices
representing variables and E, the edge-set, is a subset of the set of unordered
distinct pair of vertices. Visually, each vertex i is a node representing the
random variable i and an edge (i, j) ∈ E is an undirected edge connect-
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ing nodes i and j unless they are conditionally independent. In undirected
graphical models if edge (i, j) ∈ E then by symmetry edge (j, i) ∈ E as well.
See for example figure 4.1, Z1 is conditionally independent of Z3 given Z2

and is denoted by Z1⊥Z3|Z2.
Below is a list of definitions used throughout this chapter, they are illus-

trated in figure 4.2:

• Vertices A and B are neighbors (nb) or adjacent in G if there is an
edge (a, b) in E.

• A subgraph is a graph which has as its vertices some subset of the
vertices of the original graph.

• A graph or a subgraph is complete or fully connected if there is an
edge connecting any two nodes.

• A clique is a complete subgraph.

• A set C is said to separate A from B if all paths from A to B have to
go through C.

• Subgraphs (A,B,C) form a decomposition of G if V = A ∪ B,C =
A ∩B, where C is complete and separates A from B.

• A sequence of subgraphs that cannot be further decomposed are the
prime components of a graph.

• A graph is said to be decomposable if every prime component is com-
plete.

• A distribution P is Markov with respect to a graph G, if for any
decomposition (A,B) of G, A⊥B|A∩B, where A∩B is complete and
separates A from B
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Figure 4.2: A graphical model with T = 7 vertices. In this graph, Z1 is a neighbor
of Z2. Z3, Z2, and Z7 form a complete subgraph or a clique. This graph can be
decomposed into two cliques {Z1, Z2, Z3, Z5, Z4} and {Z3, Z6, Z7}. {Z3} separates
the two cliques.

4.3.2 The Hyper-inverse Wishart Distribution

The Hyper-inverse Wishart distribution, defined by Dawid and Lauritzen
(1993), is a family of Markov probability distributions for structured co-
variance matrices on decomposable graphs. Given a graph structure G,
the probability distribution for Σ consistent with G follows a Hyper-inverse
Wishart distribution denoted by:

Σ ∼ HIWG(b,D)

whith degrees of freedom b > 0 and location parameter D > 0. The joint
density of Σ decomposes as follows:

P (Σ|b,D) =

∏
C∈C P (ΣC |b,DC)∏
S∈S P (ΣS |b,DS)

(4.2)

For each clique C, ΣC follows an inverse Wishart distribution IW (b,DC).
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4.4 Marginally Uniform Prior for Structured

Covariance

In the MVP model, the covariance matrix is restricted to a correlation matrix
due to identifiability reasons discussed in Chapter 2. In order to extend the
PX-DA algorithm developed in Chapter 3, it is necessary to find a marginally
uniform prior on the structured correlation matrix R.

In decomposable graphical models, an edge joining any two variables i
and j implies that the variables i and j belong to the same clique. This in
turn means that the corresponding element in the inverse correlation matrix
R−1 is not 0. On the other hand, if i and j do not belong to the same clique,
the corresponding element in the inverse correlation matrix R−1 is exactly
0. The correlation matrix is obtained through matrix completion such that
the resulting matrix R is positive definite. Therefore the elements of R
corresponding to the marginal correlation of two variables not belonging to
the same clique are not free parameters and their distributions are not of
interest. On the other hand, non-zero elements in the partial correlation
matrix indicate a high dependence among the corresponding variables, and
since we would like an uninformative prior on the marginal correlations we
would be interested in a prior on R such that:{

R−1
ij = 0 if i, j /∈ C;

Rij ∼ U(−1, 1) if i, j ∈ C.
(4.3)

From the properties of the Hyper inverse Wishart distribution (Rover-
ato, 2002), we know that given a graph structure, if ΣG ∼ HIW (b,D), then
the covariance matrix of each prime component follows an inverse Wishart
distribution with ΣPjPj ∼ IW (b,DPjPj ) for j = 1, . . . , k and k is the number
of prime components. It is important to note here that the precision param-
eter b is common to all the prime components, and the location parameter
DPjPj is specific to each one.

Since the covariance of each prime component follows an inverse Wishart
distribution ΣP ∼ IW (b,DP ), by taking DP = IP , we can obtain the distri-
bution of the correlation matrix RP for each prime component, as in Barnard
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et al. (2000).

fPj (R|b = |Pj |+ 1) ∝ |R|
|Pj |(|Pj |−1)

2
−1

(∏
i

Rii

)− (|Pj |+1)

2

(4.4)

where |Pj | is the cardinality of the prime component P .
If we consider the pairwise distribution of any two variables i and j

within the same clique, we could appeal to the marginalization property of
the inverse Wishart to obtain the marginal distribution of each rij in that
clique, based on the result used in the proof of Barnard et al. (2000) (see
appendix B). Furthermore, in order to have a uniform distribution for each
rij on [−1, 1], we sample ΣC from a standard inverse Wishart with degree
of freedom parameter b = |Cj |+ 1.

However, because we are restricted to have the parameter b common
to all the prime components, using the parametrization in A.4 would re-
quire that all cliques have equal sizes. Alternatively, we could use the
parametrization in Dawid and Lauritzen (1993) (see Appendix A.4). In that
parametrization, sampling ΣC ∼ IW (δ, IC) and taking δ = 2 is equivalent
and furthermore, it would insure that the precision parameter is indepen-
dent of the size of the cliques and could therefore be common to all prime
components.

Since the structure of the graph G is given, when i and j do not belong to
the same clique, the corresponding element of the partial correlation matrix
r̃ij = 0 and rij is obtained through matrix completion.

To illustrate this prior, given the graph structure in 4.1, we sample from
a standard hyper-inverse Wishart ΣG ∼ (δ = 2, IC) and we transform back
to R using the separation strategy: Σ = DRD. Figure 4.3 illustrates the
marginal distribution of the elements of the correlation matrix, under a
structured partial correlation assumption, based on 5000 draws.

56



Chapter 4. Correlation Estimation in the Structured Model

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

r
12

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

r
13

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

r
23

1

1

1

Figure 4.3: Marginal distributions of the prior on the correlation matrix corre-
sponding to the model in 4.1

We could see that where there is an edge between the two variables, the
corresponding element of the correlation matrix has a uniform distribution
on [−1, 1].

Furthermore, when two variables are conditionally independent, their
marginal correlations are obtained to ensure that the correlation matrix is
positive definite. Figure 4.4 illustrates the same result on a more complicated
structure where the size of the cliques are not equal.
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Figure 4.4: Illustration of the marginally uniform prior on the structure of the
graph in figure 4.2. In this graph we have unequal clique sizes where |C1| = 5 and
|C2| = 3
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4.5 PX-DA in Gaussian Graphical Models

The PX-DA algorithm for the structured case is very similar to the one
used for the saturated model in chapter 3. In the imputation step, the
latent variables are sampled given a correlation matrix and regression co-
efficients. In the posterior sampling step, conditional on R, the regression
coefficients are estimated in the same way as in chapter 3. The only differ-
ence is in sampling of the covariance matrix. Rather than sampling from
an inverse Wishart distribution as before, we impose the structure on the
partial correlation matrix, and subsequently expand the model by scaling
it by D, a diagonal matrix, and sample the covariance from a hyper in-
verse Wishart distribution. Because D is diagonal, the zeros structure of
the inverse correlation remains unchanged.
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The multivariate Normal distribution of the latent variables W under the
expanded model is also Markov with respect to G, and the joint likelihood
decomposes as well:

P (W |ΣG) =

∏
C∈C P (WC |ΣC)∏
S∈S P (WS |ΣS)

(4.5)

For Bayesian inference, the posterior distribution is given by Bayes rule:

P (Σ|W,G) ∝ P (W |Σ, G)P (Σ|G)

The Hyper-inverse Wishart is the conjugate local prior for any graph, there-
fore we can compute the posterior as:

P (Σ|W,G) =

∏
C∈C P (WC |ΣC)∏
S∈S P (WS |ΣS)

×
∏
C∈C P (ΣC |b,DC)∏
S∈S P (ΣS |b,DS)

(4.6)

=

∏
C∈C P (WC |ΣC)P (ΣC |b,DC)∏
S∈S P (WS |ΣS)P (ΣS |b,DS)

(4.7)

Since for any prime component P (cliques and separators), ΣP is inverse
Wishart, the conjugate prior for covariance for the Normal distribution, we
can write for each prime component:

π(RP , αP |YP ,WP ) ∝ |ΣP |−
n
2 exp tr

(
Σ−1ε∗′ε∗

}
× |RP |

|P |(|P |−1)
2

−1(
∏
i

|RPii|)−(|P |+1)/2 ×Gamma
(
|P |+ 1

2
, 1
)

(4.8)

and doing a change of variable DP , RP → ΣP as in (3.11), we get a posterior
distribution which is an Inverse Wishart.

ΣP ∼ IW (δ + n,DP + SW )

where n is the number of observations in W , and SW is the cross product
matrix ε∗′ε∗ under the expanded model. This way, an estimate of R is
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obtained by sampling ΣP ∼ HIW (δ + n,DP + SZ) and transforming to R
using the separation strategy as before (see algorithm ??).

The algorithm to implement this method is identical to the one in ??,
except we replace the step:

• Draw Σ|β, Y,W from an inverse Wishart distribution Σ ∼ IW (ν, S)
where ν = n+ T + 1 and S = ε∗′ε∗.

by

• Draw Σ|β, Y,W from a hyper inverse Wishart distribution Σ ∼ HIW (δ∗, S),
where δ∗ = 2 + n and S = ε∗′ε∗. See sampling procedure in Appendix
E.
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4.6 Simulations

The motivation behind imposing a structure to the model is to reduce the
number of parameters to be estimated. In the saturated model, all the
parameters in the correlation matrix need to be estimated. However, by im-
posing a structure on the inverse, the elements corresponding to correlation
between conditionally independent variables are no longer free parameters.
Since the number of free parameters to be estimated is reduced, the method
that constrains the structure of the inverse should be more efficient at es-
timating the correlation matrix. This is particularly beneficial when the
number of parameters is large in proportion to sample size. To illustrate
this, we consider the model with T = 8 correlated binary responses. Under
the saturated model assumption, a correlation matrix with T (T −1)/2 = 28
parameters needs to be estimated. Alternatively, if the longitudinal model
assumption (as in figure 4.1) is made only 7 parameters would need to be
estimated. This constitutes a significant reduction in the number of free
parameters that could have a major impact especially for a small sample
size.

All the simulations in this chapter where generated using a partial cor-
relation matrix corresponding to the graph with a structure as in figure 4.1,
with T = 8. Data is generated by sampling Z from a multivariate Gaussian
distribution centered at 0 with sample size n = 100. A density model with
no covariates is assumed and we set Y = I(Z > 0). N = 5000 samples are
drawn and the first 500 samples are discarded as “Burn-in”.

4.6.1 Loss Under the Saturated Model and the Structured

Model

In the first simulation, the PX-DA algorithm is tested under both saturated
and structured covariance assumptions. To do that we generate 50 data sets
from 50 different correlation structures corresponding to the graph in figure
4.1. Each time, we run our algorithm and record the entropy loss and the
quadratic loss (see complete results in Appendix F). Figure 4.5 is a boxplot
of the results and table 4.6.1 gives the mean and standard deviation for the
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Loss Model Mean s.e
Entropy Saturated 13.875 25.164

Constrained 1.267 1.225

Quadratic Saturated 17098.952 119840.369
Constrained 2.776 2.838

Table 4.1: Simulation results: Entropy and quadratic loss averaged over 50 data
sets generated by different correlation matrices with the same structure

two estimated loss function resulting from these simulations. It is evident
that the saturated model results in larger loss compared to the model where
the structure is taken into account. To confirm, a paired t-test is performed.
The difference in the means was significant in each case (pval < 1× 10−5).
We can note large variability in the loss under the saturated model.

4.6.2 Effect of Decreasing Sample Size

We would like to assess the effect of decreasing the proportion of parameters
to samples size by varying the latter from n = 100 to n = 200. We generate
data with the correlation matrix R, given in 4.9, such that the partial cor-
relation matrix R̃, given in 4.10, has a structure corresponding to the model
in figure 4.1.

R =



1.000 0.796 0.552 0.058 −0.002 −0.001 −0.001 −0.000
0.796 1.000 0.693 0.072 −0.003 −0.001 −0.001 −0.000
0.552 0.693 1.000 0.104 −0.004 −0.001 −0.001 −0.000
0.058 0.072 0.104 1.000 −0.036 −0.013 −0.010 −0.003
−0.002 −0.003 −0.004 −0.036 1.000 0.367 0.277 0.084
−0.001 −0.001 −0.001 −0.013 0.367 1.000 0.754 0.230
−0.001 −0.001 −0.001 −0.010 0.277 0.754 1.000 0.305
−0.000 −0.000 −0.000 −0.003 0.084 0.230 0.305 1.000


(4.9)

In table 4.6.2, we report the entropy loss and the quadratic loss defined
in 3.19. We could see that under the structured model assumption, the
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Figure 4.5: Box plot of the entropy and quadratic loss obtained by generating
data from 50 correlation structures and computing the loss function under the full
correlation structure versus a structured correlation structure

reduction in loss is significant both in estimating the marginal correlation
and the partial correlation. Moreover, the loss is reduced for all cases with
an increase in sample size.

We also note that under the structured model assumption, the loss in
estimating the partial correlation matrix is the same as the one in estimating
the correlation matrix, whereas under the saturated model assumption, the
loss of estimating the partial correlation matrix is significantly larger than
the loss incurred by estimating the marginal correlation matrix.

Table 4.3 and table 4.5 outline simulation results for estimating the corre-
lation coefficients of the unconstrained parameters for n = 100 and n = 200
respectively.

63



Chapter 4. Correlation Estimation in the Structured Model

R̃ =



1.000 0.688 −0.000 0.000 0.000 −0.000 0.000 −0.000
0.688 1.000 0.502 −0.000 −0.000 0.000 −0.000 0.000
0.000 0.502 1.000 0.075 0.000 −0.000 0.000 0.000
−0.000 0.000 0.075 1.000 −0.033 −0.000 0.000 −0.000
0.000 −0.000 0.000 −0.033 1.000 0.251 0.000 −0.000
−0.000 0.000 0.000 −0.000 0.251 1.000 0.714 −0.000
0.000 −0.000 −0.000 0.000 0.000 0.714 1.000 0.206
−0.000 0.000 −0.000 −0.000 −0.000 −0.000 0.206 1.000


(4.10)

In the table, ρs are the correlation coefficients under a structured as-
sumption, ρ are the correlation coefficients under the saturated model, ρ̃
are the partial correlation coefficients under the saturated model and ρ̃s are
the partial correlation coefficients under the structured model. The results
show that both the saturated and the structured model give similar results
in estimating the unconstrained parameters of the marginal correlations.
The standard errors and the 95% credible interval are very similar and just
as we have seen in chapter 3, they are reduced by half in increasing the
sample size from n = 100 to n = 200. However, in estimating the partial
correlation parameters the strucured model has a smaller standard error and
shorter credible intervals.

n Correlation Model Entropy Loss Quadratic Loss
100 Marginal Saturated 2.428 11.166

Marginal Structured 0.415 0.830
Partial Saturated 11.394 679762.050
Partial Structured 0.415 0.839

200 Marginal Saturated 1.179 4.139
Marginal Structured 0.219 0.479
Partial Saturated 1.145 20323.973
Partial Structured 0.241 0.547

Table 4.2: Entropy and Quadratic loss obtained by estimating the true correlation
and partial correlation matrix with the PX-DA algorithm under the saturated and
structured model assumption
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More important differences between the structured model versus the sat-
urated model are noted in the results of estimating the constrained param-
eters of the correlation and partial correlation matrix. Tables 4.4 and 4.6
show the simulation results for the constrained parameters when n = 100
and n = 200 respectively. The standard errors and 95% credible intervals are
smaller under the structured model in comparison with the saturated model
for marginal correlations, and the structured model gives exact results for
partial correlations.
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Table 4.3: Simulation results on the unconstrained correlation coefficients cor-
responding to the model in 4.1, with n = 100, T = 8 based on N = 5000 Gibbs
samples.

CIContains Interval
True Mean Median s.e 95% CI True Length

ρ12 0.796 0.707 0.714 0.096 (0.500,0.874) yes 0.374
ρs12 0.796 0.701 0.707 0.092 (0.503,0.856) yes 0.352
ρ̃s12 0.688 0.573 0.574 0.098 (0.378,0.758) yes 0.380
ρ̃12 0.688 0.707 0.714 0.096 (0.500,0.874) yes 0.374
ρ23 0.693 0.709 0.719 0.099 (0.492,0.876) yes 0.384
ρs23 0.693 0.695 0.704 0.095 (0.483,0.858) yes 0.375
ρ̃s23 0.502 0.557 0.559 0.102 (0.351,0.743) yes 0.392
ρ̃23 0.502 0.709 0.719 0.099 (0.492,0.876) yes 0.384
ρ34 0.104 0.216 0.220 0.142 (-0.070,0.484) yes 0.555
ρs24 0.104 0.188 0.190 0.143 (-0.100,0.455) yes 0.555
ρ̃s24 0.075 0.135 0.132 0.106 (-0.071,0.349) yes 0.420
ρ̃24 0.075 0.216 0.220 0.142 (-0.070,0.484) yes 0.555
ρ45 -0.036 -0.052 -0.051 0.149 (-0.334,0.237) yes 0.571
ρs25 -0.036 -0.046 -0.045 0.143 (-0.326,0.238) yes 0.564
ρ̃s25 -0.033 -0.042 -0.042 0.131 (-0.298,0.215) yes 0.513
ρ̃25 -0.033 -0.052 -0.051 0.149 (-0.334,0.237) yes 0.571
ρ56 0.367 0.347 0.353 0.132 (0.076,0.597) yes 0.521
ρs34 0.367 0.326 0.332 0.136 (0.041,0.575) yes 0.535
ρ̃s34 0.251 0.251 0.251 0.112 (0.031,0.473) yes 0.442
ρ̃34 0.251 0.347 0.353 0.132 (0.076,0.597) yes 0.521
ρ67 0.754 0.674 0.681 0.105 (0.443,0.858) yes 0.415
ρs34 0.754 0.643 0.650 0.106 (0.411,0.829) yes 0.418
ρ̃s34 0.714 0.614 0.619 0.108 (0.385,0.806) yes 0.421
ρ̃34 0.714 0.674 0.681 0.105 (0.443,0.858) yes 0.415
ρ78 0.305 0.065 0.067 0.148 (-0.229,0.350) yes 0.579
ρs34 0.305 0.069 0.070 0.144 (-0.215,0.343) yes 0.559
ρ̃s34 0.206 0.053 0.052 0.110 (-0.165,0.266) yes 0.431
ρ̃34 0.206 0.065 0.067 0.148 (-0.229,0.350) yes 0.579

66



Chapter 4. Correlation Estimation in the Structured Model

Table 4.4: Simulation results on the constrained correlation coefficients corre-
sponding to the model in 4.1, with n = 1000, T = 8 based on N = 5000 Gibbs
samples.

CIContains Interval
True Mean Median s.e 95% CI True Length

ρ13 0.552 0.568 0.576 0.119 (0.314,0.773) yes 0.459
ρs13 0.552 0.489 0.490 0.103 (0.287,0.689) yes 0.402
ρ̃s13 -0.000 -0.000 -0.000 0.000 (-0.000,0.000) yes 0.000
ρ̃13 -0.000 0.157 0.159 0.200 (-0.260,0.524) yes 0.785
ρ24 0.072 0.032 0.031 0.148 (-0.254,0.324) yes 0.577
ρs24 0.072 0.130 0.129 0.102 (-0.073,0.334) yes 0.408
ρ̃s24 -0.000 -0.000 -0.000 0.000 (-0.000,0.000) yes 0.000
ρ̃24 -0.000 -0.069 -0.075 0.196 (-0.443,0.316) yes 0.758
ρ46 -0.004 0.078 0.081 0.152 (-0.231,0.366) yes 0.596
ρs46 -0.004 -0.008 -0.004 0.034 (-0.089,0.057) yes 0.146
ρ̃s46 0.000 -0.000 -0.000 0.000 (-0.000,0.000) yes 0.000
ρ̃46 0.000 0.149 0.152 0.185 (-0.225,0.507) yes 0.732
ρ57 -0.013 -0.014 -0.015 0.147 (-0.295,0.274) yes 0.569
ρs57 -0.013 -0.016 -0.011 0.052 (-0.129,0.086) yes 0.215
ρ̃s57 -0.000 -0.000 -0.000 0.000 (-0.000,0.000) yes 0.000
ρ̃57 -0.000 -0.005 -0.002 0.185 (-0.368,0.347) yes 0.715
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Table 4.5: Simulation results on the unconstrained correlation coefficients cor-
responding to the model in 4.1, with n = 200, T = 8 based on N = 5000 Gibbs
samples.

CIContains Interval
True Mean Median s.e 95% CI True Length

ρ12 0.796 0.716 0.720 0.066 (0.575,0.834) yes 0.259
ρs12 0.796 0.721 0.726 0.065 (0.581,0.831) yes 0.250
ρ̃s12 0.688 0.577 0.579 0.073 (0.433,0.713) yes 0.280
ρ̃12 0.688 0.520 0.528 0.113 (0.275,0.717) yes 0.442
ρ23 0.693 0.725 0.729 0.068 (0.582,0.845) yes 0.263
ρs23 0.693 0.731 0.736 0.065 (0.588,0.844) yes 0.255
ρ̃s23 0.502 0.591 0.593 0.074 (0.442,0.736) yes 0.295
ρ̃23 0.502 0.525 0.536 0.117 (0.271,0.725) yes 0.454
ρ34 0.104 0.126 0.127 0.102 (-0.076,0.322) yes 0.398
ρs24 0.104 0.128 0.130 0.104 (-0.082,0.325) yes 0.407
ρ̃s24 0.075 0.086 0.086 0.071 (-0.053,0.225) yes 0.278
ρ̃24 0.075 0.127 0.128 0.135 (-0.150,0.382) yes 0.532
ρ45 -0.036 -0.163 -0.163 0.103 (-0.363,0.038) yes 0.401
ρs25 -0.036 -0.155 -0.157 0.103 (-0.353,0.052) yes 0.405
ρ̃s25 -0.033 -0.141 -0.143 0.094 (-0.323,0.046) yes 0.369
ρ̃25 -0.033 -0.149 -0.151 0.117 (-0.373,0.081) yes 0.455
ρ56 0.367 0.396 0.399 0.097 (0.193,0.577) yes 0.384
ρs34 0.367 0.383 0.387 0.094 (0.193,0.558) yes 0.365
ρ̃s34 0.251 0.263 0.263 0.073 (0.126,0.409) yes 0.282
ρ̃34 0.251 0.311 0.316 0.137 (0.021,0.562) yes 0.542
ρ67 0.754 0.759 0.763 0.066 (0.619,0.877) yes 0.258
ρs34 0.754 0.741 0.746 0.066 (0.599,0.854) yes 0.255
ρ̃s34 0.714 0.695 0.699 0.071 (0.547,0.822) yes 0.275
ρ̃34 0.714 0.761 0.766 0.074 (0.598,0.893) yes 0.295
ρ78 0.305 0.295 0.297 0.102 (0.087,0.488) yes 0.401
ρs34 0.305 0.298 0.303 0.098 (0.097,0.477) yes 0.381
ρ̃s34 0.206 0.205 0.205 0.072 (0.064,0.346) yes 0.282
ρ̃34 0.206 0.190 0.197 0.150 (-0.117,0.471) yes 0.588
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Table 4.6: Simulation results on the constrained correlation coefficients corre-
sponding to the model in 4.1, with n = 200, T = 8 based on N = 5000 Gibbs
samples.

CIContains Interval
True Mean Median s.e 95% CI True Length

ρ13 0.552 0.584 0.587 0.082 (0.411,0.732) yes 0.322
ρs13 0.552 0.528 0.530 0.074 (0.380,0.668) yes 0.288
ρ̃s13 -0.000 -0.000 -0.000 0.000 (-0.000,0.000) yes 0.000
ρ̃13 -0.000 0.136 0.140 0.145 (-0.151,0.409) yes 0.560
ρ24 0.072 0.060 0.061 0.103 (-0.153,0.260) yes 0.412
ρs24 0.072 0.093 0.094 0.077 (-0.060,0.243) yes 0.303
ρ̃s24 -0.000 -0.000 -0.000 0.000 (-0.000,0.000) yes 0.000
ρ̃24 -0.000 -0.067 -0.067 0.147 (-0.365,0.212) yes 0.577
ρ35 -0.004 -0.025 -0.025 0.106 (-0.229,0.174) yes 0.403
ρs35 -0.004 -0.020 -0.016 0.024 (-0.081,0.015) yes 0.097
ρ̃s35 0.000 0.000 0.000 0.000 (-0.000,0.000) yes 0.000
ρ̃35 0.000 0.097 0.098 0.141 (-0.187,0.367) yes 0.554
ρ46 -0.013 -0.076 -0.076 0.108 (-0.288,0.137) yes 0.425
ρs46 -0.013 -0.060 -0.057 0.043 (-0.151,0.018) yes 0.170
ρ̃s46 -0.000 -0.000 -0.000 0.000 (-0.000,0.000) yes 0.000
ρ̃46 -0.000 -0.059 -0.059 0.148 (-0.354,0.223) yes 0.577

4.6.3 Prediction Accuracy

An important benefit of regression models, is that they allow the prediction
of a new outcome Y ∗ given the model parameters and a new set of covariates
X∗. In the multivariate Probit class of models Y is binary, therefore we are
interested in P (Y ∗ij = 1|X∗, Y ). Rather than choosing a point estimator to
make predictions, a Bayesian approach averages over the parameter space.
This is given by the posterior predictive distribution:

Pr(Y ∗|Y,X,X∗) =
∫

Pr(Y ∗|X∗, β, R)p(β,R|Y,X)dβdR (4.11)

=
∫

Pr(Y ∗|Z)p(Z|X∗, β, R)p(β,R|Y,X)dβdRdZ (4.12)
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Therefore the predictive probabilities can be approximated by:

Pr(Y ∗ = 1|Y,X,X∗) ≈ 1
N

n∑
i=1

I(Z(i)>0) (4.13)

where
Z(i) ∼ p(Z|X∗, β(i), R(i))

and N is the number of Gibbs samples collected. Therefore for each draw
of β and R, we sample according to the likelihood p(Z|X∗, β(i), R(i)). This
involves sampling the latent variables from the multivariate normal distribu-
tion with mean X∗β(i) and correlation matrix R(i) and setting Y = I(Z>0)

. By Averaging over Monte Carlo samples we can obtain the predictive
probability Pr(Y ∗ = 1|Y,X,X∗) which is used to predict a new observation
Y ∗. The predictive accuracy is then computed by counting the number of
properly predicted values and dividing by the total number of predictions.

To further investigate the advantages of estimating a structured correla-
tion matrix, we compare the predictive accuracy under the assumption of a
saturated model and a structured model. This time we use a data set with
T = 25 and n = 100. In this data set, we expect the structured model to
perform better than the saturated model, because the ratio of sample size
to parameters to be estimated is much larger in the saturated case. In this
simulation, we use a density model with no covariates and using the PX-DA
algorithm, we sample N = 5000 draws from the joint conditional posterior
distribution under both the full and the structured correlation assumption.

As expected, the results demonstrate the superiority of the structured
model with 0.83 accuracy over the saturated model with 0.68 accuracy.

4.7 Application: Six Cities Data Revisited

In this section, we revisit the Six Cities data, this time imposing the longitu-
dinal structure on the covariance while fitting the exact model as 3.20. From
table 4.7 and figure 4.6, we could see that the posterior mean of the marginal
correlations coefficient do not correspond to the ones obtained under the
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saturated model. This is particularly true for ρ̂12, ρ̂23 and ρ̂34. These corre-
lations are now larger (posterior mean > 0.6) and the second order partial
correlations are weaker and third order partial correlations are weaker still.
Furthermore, the standard errors of the parameters that are constrained to
zero in the inverse are smaller than the ones obtained in table 3.5. It is
interesting to note however, that the estimates for β (Figure 3.17) and the
standard errors have remained unchanged under the structured model. In
order to assess predictive accuracy in this case, we use the method discussed
in the previous section, we fit the model on a random subset of the data with
n = 100 and we evaluate the predictive accuracy on n = 100 observations
randomly selected from the remaining observations. The structured model
has a slightly higher predictive accuracy (0.83) compared to the saturated
model(0.80).

Marginal Uniform Prior MCEM Jointly Uniform Prior
Mean 95% CI s.e MLE s.e Mean s.e

β̂0 -1.14 (-1.26,-1.02) 0.06 -1.12 0.06 -1.13 0.06
β̂1 -0.08 (-0.15,-0.01) 0.03 -0.08 0.03 -0.08 0.03
β̂2 0.17 (-0.03, 0.37) 0.10 0.15 0.10 0.16 0.10
β̂3 0.04 (-0.07, 0.15) 0.06 0.04 0.05 0.04 0.05
r12 0.63 (0.49, 0.75) 0.07 0.58 0.07 0.56 0.07
r13 0.48 (0.35, 0.62) 0.07 0.52 0.08 0.50 0.07
r14 0.33 (0.21, 0.46) 0.06 0.59 0.09 0.54 0.07
r23 0.77 (0.66, 0.87) 0.05 0.69 0.05 0.66 0.06
r24 0.52 (0.66, 0.87) 0.07 0.56 0.08 0.51 0.07
r34 0.68 (0.66, 0.87) 0.07 0.63 0.08 0.60 0.06

Table 4.7: Six Cities Data: Posterior estimates under structured model assump-
tion, MLE estimate using MCEM and Posterior estimates using the Jointly Uni-
form Prior under a saturated model assumption(Chib and Greenberg (1998))
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Figure 4.6: Six Cities Data: Correlation and partial correlation estimates
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(a) Marginal distribution and trace plots of the elements of the correlation matrix the red
line denotes the estimates obtain in Chib and Greenberg (1998) by assuming the saturated
model.
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Figure 4.7: Six Cities Data : Trace plots, density plots and autocorrelation plots of
the regression coefficients under a structured model assumption. Vertical lines de-
note 95 % credible interval and the line in red indicates the posterior mean reported
by Chib and Greenberg (1998).
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Chapter 5

Conclusion

5.1 Summary

The multivariate Probit model has several attractive features which make
it particularly suitable for the analysis of correlated binary data. It relaxes
the independence of the irrelevant alternatives (IIA) property assumed by
the logistic model and moreover, it is a natural choice in situations where
an interpretation for thresholded continuous data is possible. It allows for
flexible modeling of the association structure underlying the latent data and
automatically accounts for overdispersion and underdispersion.

Maximum likelihood estimation is not feasible in closed form in the multi-
variate Probit class of models. Likelihood based approaches for estimation in
MVP are very expensive due to the intractability of the high dimensional in-
tegral that needs to be solved. The Bayesian framework is attractive because
it allows the computation of a full posterior distribution on all unknown pa-
rameters. The algorithm we proposed in 3.4 and extended in chapter 4 for
structured models uses parameter expansion for data augmentation, which
gives full conditional posterior distributions in closed form. This allows the
implementation of a Gibbs sampler. Moreover, the algorithm we developed
has many desirable properties:

• It handles the identifiability problem in the MVP model by constrain-
ing the covariance to be a correlation matrix, and placing the prior
directly on the identified parameters.

• The posterior distribution obtained through parameter expansion al-
lows the use of the standard conjugate prior for the covariance. This
makes the parameters easily interpretable.
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Chapter 5. Conclusion

• The prior is marginally uniform and does not favor marginal corre-
lations close to 0 or ±1 even in high dimensions. Furthermore, it is
proper which makes it possible to do Bayesian model selection.

• The full Gibbs framework is convenient as it bypasses having high
dimensional proposal distributions. From previous work (Zhang et al.,
2006), the design of such proposal distributions is difficult and requires
careful tuning of the algorithm parameters.

The extension of the algorithm provided in chapter 4, using Gaussian graph-
ical models, greatly improves estimation and simplifies computation, espe-
cially in high dimensional space, or when the proportion of parameters to
sample size is high.

Computation difficulties in our algorithm arise mainly from the sampling
of univariate truncated Gaussian. We use the algorithm of Robert (1995),
which is based on an accept/reject method (see appendix D). For certain
simulations, accepting values was slow and this significantly slowed down
the algorithm. This problem was more apparent in the estimation of a full
covariance.

For T = 8 and N = 5000, the program was taking on average 5 minutes
to run in Matlab and for T = 25, N = 5000, it was taking about 30 minutes
to run. In future work, it would be important to implement a different
method for sampling the univariate truncated Gaussian and try to speed
up computation in order to allow for scalability of the algorithm to higher
dimensions.

5.2 Extensions, Applications, and Future Work

A natural and straightforward extension of the algorithm developed here is
to multinomial and ordinal Probit, where the latent variables are thresholded
to multiple intervals. In addition, the extension to a response consisting of
a mixture of binary and continuous data could be interesting and useful for
many applications.
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Chapter 5. Conclusion

Furthermore, future work would include an extension of the structured
algorithm of chapter 4 to the case where the structure is unknown a priori,
but where we would be interested to learn it from data. The method we
proposed here is particularly suitable for this task. The Gaussian graphical
model framework and the choice of a proper prior make model selection
feasible.

There are many applications of the multivariate Probit model, since cor-
related binary data arise in many settings. Biological, medical, and social
studies often yield binary or dichotomous data due to the lack of adequate
and direct continuous measurements. Other examples include longitudinal
data, panel data, latent class models in psychology. The MVP class of mod-
els is also particularly attractive in marketing research of consumer choice
which subsequently yields to market segmentation and product design. In
addition, one interesting application would be Bayesian Distance Metric
Learning. This application is particularly important for classification. Yang
et al. (2007) developed an approach that uses logistic regression to learn
a similarity metric given labeled binary examples of similar and dissimilar
pairs. In their approach, they ignore identifiability, which is also a concern
for logistic models, and they use a variational approximation. Our model
and algorithm could be easily adapted to this problem.
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Appendix A

Distributions and Identities

A.1 The Multivariate Normal (Gaussian)

Distribution

fX(x1, . . . , xn|µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
1
2

(x− µ)TΣ(x− µ)
)

(A.1)

where µ is the mean, and Σ is the variance-covariance matrix.

A.2 The Gamma Distribution

fX(x|α, β) =
βα

Γ(α)
xα−1 exp(−βx) (A.2)

where α is the shape parameter and β is the rate parameter.

A.3 The Standard Inverse Wishart Distribution

There are several parametrization of the inverse Wishart distribution. We
will list below the ones that we use in this work.

1. The parametrization used in Gupta and Nagar (2000) Let Σ ∼ IW (m, IT ),
then

fT (Σ|ν) ∝ |Σ|−
1
2

(m) exp(−1
2
tr(Σ−1)) (A.3)

With Expectation:

E(Σ) =
IT

m− 2T − 2

The Matlab function invwishirnd from the MCMC tool box
(http://www.mathworks.com/matlabcentral/fileexchange/ by David Shera),
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implements sampling from this distribution.

2. The parametrization used in Barnard et al. (2000) Let Σ ∼ IW (ν, IT ),
then

fT (Σ|ν) ∝ |Σ|−
1
2

(ν+T+1) exp(−1
2
tr(Σ−1)) (A.4)

With Expectation:

E(Σ) =
IT

ν − T − 1

This corresponds to A.3, with m = ν+T + 1. This parametrization is
implemented in the matlab function iwishrnd in the STAT toolbox.

3. The parametrization used in Dawid and Lauritzen (1993) Let Σ ∼
IW (δ, IT ), then

fT (Σ|δ) ∝ |Σ|−
1
2

(δ+2T ) exp(−1
2
tr(Σ−1)) (A.5)

With Expectation:

E(Σ) =
IT
δ − 2

This corresponds to A.3, with δ = ν − T + 1 .

In the one dimensional case all three parametrization reduce to an inverse
Chi Square:

f(σ2|v) ∝ (σ)−
1
2

(v+2) exp(− 1
2(σ2

)) (A.6)

In this case we could see that ν and δ is parametrization 2 and 3 are
equivalent and they are equal to v, and in parametrization 1, m = v + 2.

83



Appendix B

Marginal Prior on R proof

from Barnard et al. (2000)

Under the transformation Σ = DRD, the Jacobian is given by

|J : Σ→ (D,R)| = ∂σij
∂rij

(B.1)

Where{
σij = didjrij if i 6= j;
σii = d2

i if i = j.
j = 1, . . . , T, i = 1, . . . , T, (B.2)

Therefore,

|J | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2d1

2d2

. . .

2dT
d1d2

d1d3

. . .

dT−1dT

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∏
i

2(di)T = 2T (
∏
i

di)T (B.3)

As an illustration consider the following example with Σ a 3× 3 covariance
matrix. Using the transformation Σ = DRD, we can write
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Σ =

 d2
1 d1d2 d1d3

d1d2 d2
2 d2d3

d1d3 d2d3 d2
3

 (B.4)

The jacobian is:

|J | =
∣∣∣∣∂(σ11, σ22, σ33, σ12, σ13, σ23)
∂(d1, d2, d3, r12, r13, r23)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2d1 0 0 d2r12 d3r13 0
0 2d2 0 d1r12 0 d3r23

0 0 2d3 0 d1r13 d2r23

0 0 0 d1d2 0 0
0 0 0 0 d1d3 0
0 0 0 0 0 d2d3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Here we could see that the lower triangular part of the Jacobian matrix
is 0 and therefore taking the determinant is equivalent to multiplying the
diagonal elements, which gives us |J | = 23(d1d2d3)3.

In Barnard et al. (2000), they start with Σ ∼ IW (ν, IT ), where the
inverse Wishart is defined as in A.3.

π(Σ|ν) ∝ |Σ|−
1
2

(ν+T+1) exp(−1
2
tr(Σ−1))

π(R,D|ν) ∝ |DRD|−
1
2

(ν+T+1) exp(−1
2
tr(DRD)−1)× |J | (B.5)

∝ |R|−
1
2

(ν+T+1)(
∏
i

di)−(ν+T+1)(
∏
i

di)T exp
(
−1

2
tr(DRD)−1

)

∝ |R|
1
2

(ν+T+1)(
∏
i

di)−(ν+1) exp

(
−
∑
i

rii

2d2
i

)

∝ |R|
1
2

(ν+T+1)
∏
i

(
d
−(ν+1)
i exp

(
− rii

2d2
i

))

where rii is the ith diagonal element of R−1. The distribution of R is
obtained by marginalizing over D:

f(R|ν) =
∫ ∞

0
π(R,D|ν)dD (B.6)
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∝
∫ ∞

0
|R|

1
2

(ν+T+1)
∏
i

(
d
−(ν+1)
i exp

(
− rii

2d2
i

))
dD (B.7)

We could perform another change of variable from di → αi by letting
αi = rii

2d2i
with ∂αi = − rii

d3i
∂di we can work through the algebra:

f(R|ν) ∝ |R|
1
2

(ν+T+1)
∏
i

∫ ∞
0

(di)−(ν+1) exp(−αi)
d3
i

rii
dαi

∝ |R|
1
2

(ν+T+1)
∏
i

∫ ∞
0

(
d2
i

rii

)(−ν+2)/2

exp(−αi)
(rii)
rii

(−ν+2)/2

dαi

∝ |R|
1
2

(ν+T+1)(
∏
i

rii)−
ν
2

∏
i

∫ ∞
0

(αi)(ν−2)/2 exp(−αi)dαi

∝ |R|
1
2

(ν+T+1)(
∏
i

rii)−
ν
2

∏
i

∫ ∞
0

α
(ν−2)/2
i exp(−αi)︸ ︷︷ ︸

Γ( ν
2
,1)

dαi (B.8)

From the above we could see that

π(R,D) = π(R,α) = π(α|R)π(R) (B.9)

Where

π(αi|R) ∼ Gamma(
T + 1

2
, 1) (B.10)

π(R) ∝ |R|
T (T−1)

2
−1(
∏
i

|Rii|))−(T+1)/2 (B.11)

The distribution of R in B.11 is obtained by using the matrix algebra
identity:

rii =
|Rii|
|R|

where Rii is the principal submatrix of R.
The marginal distribution of each rij is obtained using the marginal-

ization property of the inverse Wishart, which states that each principal
submatrix of an inverse Wishart is also an inverse Wishart. This means
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that this derivation could be obtained for any T1 × T1 sub-covariance ma-
trix. Choosing a submatrix Σ1 of Σ, Σ1 ∼ IW (ν− (T −T1), I). The density
of the correlation submatrix is as in B.11, with T = T1 and ν = ν−(T −T1).
In the case where T1 = 2, the marginal density is:

f2(rij |ν) = (1− rij)
(ν−T−1)

2 (B.12)

In this case, B.12 could be viewed as Beta
(
ν−T+1

2 , ν−T+1
2

)
on [−1, 1]

and is uniform when ν = T + 1.
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Computation of the Jacobian

|J : Z → W |

This is an example of the computation of the Jacobian of the transformation
Z = D−1W for T = 3, p = 2, and i = 1, . . . , n:

Zi1 = D−1
11 Wi1 (C.1)

Zi2 = D−1
22 Wi2 (C.2)

Zi3 = D−1
33 Wi3 (C.3)

The Jacobian is then

|J | =
∣∣∣∣ ∂(Z11, Z12, Z13, . . . , Zn1, Zn2, Zn3)
∂(W11,W12,W13, . . . ,Wn1,Wn2,Wn3)

∣∣∣∣ (C.4)

|J | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D−1
11 0 0
0 D−1

22 0
0 0 D−1

33
. . .

D−1
11 0 0
0 D−1

22 0
0 0 D−1

33

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= |In ⊗D−1| = |D|−n (C.5)
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Appendix D

Sampling from Multivariate

truncated Gaussian

In the context of Multivariate Probit, we are interested in generating random
samples from a multivariate Gaussian subject to multiple linear inequality
constraints. We follow the method outlined in Geweke (1991) using Gibbs
sampling.

Let
x ∼ N(µ,Σ) a ≤ x ≤ b

Where Σ is an p × p covariance matrix of rank p, µ is a p × 1 vector of
means and a and b are vectors of lower and upper bound that can take on
the values −∞ and +∞ respectively. This problem is equivalent to sampling
from a p-variate normal distribution subject to linear constraints:

z ∼ N(0,Σ) α ≤ z ≤ β

where α = a− µ , and β = b− µ.
We can then take x = µ + z. To sample the zi’s, we adopt a Gibbs

sampling approach that uses the property that each element of z, conditional
on all of the other elements of z is a univariate truncated normal. From
conditional multivariate Normal distribution theory, we have the following
result:

If z ∼ N(0, T ), the non truncated distribution

E(zi|z−i) =
∑
i 6=j

cijzj (D.1)
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where cij is defined in ?? and D.4 Then the truncated distribution has the
following construction:

zi =
∑
i 6=j

cijzj + hiεi, εi ∼ TN
(

(αi −
∑
i 6=j

cijzj)/hi, (βi −
∑
i 6=j

cijzj)/hi
)

(D.2)
Where TN is the univariate truncated normal distribution, and the vec-

tor of coefficients in the conditional mean is

ci = (ci1, . . . , cii−1, ci+1, . . . cip)′c1) (D.3)

where i = 1, . . . , p. and

ci = −(Σii)−1Σi,<i and h2
i = (Σii)−1 (D.4)

Where Σii is the element in row i and column i of Σ−1 and Σi,<i is row
i of Σ−1 with Σii deleted.

As mentioned in Geweke (1991), we only need to perform these calcula-
tion once in the beginning. We can then cycle through the Gibbs steps as
follows:

• Initialize z(0) = 0

• In the first pass, generate p successive variables from :

z
(1)
i |(z

(1)
1 , . . . , z

(1)
i−1, z

(0)
i+1, . . . , z

(0)
p ) ∼ fi(z(1)

1 , . . . , z
(1)
i−1, z

(0)
i+1, . . . , z

(0)
p )
(D.5)

where i = 1, . . . , p

• Repeat the above such that at the j’th pass:

z
(j)
i |(z

(j)
1 , . . . , z

(j)
i−1, z

(j−1)
i+1 , . . . , z(j−1)

p ) ∼ fi(z(j)
1 , . . . , z

(j)
i−1, z

(j−1)
i+1 , . . . , z(j−1)

p )
(D.6)
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• at the end of each pass we compute

x(j) = µ+ z(j) (D.7)

There are several methods available for generating a univariate truncated
Normal distribution, in our implementation, we adopt the methods used in
Robert (1995).

Let
x ∼ N(µ, µ−, σ2)

where µ is the mean, µ− is the left truncation point and σ2 is the vari-
ance. Robert (1995) uses a accept-reject algorithm that is more efficient than
rejection sampling or the inverse cdf method which could be very inefficient
if µ− − µ is large.

Assuming without loss of generality that µ = 0 and σ2 = 1 the algorithm
proceeds as follows:

1. Generate z ∼ Exp(α∗, µ−)

2. Compute ρ(z) = exp(−(z − α∗)2/2)

3. Generate u ∼ U [0, 1] and take x = z if u ≤ ρ(z), otherwise go back to
the first step.

Where Exp(α∗, µ−) is the translated Exponential distribution and the

optimal value of α∗ = µ−+
√

((µ−)2+4)

2 .
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Appendix E

Sampling from the Hyper

Inverse Wishart Distribution

(Carvalho et al., 2007)

Let G = (V,E), be a decomposable, undirected graph with |V | = T . If we
assume that G is a Gaussian Graphical Model with a sparse structure, then

Σ ∼ HIWG(b,D)

Where the Hyper inverse Wishart is defined as in A.5.
A graph can be represented by a perfect ordering of its prime components

and separators. An ordering of components Pi ∈ P and separators Si ∈ S,
(P1, S2, P2, S3, . . . , PT ), is said to be perfect if for every i = 2, 3, . . . , T there
exists a j < i such that

Si = Pi Hi−1 ⊂ Pj

where
Hi−1 = ∪i−1

j=1Pj

In order to obtain the perfect ordering of prime components P1, . . . , Pk,
we need to generate the junction tree of the graph (Cowell et al., 1999).

For a decomposable undirected graph G, a junction tree is a represen-
tation of its prime components. A junction tree is a subgraph of the de-
composable graph that has the following characteristics: (1) it is a tree, (2)
it contains all the nodes of the graph, and (3) it satisfies the junction tree
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Appendix E. Sampling from the Hyper Inverse Wishart Distribution (Carvalho et al., 2007)

property : For each pair Ci, Cj of cliques with intersection S, all cliques on
the path between Ci and Cj contain S.

Subsequently the joint density of Σ factorizes as:

p(Σ|b,D) = p(ΣP1)
k∏
i=2

p(ΣPi |ΣSi) (E.1)

For decomposable models, all prime components are complete. Therefore
standard results for the inverse Wishart (Gupta and Nagar, 2000) enables
sampling from each of the distributions in the composition directly.

Where ΣSi,Ri = ΣT
Ri,Si

. Define

ΣRi.Si = ΣRi − ΣRi,SiΣ
−1
Si

ΣSi,Ri (E.2)

DRi.Si = DRi −DRi,SiD
−1
Si
DSi,Ri (E.3)

The sampling scheme would proceed as follows:

1. sample ΣC1 ∼ IW (b,DC1), this gives the values of submatrix ΣS2 .

2. For i = 1, . . . , k, sample

ΣRi.Si ∼ IW (b+ |Ri|, DRi.Si) (E.4)

Ui ∼ N(DRi,SiD
−1
Si
,ΣRi.Si ⊗D

−1
Si

) (E.5)

We could then directly compute ΣRi,Si = UiΣSi and ΣRi = ΣRi.Si +
ΣRi,SiΣ

−1
Si

ΣSi,Ri

The non-free parameters of Σ are obtained through matrix completion given
the perfect ordering of its prime components (for details see Lauritzen
(1996)) using:

ΣRi,Ai−1 = ΣRi,SiΣ
−1
Si

ΣSi,Ai−1 (E.6)
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Appendix F

Simulation Results

Entropy Quadratic
Saturated Structured Saturated Structured

22.228 2.534 154.075 3.827
28.097 3.130 237.388 4.862
36.069 3.095 424.618 4.381
23.836 3.111 189.696 4.585
27.421 3.558 226.054 4.563
21.959 3.041 149.302 4.225
39.708 4.216 1569.468 6.129
27.325 2.066 242.982 3.530
2.302 0.401 10.406 1.063
5.227 0.362 48.853 0.941
2.769 0.941 12.265 8.453
2.375 0.513 16.248 0.995
2.867 0.503 17.114 1.250
4.383 0.638 42.125 4.627
3.162 0.533 20.535 1.354
5.947 0.739 644.714 3.338
2.413 0.558 10.570 1.427
2.616 0.559 12.475 1.100
3.793 0.444 36.864 0.970
22.310 2.087 157.641 3.469
3.518 0.637 21.579 1.890
2.114 0.455 9.493 1.079
2.103 0.371 8.683 0.870

Table F.1: Simulation results: Entropy and quadratic loss for 50 data sets gener-
ated by different correlation matrices with the same structure
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Appendix F. Simulation Results

Entropy Quadratic
Saturated Structured Saturated Structured

2.026 0.552 7.596 1.031
5.835 1.123 556.727 18.055
1.746 0.392 6.715 0.994
1.953 0.343 7.985 0.788
2.337 0.384 10.725 1.011
2.428 0.415 11.166 0.830
4.546 0.842 34.827 2.885
24.410 2.088 186.270 3.526
19.670 1.635 127.148 2.830
22.453 2.586 156.924 4.198
53.488 6.072 1066.345 5.868
29.999 2.337 278.968 3.848
26.146 2.313 211.350 3.441
1.860 0.402 6.632 0.756
2.209 0.343 10.706 0.819
2.749 0.532 14.805 0.990
1.701 0.501 5.315 0.866
1.953 0.408 8.378 0.820
2.399 0.413 10.604 0.969
5.596 1.018 67.955 3.281
1.772 0.311 7.622 0.728
2.046 0.771 6.495 1.212
2.900 0.518 16.389 1.720

164.743 0.617 847548.010 1.271
6.030 0.501 283.085 1.661
3.300 0.553 17.834 1.489
2.937 0.890 17.898 3.991

Table F.2: Table F continued
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